/src/libtomcrypt/src/ciphers/xtea.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* LibTomCrypt, modular cryptographic library -- Tom St Denis */ |
2 | | /* SPDX-License-Identifier: Unlicense */ |
3 | | |
4 | | /** |
5 | | @file xtea.c |
6 | | Implementation of eXtended TEA, Tom St Denis |
7 | | */ |
8 | | #include "tomcrypt_private.h" |
9 | | |
10 | | #ifdef LTC_XTEA |
11 | | |
12 | | const struct ltc_cipher_descriptor xtea_desc = |
13 | | { |
14 | | "xtea", |
15 | | 1, |
16 | | 16, 16, 8, 32, |
17 | | &xtea_setup, |
18 | | &xtea_ecb_encrypt, |
19 | | &xtea_ecb_decrypt, |
20 | | &xtea_test, |
21 | | &xtea_done, |
22 | | &xtea_keysize, |
23 | | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL |
24 | | }; |
25 | | |
26 | | int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
27 | 2 | { |
28 | 2 | ulong32 x, sum, K[4]; |
29 | | |
30 | 2 | LTC_ARGCHK(key != NULL); |
31 | 2 | LTC_ARGCHK(skey != NULL); |
32 | | |
33 | | /* check arguments */ |
34 | 2 | if (keylen != 16) { |
35 | 2 | return CRYPT_INVALID_KEYSIZE; |
36 | 2 | } |
37 | | |
38 | 0 | if (num_rounds != 0 && num_rounds != 32) { |
39 | 0 | return CRYPT_INVALID_ROUNDS; |
40 | 0 | } |
41 | | |
42 | | /* load key */ |
43 | 0 | LOAD32H(K[0], key+0); |
44 | 0 | LOAD32H(K[1], key+4); |
45 | 0 | LOAD32H(K[2], key+8); |
46 | 0 | LOAD32H(K[3], key+12); |
47 | |
|
48 | 0 | for (x = sum = 0; x < 32; x++) { |
49 | 0 | skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL; |
50 | 0 | sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL; |
51 | 0 | skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL; |
52 | 0 | } |
53 | |
|
54 | | #ifdef LTC_CLEAN_STACK |
55 | | zeromem(&K, sizeof(K)); |
56 | | #endif |
57 | |
|
58 | 0 | return CRYPT_OK; |
59 | 0 | } |
60 | | |
61 | | /** |
62 | | Encrypts a block of text with LTC_XTEA |
63 | | @param pt The input plaintext (8 bytes) |
64 | | @param ct The output ciphertext (8 bytes) |
65 | | @param skey The key as scheduled |
66 | | @return CRYPT_OK if successful |
67 | | */ |
68 | | int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey) |
69 | 0 | { |
70 | 0 | ulong32 y, z; |
71 | 0 | int r; |
72 | |
|
73 | 0 | LTC_ARGCHK(pt != NULL); |
74 | 0 | LTC_ARGCHK(ct != NULL); |
75 | 0 | LTC_ARGCHK(skey != NULL); |
76 | | |
77 | 0 | LOAD32H(y, &pt[0]); |
78 | 0 | LOAD32H(z, &pt[4]); |
79 | 0 | for (r = 0; r < 32; r += 4) { |
80 | 0 | y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL; |
81 | 0 | z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL; |
82 | |
|
83 | 0 | y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL; |
84 | 0 | z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL; |
85 | |
|
86 | 0 | y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL; |
87 | 0 | z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL; |
88 | |
|
89 | 0 | y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL; |
90 | 0 | z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL; |
91 | 0 | } |
92 | 0 | STORE32H(y, &ct[0]); |
93 | 0 | STORE32H(z, &ct[4]); |
94 | 0 | return CRYPT_OK; |
95 | 0 | } |
96 | | |
97 | | /** |
98 | | Decrypts a block of text with LTC_XTEA |
99 | | @param ct The input ciphertext (8 bytes) |
100 | | @param pt The output plaintext (8 bytes) |
101 | | @param skey The key as scheduled |
102 | | @return CRYPT_OK if successful |
103 | | */ |
104 | | int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey) |
105 | 0 | { |
106 | 0 | ulong32 y, z; |
107 | 0 | int r; |
108 | |
|
109 | 0 | LTC_ARGCHK(pt != NULL); |
110 | 0 | LTC_ARGCHK(ct != NULL); |
111 | 0 | LTC_ARGCHK(skey != NULL); |
112 | | |
113 | 0 | LOAD32H(y, &ct[0]); |
114 | 0 | LOAD32H(z, &ct[4]); |
115 | 0 | for (r = 31; r >= 0; r -= 4) { |
116 | 0 | z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL; |
117 | 0 | y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL; |
118 | |
|
119 | 0 | z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL; |
120 | 0 | y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL; |
121 | |
|
122 | 0 | z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL; |
123 | 0 | y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL; |
124 | |
|
125 | 0 | z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL; |
126 | 0 | y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL; |
127 | 0 | } |
128 | 0 | STORE32H(y, &pt[0]); |
129 | 0 | STORE32H(z, &pt[4]); |
130 | 0 | return CRYPT_OK; |
131 | 0 | } |
132 | | |
133 | | /** |
134 | | Performs a self-test of the LTC_XTEA block cipher |
135 | | @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled |
136 | | */ |
137 | | int xtea_test(void) |
138 | 0 | { |
139 | | #ifndef LTC_TEST |
140 | | return CRYPT_NOP; |
141 | | #else |
142 | 0 | static const struct { |
143 | 0 | unsigned char key[16], pt[8], ct[8]; |
144 | 0 | } tests[] = { |
145 | 0 | { |
146 | 0 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
147 | 0 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
148 | 0 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
149 | 0 | { 0xde, 0xe9, 0xd4, 0xd8, 0xf7, 0x13, 0x1e, 0xd9 } |
150 | 0 | }, { |
151 | 0 | { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, |
152 | 0 | 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04 }, |
153 | 0 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
154 | 0 | { 0xa5, 0x97, 0xab, 0x41, 0x76, 0x01, 0x4d, 0x72 } |
155 | 0 | }, { |
156 | 0 | { 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04, |
157 | 0 | 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x06 }, |
158 | 0 | { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02 }, |
159 | 0 | { 0xb1, 0xfd, 0x5d, 0xa9, 0xcc, 0x6d, 0xc9, 0xdc } |
160 | 0 | }, { |
161 | 0 | { 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f, |
162 | 0 | 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 }, |
163 | 0 | { 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 }, |
164 | 0 | { 0x70, 0x4b, 0x31, 0x34, 0x47, 0x44, 0xdf, 0xab } |
165 | 0 | }, { |
166 | 0 | { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
167 | 0 | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, |
168 | 0 | { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 }, |
169 | 0 | { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 } |
170 | 0 | }, { |
171 | 0 | { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
172 | 0 | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, |
173 | 0 | { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }, |
174 | 0 | { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 } |
175 | 0 | }, { |
176 | 0 | { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
177 | 0 | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, |
178 | 0 | { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f }, |
179 | 0 | { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 } |
180 | 0 | }, { |
181 | 0 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
182 | 0 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
183 | 0 | { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 }, |
184 | 0 | { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 } |
185 | 0 | }, { |
186 | 0 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
187 | 0 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
188 | 0 | { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }, |
189 | 0 | { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d } |
190 | 0 | }, { |
191 | 0 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
192 | 0 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
193 | 0 | { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 }, |
194 | 0 | { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 } |
195 | 0 | } |
196 | 0 | }; |
197 | 0 | unsigned char tmp[2][8]; |
198 | 0 | symmetric_key skey; |
199 | 0 | int i, err, y; |
200 | 0 | for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { |
201 | 0 | zeromem(&skey, sizeof(skey)); |
202 | 0 | if ((err = xtea_setup(tests[i].key, 16, 0, &skey)) != CRYPT_OK) { |
203 | 0 | return err; |
204 | 0 | } |
205 | 0 | xtea_ecb_encrypt(tests[i].pt, tmp[0], &skey); |
206 | 0 | xtea_ecb_decrypt(tmp[0], tmp[1], &skey); |
207 | |
|
208 | 0 | if (compare_testvector(tmp[0], 8, tests[i].ct, 8, "XTEA Encrypt", i) != 0 || |
209 | 0 | compare_testvector(tmp[1], 8, tests[i].pt, 8, "XTEA Decrypt", i) != 0) { |
210 | 0 | return CRYPT_FAIL_TESTVECTOR; |
211 | 0 | } |
212 | | |
213 | | /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ |
214 | 0 | for (y = 0; y < 8; y++) tmp[0][y] = 0; |
215 | 0 | for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey); |
216 | 0 | for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey); |
217 | 0 | for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; |
218 | 0 | } /* for */ |
219 | | |
220 | 0 | return CRYPT_OK; |
221 | 0 | #endif |
222 | 0 | } |
223 | | |
224 | | /** Terminate the context |
225 | | @param skey The scheduled key |
226 | | */ |
227 | | void xtea_done(symmetric_key *skey) |
228 | 0 | { |
229 | 0 | LTC_UNUSED_PARAM(skey); |
230 | 0 | } |
231 | | |
232 | | /** |
233 | | Gets suitable key size |
234 | | @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. |
235 | | @return CRYPT_OK if the input key size is acceptable. |
236 | | */ |
237 | | int xtea_keysize(int *keysize) |
238 | 0 | { |
239 | 0 | LTC_ARGCHK(keysize != NULL); |
240 | 0 | if (*keysize < 16) { |
241 | 0 | return CRYPT_INVALID_KEYSIZE; |
242 | 0 | } |
243 | 0 | *keysize = 16; |
244 | 0 | return CRYPT_OK; |
245 | 0 | } |
246 | | |
247 | | |
248 | | #endif |
249 | | |
250 | | |
251 | | |