/src/mpdecimal-4.0.0/libmpdec/sixstep.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2008-2024 Stefan Krah. All rights reserved. |
3 | | * |
4 | | * Redistribution and use in source and binary forms, with or without |
5 | | * modification, are permitted provided that the following conditions |
6 | | * are met: |
7 | | * |
8 | | * 1. Redistributions of source code must retain the above copyright |
9 | | * notice, this list of conditions and the following disclaimer. |
10 | | * 2. Redistributions in binary form must reproduce the above copyright |
11 | | * notice, this list of conditions and the following disclaimer in the |
12 | | * documentation and/or other materials provided with the distribution. |
13 | | * |
14 | | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
15 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
17 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
18 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
19 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
20 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
21 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
22 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
23 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
24 | | * SUCH DAMAGE. |
25 | | */ |
26 | | |
27 | | |
28 | | #include <assert.h> |
29 | | #include <stdio.h> |
30 | | |
31 | | #include "bits.h" |
32 | | #include "constants.h" |
33 | | #include "difradix2.h" |
34 | | #include "numbertheory.h" |
35 | | #include "mpdecimal.h" |
36 | | #include "sixstep.h" |
37 | | #include "transpose.h" |
38 | | #include "umodarith.h" |
39 | | |
40 | | |
41 | | /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the |
42 | | form 2**n (See literature/six-step.txt). */ |
43 | | |
44 | | |
45 | | /* forward transform with sign = -1 */ |
46 | | int |
47 | | six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) |
48 | 0 | { |
49 | 0 | struct fnt_params *tparams; |
50 | 0 | mpd_size_t log2n, C, R; |
51 | 0 | mpd_uint_t kernel; |
52 | 0 | mpd_uint_t umod; |
53 | | #ifdef PPRO |
54 | | double dmod; |
55 | | uint32_t dinvmod[3]; |
56 | | #endif |
57 | 0 | mpd_uint_t *x, w0, w1, wstep; |
58 | 0 | mpd_size_t i, k; |
59 | | |
60 | |
|
61 | 0 | assert(ispower2(n)); |
62 | 0 | assert(n >= 16); |
63 | 0 | assert(n <= MPD_MAXTRANSFORM_2N); |
64 | |
|
65 | 0 | log2n = mpd_bsr(n); |
66 | 0 | C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ |
67 | 0 | R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ |
68 | | |
69 | | |
70 | | /* Transpose the matrix. */ |
71 | 0 | if (!transpose_pow2(a, R, C)) { |
72 | 0 | return 0; |
73 | 0 | } |
74 | | |
75 | | /* Length R transform on the rows. */ |
76 | 0 | if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) { |
77 | 0 | return 0; |
78 | 0 | } |
79 | 0 | for (x = a; x < a+n; x += R) { |
80 | 0 | fnt_dif2(x, R, tparams); |
81 | 0 | } |
82 | | |
83 | | /* Transpose the matrix. */ |
84 | 0 | if (!transpose_pow2(a, C, R)) { |
85 | 0 | mpd_free(tparams); |
86 | 0 | return 0; |
87 | 0 | } |
88 | | |
89 | | /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ |
90 | 0 | SETMODULUS(modnum); |
91 | 0 | kernel = _mpd_getkernel(n, -1, modnum); |
92 | 0 | for (i = 1; i < R; i++) { |
93 | 0 | w0 = 1; /* r**(i*0): initial value for k=0 */ |
94 | 0 | w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */ |
95 | 0 | wstep = MULMOD(w1, w1); /* r**(2*i) */ |
96 | 0 | for (k = 0; k < C; k += 2) { |
97 | 0 | mpd_uint_t x0 = a[i*C+k]; |
98 | 0 | mpd_uint_t x1 = a[i*C+k+1]; |
99 | 0 | MULMOD2(&x0, w0, &x1, w1); |
100 | 0 | MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */ |
101 | 0 | a[i*C+k] = x0; |
102 | 0 | a[i*C+k+1] = x1; |
103 | 0 | } |
104 | 0 | } |
105 | | |
106 | | /* Length C transform on the rows. */ |
107 | 0 | if (C != R) { |
108 | 0 | mpd_free(tparams); |
109 | 0 | if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) { |
110 | 0 | return 0; |
111 | 0 | } |
112 | 0 | } |
113 | 0 | for (x = a; x < a+n; x += C) { |
114 | 0 | fnt_dif2(x, C, tparams); |
115 | 0 | } |
116 | 0 | mpd_free(tparams); |
117 | |
|
118 | | #if 0 |
119 | | /* An unordered transform is sufficient for convolution. */ |
120 | | /* Transpose the matrix. */ |
121 | | if (!transpose_pow2(a, R, C)) { |
122 | | return 0; |
123 | | } |
124 | | #endif |
125 | |
|
126 | 0 | return 1; |
127 | 0 | } |
128 | | |
129 | | |
130 | | /* reverse transform, sign = 1 */ |
131 | | int |
132 | | inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) |
133 | 0 | { |
134 | 0 | struct fnt_params *tparams; |
135 | 0 | mpd_size_t log2n, C, R; |
136 | 0 | mpd_uint_t kernel; |
137 | 0 | mpd_uint_t umod; |
138 | | #ifdef PPRO |
139 | | double dmod; |
140 | | uint32_t dinvmod[3]; |
141 | | #endif |
142 | 0 | mpd_uint_t *x, w0, w1, wstep; |
143 | 0 | mpd_size_t i, k; |
144 | | |
145 | |
|
146 | 0 | assert(ispower2(n)); |
147 | 0 | assert(n >= 16); |
148 | 0 | assert(n <= MPD_MAXTRANSFORM_2N); |
149 | |
|
150 | 0 | log2n = mpd_bsr(n); |
151 | 0 | C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ |
152 | 0 | R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ |
153 | | |
154 | |
|
155 | | #if 0 |
156 | | /* An unordered transform is sufficient for convolution. */ |
157 | | /* Transpose the matrix, producing an R*C matrix. */ |
158 | | if (!transpose_pow2(a, C, R)) { |
159 | | return 0; |
160 | | } |
161 | | #endif |
162 | | |
163 | | /* Length C transform on the rows. */ |
164 | 0 | if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) { |
165 | 0 | return 0; |
166 | 0 | } |
167 | 0 | for (x = a; x < a+n; x += C) { |
168 | 0 | fnt_dif2(x, C, tparams); |
169 | 0 | } |
170 | | |
171 | | /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ |
172 | 0 | SETMODULUS(modnum); |
173 | 0 | kernel = _mpd_getkernel(n, 1, modnum); |
174 | 0 | for (i = 1; i < R; i++) { |
175 | 0 | w0 = 1; |
176 | 0 | w1 = POWMOD(kernel, i); |
177 | 0 | wstep = MULMOD(w1, w1); |
178 | 0 | for (k = 0; k < C; k += 2) { |
179 | 0 | mpd_uint_t x0 = a[i*C+k]; |
180 | 0 | mpd_uint_t x1 = a[i*C+k+1]; |
181 | 0 | MULMOD2(&x0, w0, &x1, w1); |
182 | 0 | MULMOD2C(&w0, &w1, wstep); |
183 | 0 | a[i*C+k] = x0; |
184 | 0 | a[i*C+k+1] = x1; |
185 | 0 | } |
186 | 0 | } |
187 | | |
188 | | /* Transpose the matrix. */ |
189 | 0 | if (!transpose_pow2(a, R, C)) { |
190 | 0 | mpd_free(tparams); |
191 | 0 | return 0; |
192 | 0 | } |
193 | | |
194 | | /* Length R transform on the rows. */ |
195 | 0 | if (R != C) { |
196 | 0 | mpd_free(tparams); |
197 | 0 | if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) { |
198 | 0 | return 0; |
199 | 0 | } |
200 | 0 | } |
201 | 0 | for (x = a; x < a+n; x += R) { |
202 | 0 | fnt_dif2(x, R, tparams); |
203 | 0 | } |
204 | 0 | mpd_free(tparams); |
205 | | |
206 | | /* Transpose the matrix. */ |
207 | 0 | if (!transpose_pow2(a, C, R)) { |
208 | 0 | return 0; |
209 | 0 | } |
210 | | |
211 | 0 | return 1; |
212 | 0 | } |