/src/nss-nspr/nss/lib/freebl/rsa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | |
5 | | /* |
6 | | * RSA key generation, public key op, private key op. |
7 | | */ |
8 | | #ifdef FREEBL_NO_DEPEND |
9 | | #include "stubs.h" |
10 | | #endif |
11 | | |
12 | | #include "secerr.h" |
13 | | |
14 | | #include "prclist.h" |
15 | | #include "nssilock.h" |
16 | | #include "prinit.h" |
17 | | #include "blapi.h" |
18 | | #include "mpi.h" |
19 | | #include "mpprime.h" |
20 | | #include "mplogic.h" |
21 | | #include "secmpi.h" |
22 | | #include "secitem.h" |
23 | | #include "blapii.h" |
24 | | |
25 | | /* The minimal required randomness is 64 bits */ |
26 | | /* EXP_BLINDING_RANDOMNESS_LEN is the length of the randomness in mp_digits */ |
27 | | /* for 32 bits platforts it is 2 mp_digits (= 2 * 32 bits), for 64 bits it is equal to 128 bits */ |
28 | 24 | #define EXP_BLINDING_RANDOMNESS_LEN ((128 + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT) |
29 | 12 | #define EXP_BLINDING_RANDOMNESS_LEN_BYTES (EXP_BLINDING_RANDOMNESS_LEN * sizeof(mp_digit)) |
30 | | |
31 | | /* |
32 | | ** Number of times to attempt to generate a prime (p or q) from a random |
33 | | ** seed (the seed changes for each iteration). |
34 | | */ |
35 | 0 | #define MAX_PRIME_GEN_ATTEMPTS 10 |
36 | | /* |
37 | | ** Number of times to attempt to generate a key. The primes p and q change |
38 | | ** for each attempt. |
39 | | */ |
40 | | #define MAX_KEY_GEN_ATTEMPTS 10 |
41 | | |
42 | | /* Blinding Parameters max cache size */ |
43 | 44 | #define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20 |
44 | | |
45 | | /* exponent should not be greater than modulus */ |
46 | | #define BAD_RSA_KEY_SIZE(modLen, expLen) \ |
47 | 6 | ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS / 8 || \ |
48 | 6 | (expLen) > RSA_MAX_EXPONENT_BITS / 8) |
49 | | |
50 | | struct blindingParamsStr; |
51 | | typedef struct blindingParamsStr blindingParams; |
52 | | |
53 | | struct blindingParamsStr { |
54 | | blindingParams *next; |
55 | | mp_int f, g; /* blinding parameter */ |
56 | | int counter; /* number of remaining uses of (f, g) */ |
57 | | }; |
58 | | |
59 | | /* |
60 | | ** RSABlindingParamsStr |
61 | | ** |
62 | | ** For discussion of Paul Kocher's timing attack against an RSA private key |
63 | | ** operation, see http://www.cryptography.com/timingattack/paper.html. The |
64 | | ** countermeasure to this attack, known as blinding, is also discussed in |
65 | | ** the Handbook of Applied Cryptography, 11.118-11.119. |
66 | | */ |
67 | | struct RSABlindingParamsStr { |
68 | | /* Blinding-specific parameters */ |
69 | | PRCList link; /* link to list of structs */ |
70 | | SECItem modulus; /* list element "key" */ |
71 | | blindingParams *free, *bp; /* Blinding parameters queue */ |
72 | | blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE]; |
73 | | /* precalculate montegomery reduction value */ |
74 | | mp_digit n0i; /* n0i = -( n & MP_DIGIT) ** -1 mod mp_RADIX */ |
75 | | }; |
76 | | typedef struct RSABlindingParamsStr RSABlindingParams; |
77 | | |
78 | | /* |
79 | | ** RSABlindingParamsListStr |
80 | | ** |
81 | | ** List of key-specific blinding params. The arena holds the volatile pool |
82 | | ** of memory for each entry and the list itself. The lock is for list |
83 | | ** operations, in this case insertions and iterations, as well as control |
84 | | ** of the counter for each set of blinding parameters. |
85 | | */ |
86 | | struct RSABlindingParamsListStr { |
87 | | PZLock *lock; /* Lock for the list */ |
88 | | PRCondVar *cVar; /* Condidtion Variable */ |
89 | | int waitCount; /* Number of threads waiting on cVar */ |
90 | | PRCList head; /* Pointer to the list */ |
91 | | }; |
92 | | |
93 | | /* |
94 | | ** The master blinding params list. |
95 | | */ |
96 | | static struct RSABlindingParamsListStr blindingParamsList = { 0 }; |
97 | | |
98 | | /* Number of times to reuse (f, g). Suggested by Paul Kocher */ |
99 | 2 | #define RSA_BLINDING_PARAMS_MAX_REUSE 50 |
100 | | |
101 | | /* Global, allows optional use of blinding. On by default. */ |
102 | | /* Cannot be changed at the moment, due to thread-safety issues. */ |
103 | | static const PRBool nssRSAUseBlinding = PR_TRUE; |
104 | | |
105 | | static SECStatus |
106 | | rsa_build_from_primes(const mp_int *p, const mp_int *q, |
107 | | mp_int *e, PRBool needPublicExponent, |
108 | | mp_int *d, PRBool needPrivateExponent, |
109 | | RSAPrivateKey *key, unsigned int keySizeInBits) |
110 | 0 | { |
111 | 0 | mp_int n, phi; |
112 | 0 | mp_int psub1, qsub1, tmp; |
113 | 0 | mp_err err = MP_OKAY; |
114 | 0 | SECStatus rv = SECSuccess; |
115 | 0 | MP_DIGITS(&n) = 0; |
116 | 0 | MP_DIGITS(&phi) = 0; |
117 | 0 | MP_DIGITS(&psub1) = 0; |
118 | 0 | MP_DIGITS(&qsub1) = 0; |
119 | 0 | MP_DIGITS(&tmp) = 0; |
120 | 0 | CHECK_MPI_OK(mp_init(&n)); |
121 | 0 | CHECK_MPI_OK(mp_init(&phi)); |
122 | 0 | CHECK_MPI_OK(mp_init(&psub1)); |
123 | 0 | CHECK_MPI_OK(mp_init(&qsub1)); |
124 | 0 | CHECK_MPI_OK(mp_init(&tmp)); |
125 | | /* p and q must be distinct. */ |
126 | 0 | if (mp_cmp(p, q) == 0) { |
127 | 0 | PORT_SetError(SEC_ERROR_NEED_RANDOM); |
128 | 0 | rv = SECFailure; |
129 | 0 | goto cleanup; |
130 | 0 | } |
131 | | /* 1. Compute n = p*q */ |
132 | 0 | CHECK_MPI_OK(mp_mul(p, q, &n)); |
133 | | /* verify that the modulus has the desired number of bits */ |
134 | 0 | if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { |
135 | 0 | PORT_SetError(SEC_ERROR_NEED_RANDOM); |
136 | 0 | rv = SECFailure; |
137 | 0 | goto cleanup; |
138 | 0 | } |
139 | | |
140 | | /* at least one exponent must be given */ |
141 | 0 | PORT_Assert(!(needPublicExponent && needPrivateExponent)); |
142 | | |
143 | | /* 2. Compute phi = (p-1)*(q-1) */ |
144 | 0 | CHECK_MPI_OK(mp_sub_d(p, 1, &psub1)); |
145 | 0 | CHECK_MPI_OK(mp_sub_d(q, 1, &qsub1)); |
146 | 0 | if (needPublicExponent || needPrivateExponent) { |
147 | 0 | CHECK_MPI_OK(mp_lcm(&psub1, &qsub1, &phi)); |
148 | | /* 3. Compute d = e**-1 mod(phi) */ |
149 | | /* or e = d**-1 mod(phi) as necessary */ |
150 | 0 | if (needPublicExponent) { |
151 | 0 | err = mp_invmod(d, &phi, e); |
152 | 0 | } else { |
153 | 0 | err = mp_invmod(e, &phi, d); |
154 | 0 | } |
155 | 0 | } else { |
156 | 0 | err = MP_OKAY; |
157 | 0 | } |
158 | | /* Verify that phi(n) and e have no common divisors */ |
159 | 0 | if (err != MP_OKAY) { |
160 | 0 | if (err == MP_UNDEF) { |
161 | 0 | PORT_SetError(SEC_ERROR_NEED_RANDOM); |
162 | 0 | err = MP_OKAY; /* to keep PORT_SetError from being called again */ |
163 | 0 | rv = SECFailure; |
164 | 0 | } |
165 | 0 | goto cleanup; |
166 | 0 | } |
167 | | |
168 | | /* 4. Compute exponent1 = d mod (p-1) */ |
169 | 0 | CHECK_MPI_OK(mp_mod(d, &psub1, &tmp)); |
170 | 0 | MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); |
171 | | /* 5. Compute exponent2 = d mod (q-1) */ |
172 | 0 | CHECK_MPI_OK(mp_mod(d, &qsub1, &tmp)); |
173 | 0 | MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); |
174 | | /* 6. Compute coefficient = q**-1 mod p */ |
175 | 0 | CHECK_MPI_OK(mp_invmod(q, p, &tmp)); |
176 | 0 | MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); |
177 | | |
178 | | /* copy our calculated results, overwrite what is there */ |
179 | 0 | key->modulus.data = NULL; |
180 | 0 | MPINT_TO_SECITEM(&n, &key->modulus, key->arena); |
181 | 0 | key->privateExponent.data = NULL; |
182 | 0 | MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); |
183 | 0 | key->publicExponent.data = NULL; |
184 | 0 | MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); |
185 | 0 | key->prime1.data = NULL; |
186 | 0 | MPINT_TO_SECITEM(p, &key->prime1, key->arena); |
187 | 0 | key->prime2.data = NULL; |
188 | 0 | MPINT_TO_SECITEM(q, &key->prime2, key->arena); |
189 | 0 | cleanup: |
190 | 0 | mp_clear(&n); |
191 | 0 | mp_clear(&phi); |
192 | 0 | mp_clear(&psub1); |
193 | 0 | mp_clear(&qsub1); |
194 | 0 | mp_clear(&tmp); |
195 | 0 | if (err) { |
196 | 0 | MP_TO_SEC_ERROR(err); |
197 | 0 | rv = SECFailure; |
198 | 0 | } |
199 | 0 | return rv; |
200 | 0 | } |
201 | | |
202 | | SECStatus |
203 | | generate_prime(mp_int *prime, int primeLen) |
204 | 0 | { |
205 | 0 | mp_err err = MP_OKAY; |
206 | 0 | SECStatus rv = SECSuccess; |
207 | 0 | int piter; |
208 | 0 | unsigned char *pb = NULL; |
209 | 0 | pb = PORT_Alloc(primeLen); |
210 | 0 | if (!pb) { |
211 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
212 | 0 | goto cleanup; |
213 | 0 | } |
214 | 0 | for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { |
215 | 0 | CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(pb, primeLen)); |
216 | 0 | pb[0] |= 0xC0; /* set two high-order bits */ |
217 | 0 | pb[primeLen - 1] |= 0x01; /* set low-order bit */ |
218 | 0 | CHECK_MPI_OK(mp_read_unsigned_octets(prime, pb, primeLen)); |
219 | 0 | err = mpp_make_prime_secure(prime, primeLen * 8, PR_FALSE); |
220 | 0 | if (err != MP_NO) |
221 | 0 | goto cleanup; |
222 | | /* keep going while err == MP_NO */ |
223 | 0 | } |
224 | 0 | cleanup: |
225 | 0 | if (pb) |
226 | 0 | PORT_ZFree(pb, primeLen); |
227 | 0 | if (err) { |
228 | 0 | MP_TO_SEC_ERROR(err); |
229 | 0 | rv = SECFailure; |
230 | 0 | } |
231 | 0 | return rv; |
232 | 0 | } |
233 | | |
234 | | /* |
235 | | * make sure the key components meet fips186 requirements. |
236 | | */ |
237 | | static PRBool |
238 | | rsa_fips186_verify(mp_int *p, mp_int *q, mp_int *d, int keySizeInBits) |
239 | 0 | { |
240 | 0 | mp_int pq_diff; |
241 | 0 | mp_err err = MP_OKAY; |
242 | 0 | PRBool ret = PR_FALSE; |
243 | |
|
244 | 0 | if (keySizeInBits < 250) { |
245 | | /* not a valid FIPS length, no point in our other tests */ |
246 | | /* if you are here, and in FIPS mode, you are outside the security |
247 | | * policy */ |
248 | 0 | return PR_TRUE; |
249 | 0 | } |
250 | | |
251 | | /* p & q are already known to be greater then sqrt(2)*2^(keySize/2-1) */ |
252 | | /* we also know that gcd(p-1,e) = 1 and gcd(q-1,e) = 1 because the |
253 | | * mp_invmod() function will fail. */ |
254 | | /* now check p-q > 2^(keysize/2-100) */ |
255 | 0 | MP_DIGITS(&pq_diff) = 0; |
256 | 0 | CHECK_MPI_OK(mp_init(&pq_diff)); |
257 | | /* NSS always has p > q, so we know pq_diff is positive */ |
258 | 0 | CHECK_MPI_OK(mp_sub(p, q, &pq_diff)); |
259 | 0 | if ((unsigned)mpl_significant_bits(&pq_diff) < (keySizeInBits / 2 - 100)) { |
260 | 0 | goto cleanup; |
261 | 0 | } |
262 | | /* now verify d is large enough*/ |
263 | 0 | if ((unsigned)mpl_significant_bits(d) < (keySizeInBits / 2)) { |
264 | 0 | goto cleanup; |
265 | 0 | } |
266 | 0 | ret = PR_TRUE; |
267 | |
|
268 | 0 | cleanup: |
269 | 0 | mp_clear(&pq_diff); |
270 | 0 | return ret; |
271 | 0 | } |
272 | | |
273 | | /* |
274 | | ** Generate and return a new RSA public and private key. |
275 | | ** Both keys are encoded in a single RSAPrivateKey structure. |
276 | | ** "cx" is the random number generator context |
277 | | ** "keySizeInBits" is the size of the key to be generated, in bits. |
278 | | ** 512, 1024, etc. |
279 | | ** "publicExponent" when not NULL is a pointer to some data that |
280 | | ** represents the public exponent to use. The data is a byte |
281 | | ** encoded integer, in "big endian" order. |
282 | | */ |
283 | | RSAPrivateKey * |
284 | | RSA_NewKey(int keySizeInBits, SECItem *publicExponent) |
285 | 0 | { |
286 | 0 | unsigned int primeLen; |
287 | 0 | mp_int p = { 0, 0, 0, NULL }; |
288 | 0 | mp_int q = { 0, 0, 0, NULL }; |
289 | 0 | mp_int e = { 0, 0, 0, NULL }; |
290 | 0 | mp_int d = { 0, 0, 0, NULL }; |
291 | 0 | int kiter; |
292 | 0 | int max_attempts; |
293 | 0 | mp_err err = MP_OKAY; |
294 | 0 | SECStatus rv = SECSuccess; |
295 | 0 | int prerr = 0; |
296 | 0 | RSAPrivateKey *key = NULL; |
297 | 0 | PLArenaPool *arena = NULL; |
298 | | /* Require key size to be a multiple of 16 bits. */ |
299 | 0 | if (!publicExponent || keySizeInBits % 16 != 0 || |
300 | 0 | BAD_RSA_KEY_SIZE((unsigned int)keySizeInBits / 8, publicExponent->len)) { |
301 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
302 | 0 | return NULL; |
303 | 0 | } |
304 | | /* 1. Set the public exponent and check if it's uneven and greater than 2.*/ |
305 | 0 | MP_DIGITS(&e) = 0; |
306 | 0 | CHECK_MPI_OK(mp_init(&e)); |
307 | 0 | SECITEM_TO_MPINT(*publicExponent, &e); |
308 | 0 | if (mp_iseven(&e) || !(mp_cmp_d(&e, 2) > 0)) { |
309 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
310 | 0 | goto cleanup; |
311 | 0 | } |
312 | 0 | #ifndef NSS_FIPS_DISABLED |
313 | | /* Check that the exponent is not smaller than 65537 */ |
314 | 0 | if (mp_cmp_d(&e, 0x10001) < 0) { |
315 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
316 | 0 | goto cleanup; |
317 | 0 | } |
318 | 0 | #endif |
319 | | |
320 | | /* 2. Allocate arena & key */ |
321 | 0 | arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
322 | 0 | if (!arena) { |
323 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
324 | 0 | goto cleanup; |
325 | 0 | } |
326 | 0 | key = PORT_ArenaZNew(arena, RSAPrivateKey); |
327 | 0 | if (!key) { |
328 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
329 | 0 | goto cleanup; |
330 | 0 | } |
331 | 0 | key->arena = arena; |
332 | | /* length of primes p and q (in bytes) */ |
333 | 0 | primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE); |
334 | 0 | MP_DIGITS(&p) = 0; |
335 | 0 | MP_DIGITS(&q) = 0; |
336 | 0 | MP_DIGITS(&d) = 0; |
337 | 0 | CHECK_MPI_OK(mp_init(&p)); |
338 | 0 | CHECK_MPI_OK(mp_init(&q)); |
339 | 0 | CHECK_MPI_OK(mp_init(&d)); |
340 | | /* 3. Set the version number (PKCS1 v1.5 says it should be zero) */ |
341 | 0 | SECITEM_AllocItem(arena, &key->version, 1); |
342 | 0 | key->version.data[0] = 0; |
343 | |
|
344 | 0 | kiter = 0; |
345 | 0 | max_attempts = 5 * (keySizeInBits / 2); /* FIPS 186-4 B.3.3 steps 4.7 and 5.8 */ |
346 | 0 | do { |
347 | 0 | PORT_SetError(0); |
348 | 0 | CHECK_SEC_OK(generate_prime(&p, primeLen)); |
349 | 0 | CHECK_SEC_OK(generate_prime(&q, primeLen)); |
350 | | /* Assure p > q */ |
351 | | /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any |
352 | | * implementation optimization that requires p > q. We can remove |
353 | | * this code in the future. |
354 | | */ |
355 | 0 | if (mp_cmp(&p, &q) < 0) |
356 | 0 | mp_exch(&p, &q); |
357 | | /* Attempt to use these primes to generate a key */ |
358 | 0 | rv = rsa_build_from_primes(&p, &q, |
359 | 0 | &e, PR_FALSE, /* needPublicExponent=false */ |
360 | 0 | &d, PR_TRUE, /* needPrivateExponent=true */ |
361 | 0 | key, keySizeInBits); |
362 | 0 | if (rv == SECSuccess) { |
363 | 0 | if (rsa_fips186_verify(&p, &q, &d, keySizeInBits)) { |
364 | 0 | break; |
365 | 0 | } |
366 | 0 | prerr = SEC_ERROR_NEED_RANDOM; /* retry with different values */ |
367 | 0 | } else { |
368 | 0 | prerr = PORT_GetError(); |
369 | 0 | } |
370 | 0 | kiter++; |
371 | | /* loop until have primes */ |
372 | 0 | } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < max_attempts); |
373 | | |
374 | 0 | cleanup: |
375 | 0 | mp_clear(&p); |
376 | 0 | mp_clear(&q); |
377 | 0 | mp_clear(&e); |
378 | 0 | mp_clear(&d); |
379 | 0 | if (err) { |
380 | 0 | MP_TO_SEC_ERROR(err); |
381 | 0 | rv = SECFailure; |
382 | 0 | } |
383 | 0 | if (rv && arena) { |
384 | 0 | PORT_FreeArena(arena, PR_TRUE); |
385 | 0 | key = NULL; |
386 | 0 | } |
387 | 0 | return key; |
388 | 0 | } |
389 | | |
390 | | mp_err |
391 | | rsa_is_prime(mp_int *p) |
392 | 0 | { |
393 | 0 | int res; |
394 | | |
395 | | /* run a Fermat test */ |
396 | 0 | res = mpp_fermat(p, 2); |
397 | 0 | if (res != MP_OKAY) { |
398 | 0 | return res; |
399 | 0 | } |
400 | | |
401 | | /* If that passed, run some Miller-Rabin tests */ |
402 | 0 | res = mpp_pprime_secure(p, 2); |
403 | 0 | return res; |
404 | 0 | } |
405 | | |
406 | | /* |
407 | | * Factorize a RSA modulus n into p and q by using the exponents e and d. |
408 | | * |
409 | | * In: e, d, n |
410 | | * Out: p, q |
411 | | * |
412 | | * See Handbook of Applied Cryptography, 8.2.2(i). |
413 | | * |
414 | | * The algorithm is probabilistic, it is run 64 times and each run has a 50% |
415 | | * chance of succeeding with a runtime of O(log(e*d)). |
416 | | * |
417 | | * The returned p might be smaller than q. |
418 | | */ |
419 | | static mp_err |
420 | | rsa_factorize_n_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, |
421 | | mp_int *n) |
422 | 0 | { |
423 | | /* lambda is the private modulus: e*d = 1 mod lambda */ |
424 | | /* so: e*d - 1 = k*lambda = t*2^s where t is odd */ |
425 | 0 | mp_int klambda; |
426 | 0 | mp_int t, onetwentyeight; |
427 | 0 | unsigned long s = 0; |
428 | 0 | unsigned long i; |
429 | | |
430 | | /* cand = a^(t * 2^i) mod n, next_cand = a^(t * 2^(i+1)) mod n */ |
431 | 0 | mp_int a; |
432 | 0 | mp_int cand; |
433 | 0 | mp_int next_cand; |
434 | |
|
435 | 0 | mp_int n_minus_one; |
436 | 0 | mp_err err = MP_OKAY; |
437 | |
|
438 | 0 | MP_DIGITS(&klambda) = 0; |
439 | 0 | MP_DIGITS(&t) = 0; |
440 | 0 | MP_DIGITS(&a) = 0; |
441 | 0 | MP_DIGITS(&cand) = 0; |
442 | 0 | MP_DIGITS(&n_minus_one) = 0; |
443 | 0 | MP_DIGITS(&next_cand) = 0; |
444 | 0 | MP_DIGITS(&onetwentyeight) = 0; |
445 | 0 | CHECK_MPI_OK(mp_init(&klambda)); |
446 | 0 | CHECK_MPI_OK(mp_init(&t)); |
447 | 0 | CHECK_MPI_OK(mp_init(&a)); |
448 | 0 | CHECK_MPI_OK(mp_init(&cand)); |
449 | 0 | CHECK_MPI_OK(mp_init(&n_minus_one)); |
450 | 0 | CHECK_MPI_OK(mp_init(&next_cand)); |
451 | 0 | CHECK_MPI_OK(mp_init(&onetwentyeight)); |
452 | | |
453 | 0 | mp_set_int(&onetwentyeight, 128); |
454 | | |
455 | | /* calculate k*lambda = e*d - 1 */ |
456 | 0 | CHECK_MPI_OK(mp_mul(e, d, &klambda)); |
457 | 0 | CHECK_MPI_OK(mp_sub_d(&klambda, 1, &klambda)); |
458 | | |
459 | | /* factorize klambda into t*2^s */ |
460 | 0 | CHECK_MPI_OK(mp_copy(&klambda, &t)); |
461 | 0 | while (mpp_divis_d(&t, 2) == MP_YES) { |
462 | 0 | CHECK_MPI_OK(mp_div_2(&t, &t)); |
463 | 0 | s += 1; |
464 | 0 | } |
465 | | |
466 | | /* precompute n_minus_one = n - 1 */ |
467 | 0 | CHECK_MPI_OK(mp_copy(n, &n_minus_one)); |
468 | 0 | CHECK_MPI_OK(mp_sub_d(&n_minus_one, 1, &n_minus_one)); |
469 | | |
470 | | /* pick random bases a, each one has a 50% leading to a factorization */ |
471 | 0 | CHECK_MPI_OK(mp_set_int(&a, 2)); |
472 | | /* The following is equivalent to for (a=2, a <= 128, a+=2) */ |
473 | 0 | while (mp_cmp(&a, &onetwentyeight) <= 0) { |
474 | | /* compute the base cand = a^(t * 2^0) [i = 0] */ |
475 | 0 | CHECK_MPI_OK(mp_exptmod(&a, &t, n, &cand)); |
476 | | |
477 | 0 | for (i = 0; i < s; i++) { |
478 | | /* condition 1: skip the base if we hit a trivial factor of n */ |
479 | 0 | if (mp_cmp(&cand, &n_minus_one) == 0 || mp_cmp_d(&cand, 1) == 0) { |
480 | 0 | break; |
481 | 0 | } |
482 | | |
483 | | /* increase i in a^(t * 2^i) by squaring the number */ |
484 | 0 | CHECK_MPI_OK(mp_exptmod_d(&cand, 2, n, &next_cand)); |
485 | | |
486 | | /* condition 2: a^(t * 2^(i+1)) = 1 mod n */ |
487 | 0 | if (mp_cmp_d(&next_cand, 1) == 0) { |
488 | | /* conditions verified, gcd(a^(t * 2^i) - 1, n) is a factor */ |
489 | 0 | CHECK_MPI_OK(mp_sub_d(&cand, 1, &cand)); |
490 | 0 | CHECK_MPI_OK(mp_gcd(&cand, n, p)); |
491 | 0 | if (mp_cmp_d(p, 1) == 0) { |
492 | 0 | CHECK_MPI_OK(mp_add_d(&cand, 1, &cand)); |
493 | 0 | break; |
494 | 0 | } |
495 | 0 | CHECK_MPI_OK(mp_div(n, p, q, NULL)); |
496 | 0 | goto cleanup; |
497 | 0 | } |
498 | 0 | CHECK_MPI_OK(mp_copy(&next_cand, &cand)); |
499 | 0 | } |
500 | | |
501 | 0 | CHECK_MPI_OK(mp_add_d(&a, 2, &a)); |
502 | 0 | } |
503 | | |
504 | | /* if we reach here it's likely (2^64 - 1 / 2^64) that d is wrong */ |
505 | 0 | err = MP_RANGE; |
506 | |
|
507 | 0 | cleanup: |
508 | 0 | mp_clear(&klambda); |
509 | 0 | mp_clear(&t); |
510 | 0 | mp_clear(&a); |
511 | 0 | mp_clear(&cand); |
512 | 0 | mp_clear(&n_minus_one); |
513 | 0 | mp_clear(&next_cand); |
514 | 0 | mp_clear(&onetwentyeight); |
515 | 0 | return err; |
516 | 0 | } |
517 | | |
518 | | /* |
519 | | * Try to find the two primes based on 2 exponents plus a prime. |
520 | | * |
521 | | * In: e, d and p. |
522 | | * Out: p,q. |
523 | | * |
524 | | * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or |
525 | | * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is |
526 | | * usually less than d, then k must be an integer between e-1 and 1 |
527 | | * (probably on the order of e). |
528 | | * Step 1a, We can divide k*phi by prime-1 and get k*(q-1). This will reduce |
529 | | * the size of our division through the rest of the loop. |
530 | | * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on |
531 | | * the order or e, and e is typically small. This may take a while for |
532 | | * a large random e. We are looking for a k that divides kphi |
533 | | * evenly. Once we find a k that divides kphi evenly, we assume it |
534 | | * is the true k. It's possible this k is not the 'true' k but has |
535 | | * swapped factors of p-1 and/or q-1. Because of this, we |
536 | | * tentatively continue Steps 3-6 inside this loop, and may return looking |
537 | | * for another k on failure. |
538 | | * Step 3, Calculate our tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). |
539 | | * Step 4a, kphi is k*(q-1), so phi is our tenative q-1. q = phi+1. |
540 | | * If k is correct, q should be the right length and prime. |
541 | | * Step 4b, It's possible q-1 and k could have swapped factors. We now have a |
542 | | * possible solution that meets our criteria. It may not be the only |
543 | | * solution, however, so we keep looking. If we find more than one, |
544 | | * we will fail since we cannot determine which is the correct |
545 | | * solution, and returning the wrong modulus will compromise both |
546 | | * moduli. If no other solution is found, we return the unique solution. |
547 | | * |
548 | | * This will return p & q. q may be larger than p in the case that p was given |
549 | | * and it was the smaller prime. |
550 | | */ |
551 | | static mp_err |
552 | | rsa_get_prime_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, |
553 | | mp_int *n, unsigned int keySizeInBits) |
554 | 0 | { |
555 | 0 | mp_int kphi; /* k*phi */ |
556 | 0 | mp_int k; /* current guess at 'k' */ |
557 | 0 | mp_int phi; /* (p-1)(q-1) */ |
558 | 0 | mp_int r; /* remainder */ |
559 | 0 | mp_int tmp; /* p-1 if p is given */ |
560 | 0 | mp_err err = MP_OKAY; |
561 | 0 | unsigned int order_k; |
562 | |
|
563 | 0 | MP_DIGITS(&kphi) = 0; |
564 | 0 | MP_DIGITS(&phi) = 0; |
565 | 0 | MP_DIGITS(&k) = 0; |
566 | 0 | MP_DIGITS(&r) = 0; |
567 | 0 | MP_DIGITS(&tmp) = 0; |
568 | 0 | CHECK_MPI_OK(mp_init(&kphi)); |
569 | 0 | CHECK_MPI_OK(mp_init(&phi)); |
570 | 0 | CHECK_MPI_OK(mp_init(&k)); |
571 | 0 | CHECK_MPI_OK(mp_init(&r)); |
572 | 0 | CHECK_MPI_OK(mp_init(&tmp)); |
573 | | |
574 | | /* our algorithm looks for a factor k whose maximum size is dependent |
575 | | * on the size of our smallest exponent, which had better be the public |
576 | | * exponent (if it's the private, the key is vulnerable to a brute force |
577 | | * attack). |
578 | | * |
579 | | * since our factor search is linear, we need to limit the maximum |
580 | | * size of the public key. this should not be a problem normally, since |
581 | | * public keys are usually small. |
582 | | * |
583 | | * if we want to handle larger public key sizes, we should have |
584 | | * a version which tries to 'completely' factor k*phi (where completely |
585 | | * means 'factor into primes, or composites with which are products of |
586 | | * large primes). Once we have all the factors, we can sort them out and |
587 | | * try different combinations to form our phi. The risk is if (p-1)/2, |
588 | | * (q-1)/2, and k are all large primes. In any case if the public key |
589 | | * is small (order of 20 some bits), then a linear search for k is |
590 | | * manageable. |
591 | | */ |
592 | 0 | if (mpl_significant_bits(e) > 23) { |
593 | 0 | err = MP_RANGE; |
594 | 0 | goto cleanup; |
595 | 0 | } |
596 | | |
597 | | /* calculate k*phi = e*d - 1 */ |
598 | 0 | CHECK_MPI_OK(mp_mul(e, d, &kphi)); |
599 | 0 | CHECK_MPI_OK(mp_sub_d(&kphi, 1, &kphi)); |
600 | | |
601 | | /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) |
602 | | * d < (p-1)(q-1), therefor k must be less than e-1 |
603 | | * We can narrow down k even more, though. Since p and q are odd and both |
604 | | * have their high bit set, then we know that phi must be on order of |
605 | | * keySizeBits. |
606 | | */ |
607 | 0 | order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; |
608 | |
|
609 | 0 | if (order_k <= 1) { |
610 | 0 | err = MP_RANGE; |
611 | 0 | goto cleanup; |
612 | 0 | } |
613 | | |
614 | | /* for (k=kinit; order(k) >= order_k; k--) { */ |
615 | | /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ |
616 | 0 | CHECK_MPI_OK(mp_2expt(&k, keySizeInBits - 1)); |
617 | 0 | CHECK_MPI_OK(mp_div(&kphi, &k, &k, NULL)); |
618 | 0 | if (mp_cmp(&k, e) >= 0) { |
619 | | /* also can't be bigger then e-1 */ |
620 | 0 | CHECK_MPI_OK(mp_sub_d(e, 1, &k)); |
621 | 0 | } |
622 | | |
623 | | /* calculate our temp value */ |
624 | | /* This saves recalculating this value when the k guess is wrong, which |
625 | | * is reasonably frequent. */ |
626 | | /* tmp = p-1 (used to calculate q-1= phi/tmp) */ |
627 | 0 | CHECK_MPI_OK(mp_sub_d(p, 1, &tmp)); |
628 | 0 | CHECK_MPI_OK(mp_div(&kphi, &tmp, &kphi, &r)); |
629 | 0 | if (mp_cmp_z(&r) != 0) { |
630 | | /* p-1 doesn't divide kphi, some parameter wasn't correct */ |
631 | 0 | err = MP_RANGE; |
632 | 0 | goto cleanup; |
633 | 0 | } |
634 | 0 | mp_zero(q); |
635 | | /* kphi is now k*(q-1) */ |
636 | | |
637 | | /* rest of the for loop */ |
638 | 0 | for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); |
639 | 0 | err = mp_sub_d(&k, 1, &k)) { |
640 | 0 | CHECK_MPI_OK(err); |
641 | | /* looking for k as a factor of kphi */ |
642 | 0 | CHECK_MPI_OK(mp_div(&kphi, &k, &phi, &r)); |
643 | 0 | if (mp_cmp_z(&r) != 0) { |
644 | | /* not a factor, try the next one */ |
645 | 0 | continue; |
646 | 0 | } |
647 | | /* we have a possible phi, see if it works */ |
648 | 0 | if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits / 2) { |
649 | | /* phi is not the right size */ |
650 | 0 | continue; |
651 | 0 | } |
652 | | /* phi should be divisible by 2, since |
653 | | * q is odd and phi=(q-1). */ |
654 | 0 | if (mpp_divis_d(&phi, 2) == MP_NO) { |
655 | | /* phi is not divisible by 4 */ |
656 | 0 | continue; |
657 | 0 | } |
658 | | /* we now have a candidate for the second prime */ |
659 | 0 | CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); |
660 | | |
661 | | /* check to make sure it is prime */ |
662 | 0 | err = rsa_is_prime(&tmp); |
663 | 0 | if (err != MP_OKAY) { |
664 | 0 | if (err == MP_NO) { |
665 | | /* No, then we still have the wrong phi */ |
666 | 0 | continue; |
667 | 0 | } |
668 | 0 | goto cleanup; |
669 | 0 | } |
670 | | /* |
671 | | * It is possible that we have the wrong phi if |
672 | | * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). |
673 | | * since our q_quess is prime, however. We have found a valid |
674 | | * rsa key because: |
675 | | * q is the correct order of magnitude. |
676 | | * phi = (p-1)(q-1) where p and q are both primes. |
677 | | * e*d mod phi = 1. |
678 | | * There is no way to know from the info given if this is the |
679 | | * original key. We never want to return the wrong key because if |
680 | | * two moduli with the same factor is known, then euclid's gcd |
681 | | * algorithm can be used to find that factor. Even though the |
682 | | * caller didn't pass the original modulus, it doesn't mean the |
683 | | * modulus wasn't known or isn't available somewhere. So to be safe |
684 | | * if we can't be sure we have the right q, we don't return any. |
685 | | * |
686 | | * So to make sure we continue looking for other valid q's. If none |
687 | | * are found, then we can safely return this one, otherwise we just |
688 | | * fail */ |
689 | 0 | if (mp_cmp_z(q) != 0) { |
690 | | /* this is the second valid q, don't return either, |
691 | | * just fail */ |
692 | 0 | err = MP_RANGE; |
693 | 0 | break; |
694 | 0 | } |
695 | | /* we only have one q so far, save it and if no others are found, |
696 | | * it's safe to return it */ |
697 | 0 | CHECK_MPI_OK(mp_copy(&tmp, q)); |
698 | 0 | continue; |
699 | 0 | } |
700 | 0 | if ((unsigned)mpl_significant_bits(&k) < order_k) { |
701 | 0 | if (mp_cmp_z(q) == 0) { |
702 | | /* If we get here, something was wrong with the parameters we |
703 | | * were given */ |
704 | 0 | err = MP_RANGE; |
705 | 0 | } |
706 | 0 | } |
707 | 0 | cleanup: |
708 | 0 | mp_clear(&kphi); |
709 | 0 | mp_clear(&phi); |
710 | 0 | mp_clear(&k); |
711 | 0 | mp_clear(&r); |
712 | 0 | mp_clear(&tmp); |
713 | 0 | return err; |
714 | 0 | } |
715 | | |
716 | | /* |
717 | | * take a private key with only a few elements and fill out the missing pieces. |
718 | | * |
719 | | * All the entries will be overwritten with data allocated out of the arena |
720 | | * If no arena is supplied, one will be created. |
721 | | * |
722 | | * The following fields must be supplied in order for this function |
723 | | * to succeed: |
724 | | * one of either publicExponent or privateExponent |
725 | | * two more of the following 5 parameters. |
726 | | * modulus (n) |
727 | | * prime1 (p) |
728 | | * prime2 (q) |
729 | | * publicExponent (e) |
730 | | * privateExponent (d) |
731 | | * |
732 | | * NOTE: if only the publicExponent, privateExponent, and one prime is given, |
733 | | * then there may be more than one RSA key that matches that combination. |
734 | | * |
735 | | * All parameters will be replaced in the key structure with new parameters |
736 | | * Allocated out of the arena. There is no attempt to free the old structures. |
737 | | * Prime1 will always be greater than prime2 (even if the caller supplies the |
738 | | * smaller prime as prime1 or the larger prime as prime2). The parameters are |
739 | | * not overwritten on failure. |
740 | | * |
741 | | * How it works: |
742 | | * We can generate all the parameters from one of the exponents, plus the |
743 | | * two primes. (rsa_build_key_from_primes) |
744 | | * If we are given one of the exponents and both primes, we are done. |
745 | | * If we are given one of the exponents, the modulus and one prime, we |
746 | | * caclulate the second prime by dividing the modulus by the given |
747 | | * prime, giving us an exponent and 2 primes. |
748 | | * If we are given 2 exponents and one of the primes we calculate |
749 | | * k*phi = d*e-1, where k is an integer less than d which |
750 | | * divides d*e-1. We find factor k so we can isolate phi. |
751 | | * phi = (p-1)(q-1) |
752 | | * We can use phi to find the other prime as follows: |
753 | | * q = (phi/(p-1)) + 1. We now have 2 primes and an exponent. |
754 | | * (NOTE: if more then one prime meets this condition, the operation |
755 | | * will fail. See comments elsewhere in this file about this). |
756 | | * (rsa_get_prime_from_exponents) |
757 | | * If we are given 2 exponents and the modulus we factor the modulus to |
758 | | * get the 2 missing primes (rsa_factorize_n_from_exponents) |
759 | | * |
760 | | */ |
761 | | SECStatus |
762 | | RSA_PopulatePrivateKey(RSAPrivateKey *key) |
763 | 0 | { |
764 | 0 | PLArenaPool *arena = NULL; |
765 | 0 | PRBool needPublicExponent = PR_TRUE; |
766 | 0 | PRBool needPrivateExponent = PR_TRUE; |
767 | 0 | PRBool hasModulus = PR_FALSE; |
768 | 0 | unsigned int keySizeInBits = 0; |
769 | 0 | int prime_count = 0; |
770 | | /* standard RSA nominclature */ |
771 | 0 | mp_int p, q, e, d, n; |
772 | | /* remainder */ |
773 | 0 | mp_int r; |
774 | 0 | mp_err err = 0; |
775 | 0 | SECStatus rv = SECFailure; |
776 | |
|
777 | 0 | MP_DIGITS(&p) = 0; |
778 | 0 | MP_DIGITS(&q) = 0; |
779 | 0 | MP_DIGITS(&e) = 0; |
780 | 0 | MP_DIGITS(&d) = 0; |
781 | 0 | MP_DIGITS(&n) = 0; |
782 | 0 | MP_DIGITS(&r) = 0; |
783 | 0 | CHECK_MPI_OK(mp_init(&p)); |
784 | 0 | CHECK_MPI_OK(mp_init(&q)); |
785 | 0 | CHECK_MPI_OK(mp_init(&e)); |
786 | 0 | CHECK_MPI_OK(mp_init(&d)); |
787 | 0 | CHECK_MPI_OK(mp_init(&n)); |
788 | 0 | CHECK_MPI_OK(mp_init(&r)); |
789 | | |
790 | | /* if the key didn't already have an arena, create one. */ |
791 | 0 | if (key->arena == NULL) { |
792 | 0 | arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
793 | 0 | if (!arena) { |
794 | 0 | goto cleanup; |
795 | 0 | } |
796 | 0 | key->arena = arena; |
797 | 0 | } |
798 | | |
799 | | /* load up the known exponents */ |
800 | 0 | if (key->publicExponent.data) { |
801 | 0 | SECITEM_TO_MPINT(key->publicExponent, &e); |
802 | 0 | needPublicExponent = PR_FALSE; |
803 | 0 | } |
804 | 0 | if (key->privateExponent.data) { |
805 | 0 | SECITEM_TO_MPINT(key->privateExponent, &d); |
806 | 0 | needPrivateExponent = PR_FALSE; |
807 | 0 | } |
808 | 0 | if (needPrivateExponent && needPublicExponent) { |
809 | | /* Not enough information, we need at least one exponent */ |
810 | 0 | err = MP_BADARG; |
811 | 0 | goto cleanup; |
812 | 0 | } |
813 | | |
814 | | /* load up the known primes. If only one prime is given, it will be |
815 | | * assigned 'p'. Once we have both primes, well make sure p is the larger. |
816 | | * The value prime_count tells us howe many we have acquired. |
817 | | */ |
818 | 0 | if (key->prime1.data) { |
819 | 0 | int primeLen = key->prime1.len; |
820 | 0 | if (key->prime1.data[0] == 0) { |
821 | 0 | primeLen--; |
822 | 0 | } |
823 | 0 | keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; |
824 | 0 | SECITEM_TO_MPINT(key->prime1, &p); |
825 | 0 | prime_count++; |
826 | 0 | } |
827 | 0 | if (key->prime2.data) { |
828 | 0 | int primeLen = key->prime2.len; |
829 | 0 | if (key->prime2.data[0] == 0) { |
830 | 0 | primeLen--; |
831 | 0 | } |
832 | 0 | keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; |
833 | 0 | SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); |
834 | 0 | prime_count++; |
835 | 0 | } |
836 | | /* load up the modulus */ |
837 | 0 | if (key->modulus.data) { |
838 | 0 | int modLen = key->modulus.len; |
839 | 0 | if (key->modulus.data[0] == 0) { |
840 | 0 | modLen--; |
841 | 0 | } |
842 | 0 | keySizeInBits = modLen * PR_BITS_PER_BYTE; |
843 | 0 | SECITEM_TO_MPINT(key->modulus, &n); |
844 | 0 | hasModulus = PR_TRUE; |
845 | 0 | } |
846 | | /* if we have the modulus and one prime, calculate the second. */ |
847 | 0 | if ((prime_count == 1) && (hasModulus)) { |
848 | 0 | if (mp_div(&n, &p, &q, &r) != MP_OKAY || mp_cmp_z(&r) != 0) { |
849 | | /* p is not a factor or n, fail */ |
850 | 0 | err = MP_BADARG; |
851 | 0 | goto cleanup; |
852 | 0 | } |
853 | 0 | prime_count++; |
854 | 0 | } |
855 | | |
856 | | /* If we didn't have enough primes try to calculate the primes from |
857 | | * the exponents */ |
858 | 0 | if (prime_count < 2) { |
859 | | /* if we don't have at least 2 primes at this point, then we need both |
860 | | * exponents and one prime or a modulus*/ |
861 | 0 | if (!needPublicExponent && !needPrivateExponent && |
862 | 0 | (prime_count > 0)) { |
863 | 0 | CHECK_MPI_OK(rsa_get_prime_from_exponents(&e, &d, &p, &q, &n, |
864 | 0 | keySizeInBits)); |
865 | 0 | } else if (!needPublicExponent && !needPrivateExponent && hasModulus) { |
866 | 0 | CHECK_MPI_OK(rsa_factorize_n_from_exponents(&e, &d, &p, &q, &n)); |
867 | 0 | } else { |
868 | | /* not enough given parameters to get both primes */ |
869 | 0 | err = MP_BADARG; |
870 | 0 | goto cleanup; |
871 | 0 | } |
872 | 0 | } |
873 | | |
874 | | /* Assure p > q */ |
875 | | /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any |
876 | | * implementation optimization that requires p > q. We can remove |
877 | | * this code in the future. |
878 | | */ |
879 | 0 | if (mp_cmp(&p, &q) < 0) |
880 | 0 | mp_exch(&p, &q); |
881 | | |
882 | | /* we now have our 2 primes and at least one exponent, we can fill |
883 | | * in the key */ |
884 | 0 | rv = rsa_build_from_primes(&p, &q, |
885 | 0 | &e, needPublicExponent, |
886 | 0 | &d, needPrivateExponent, |
887 | 0 | key, keySizeInBits); |
888 | 0 | cleanup: |
889 | 0 | mp_clear(&p); |
890 | 0 | mp_clear(&q); |
891 | 0 | mp_clear(&e); |
892 | 0 | mp_clear(&d); |
893 | 0 | mp_clear(&n); |
894 | 0 | mp_clear(&r); |
895 | 0 | if (err) { |
896 | 0 | MP_TO_SEC_ERROR(err); |
897 | 0 | rv = SECFailure; |
898 | 0 | } |
899 | 0 | if (rv && arena) { |
900 | 0 | PORT_FreeArena(arena, PR_TRUE); |
901 | 0 | key->arena = NULL; |
902 | 0 | } |
903 | 0 | return rv; |
904 | 0 | } |
905 | | |
906 | | static unsigned int |
907 | | rsa_modulusLen(SECItem *modulus) |
908 | 18 | { |
909 | 18 | if (modulus->len == 0) { |
910 | 0 | return 0; |
911 | 18 | }; |
912 | 18 | unsigned char byteZero = modulus->data[0]; |
913 | 18 | unsigned int modLen = modulus->len - !byteZero; |
914 | 18 | return modLen; |
915 | 18 | } |
916 | | |
917 | | /* |
918 | | ** Perform a raw public-key operation |
919 | | ** Length of input and output buffers are equal to key's modulus len. |
920 | | */ |
921 | | SECStatus |
922 | | RSA_PublicKeyOp(RSAPublicKey *key, |
923 | | unsigned char *output, |
924 | | const unsigned char *input) |
925 | 6 | { |
926 | 6 | unsigned int modLen, expLen, offset; |
927 | 6 | mp_int n, e, m, c; |
928 | 6 | mp_err err = MP_OKAY; |
929 | 6 | SECStatus rv = SECSuccess; |
930 | 6 | if (!key || !output || !input) { |
931 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
932 | 0 | return SECFailure; |
933 | 0 | } |
934 | 6 | MP_DIGITS(&n) = 0; |
935 | 6 | MP_DIGITS(&e) = 0; |
936 | 6 | MP_DIGITS(&m) = 0; |
937 | 6 | MP_DIGITS(&c) = 0; |
938 | 6 | CHECK_MPI_OK(mp_init(&n)); |
939 | 6 | CHECK_MPI_OK(mp_init(&e)); |
940 | 6 | CHECK_MPI_OK(mp_init(&m)); |
941 | 6 | CHECK_MPI_OK(mp_init(&c)); |
942 | 6 | modLen = rsa_modulusLen(&key->modulus); |
943 | 6 | expLen = rsa_modulusLen(&key->publicExponent); |
944 | | |
945 | 6 | if (modLen == 0) { |
946 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
947 | 0 | rv = SECFailure; |
948 | 0 | goto cleanup; |
949 | 0 | } |
950 | | |
951 | | /* 1. Obtain public key (n, e) */ |
952 | 6 | if (BAD_RSA_KEY_SIZE(modLen, expLen)) { |
953 | 0 | PORT_SetError(SEC_ERROR_INVALID_KEY); |
954 | 0 | rv = SECFailure; |
955 | 0 | goto cleanup; |
956 | 0 | } |
957 | 6 | SECITEM_TO_MPINT(key->modulus, &n); |
958 | 6 | SECITEM_TO_MPINT(key->publicExponent, &e); |
959 | 6 | if (e.used > n.used) { |
960 | | /* exponent should not be greater than modulus */ |
961 | 0 | PORT_SetError(SEC_ERROR_INVALID_KEY); |
962 | 0 | rv = SECFailure; |
963 | 0 | goto cleanup; |
964 | 0 | } |
965 | | /* 2. check input out of range (needs to be in range [0..n-1]) */ |
966 | 6 | offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ |
967 | 6 | if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { |
968 | 0 | PORT_SetError(SEC_ERROR_INPUT_LEN); |
969 | 0 | rv = SECFailure; |
970 | 0 | goto cleanup; |
971 | 0 | } |
972 | | /* 2 bis. Represent message as integer in range [0..n-1] */ |
973 | 6 | CHECK_MPI_OK(mp_read_unsigned_octets(&m, input, modLen)); |
974 | | /* 3. Compute c = m**e mod n */ |
975 | | #ifdef USE_MPI_EXPT_D |
976 | | /* XXX see which is faster */ |
977 | | if (MP_USED(&e) == 1) { |
978 | | CHECK_MPI_OK(mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c)); |
979 | | } else |
980 | | #endif |
981 | 6 | CHECK_MPI_OK(mp_exptmod(&m, &e, &n, &c)); |
982 | | /* 4. result c is ciphertext */ |
983 | 6 | err = mp_to_fixlen_octets(&c, output, modLen); |
984 | 6 | if (err >= 0) |
985 | 6 | err = MP_OKAY; |
986 | 6 | cleanup: |
987 | 6 | mp_clear(&n); |
988 | 6 | mp_clear(&e); |
989 | 6 | mp_clear(&m); |
990 | 6 | mp_clear(&c); |
991 | 6 | if (err) { |
992 | 0 | MP_TO_SEC_ERROR(err); |
993 | 0 | rv = SECFailure; |
994 | 0 | } |
995 | 6 | return rv; |
996 | 6 | } |
997 | | |
998 | | /* |
999 | | ** RSA Private key operation (no CRT). |
1000 | | */ |
1001 | | static SECStatus |
1002 | | rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, |
1003 | | unsigned int modLen) |
1004 | 0 | { |
1005 | 0 | mp_int d; |
1006 | 0 | mp_err err = MP_OKAY; |
1007 | 0 | SECStatus rv = SECSuccess; |
1008 | 0 | MP_DIGITS(&d) = 0; |
1009 | 0 | CHECK_MPI_OK(mp_init(&d)); |
1010 | 0 | SECITEM_TO_MPINT(key->privateExponent, &d); |
1011 | | /* 1. m = c**d mod n */ |
1012 | 0 | CHECK_MPI_OK(mp_exptmod(c, &d, n, m)); |
1013 | 0 | cleanup: |
1014 | 0 | mp_clear(&d); |
1015 | 0 | if (err) { |
1016 | 0 | MP_TO_SEC_ERROR(err); |
1017 | 0 | rv = SECFailure; |
1018 | 0 | } |
1019 | 0 | return rv; |
1020 | 0 | } |
1021 | | |
1022 | | /* |
1023 | | ** RSA Private key operation using CRT. |
1024 | | */ |
1025 | | static SECStatus |
1026 | | rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) |
1027 | 6 | { |
1028 | 6 | mp_int p, q, d_p, d_q, qInv; |
1029 | | /* |
1030 | | The length of the randomness comes from the papers: |
1031 | | https://link.springer.com/chapter/10.1007/978-3-642-29912-4_7 |
1032 | | https://link.springer.com/chapter/10.1007/978-3-642-21554-4_5. |
1033 | | */ |
1034 | 6 | mp_int blinding_dp, blinding_dq, r1, r2; |
1035 | 6 | unsigned char random_block[EXP_BLINDING_RANDOMNESS_LEN_BYTES]; |
1036 | 6 | mp_int m1, m2, h, ctmp; |
1037 | 6 | mp_err err = MP_OKAY; |
1038 | 6 | SECStatus rv = SECSuccess; |
1039 | 6 | MP_DIGITS(&p) = 0; |
1040 | 6 | MP_DIGITS(&q) = 0; |
1041 | 6 | MP_DIGITS(&d_p) = 0; |
1042 | 6 | MP_DIGITS(&d_q) = 0; |
1043 | 6 | MP_DIGITS(&qInv) = 0; |
1044 | 6 | MP_DIGITS(&m1) = 0; |
1045 | 6 | MP_DIGITS(&m2) = 0; |
1046 | 6 | MP_DIGITS(&h) = 0; |
1047 | 6 | MP_DIGITS(&ctmp) = 0; |
1048 | 6 | MP_DIGITS(&blinding_dp) = 0; |
1049 | 6 | MP_DIGITS(&blinding_dq) = 0; |
1050 | 6 | MP_DIGITS(&r1) = 0; |
1051 | 6 | MP_DIGITS(&r2) = 0; |
1052 | | |
1053 | 6 | CHECK_MPI_OK(mp_init(&p)); |
1054 | 6 | CHECK_MPI_OK(mp_init(&q)); |
1055 | 6 | CHECK_MPI_OK(mp_init(&d_p)); |
1056 | 6 | CHECK_MPI_OK(mp_init(&d_q)); |
1057 | 6 | CHECK_MPI_OK(mp_init(&qInv)); |
1058 | 6 | CHECK_MPI_OK(mp_init(&m1)); |
1059 | 6 | CHECK_MPI_OK(mp_init(&m2)); |
1060 | 6 | CHECK_MPI_OK(mp_init(&h)); |
1061 | 6 | CHECK_MPI_OK(mp_init(&ctmp)); |
1062 | 6 | CHECK_MPI_OK(mp_init(&blinding_dp)); |
1063 | 6 | CHECK_MPI_OK(mp_init(&blinding_dq)); |
1064 | 6 | CHECK_MPI_OK(mp_init_size(&r1, EXP_BLINDING_RANDOMNESS_LEN)); |
1065 | 6 | CHECK_MPI_OK(mp_init_size(&r2, EXP_BLINDING_RANDOMNESS_LEN)); |
1066 | | |
1067 | | /* copy private key parameters into mp integers */ |
1068 | 6 | SECITEM_TO_MPINT(key->prime1, &p); /* p */ |
1069 | 6 | SECITEM_TO_MPINT(key->prime2, &q); /* q */ |
1070 | 6 | SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ |
1071 | 6 | SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ |
1072 | 6 | SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ |
1073 | | |
1074 | | // blinding_dp = 1 |
1075 | 6 | CHECK_MPI_OK(mp_set_int(&blinding_dp, 1)); |
1076 | | // blinding_dp = p - 1 |
1077 | 6 | CHECK_MPI_OK(mp_sub(&p, &blinding_dp, &blinding_dp)); |
1078 | | // generating a random value |
1079 | 6 | RNG_GenerateGlobalRandomBytes(random_block, EXP_BLINDING_RANDOMNESS_LEN_BYTES); |
1080 | 6 | MP_USED(&r1) = EXP_BLINDING_RANDOMNESS_LEN; |
1081 | 6 | memcpy(MP_DIGITS(&r1), random_block, sizeof(random_block)); |
1082 | | // blinding_dp = random * (p - 1) |
1083 | 6 | CHECK_MPI_OK(mp_mul(&blinding_dp, &r1, &blinding_dp)); |
1084 | | // d_p = d_p + random * (p - 1) |
1085 | 6 | CHECK_MPI_OK(mp_add(&d_p, &blinding_dp, &d_p)); |
1086 | | |
1087 | | // blinding_dq = 1 |
1088 | 6 | CHECK_MPI_OK(mp_set_int(&blinding_dq, 1)); |
1089 | | // blinding_dq = q - 1 |
1090 | 6 | CHECK_MPI_OK(mp_sub(&q, &blinding_dq, &blinding_dq)); |
1091 | | // generating a random value |
1092 | 6 | RNG_GenerateGlobalRandomBytes(random_block, EXP_BLINDING_RANDOMNESS_LEN_BYTES); |
1093 | 6 | memcpy(MP_DIGITS(&r2), random_block, sizeof(random_block)); |
1094 | 6 | MP_USED(&r2) = EXP_BLINDING_RANDOMNESS_LEN; |
1095 | | // blinding_dq = random * (q - 1) |
1096 | 6 | CHECK_MPI_OK(mp_mul(&blinding_dq, &r2, &blinding_dq)); |
1097 | | // d_q = d_q + random * (q-1) |
1098 | 6 | CHECK_MPI_OK(mp_add(&d_q, &blinding_dq, &d_q)); |
1099 | | |
1100 | | /* 1. m1 = c**d_p mod p */ |
1101 | 6 | CHECK_MPI_OK(mp_mod(c, &p, &ctmp)); |
1102 | 6 | CHECK_MPI_OK(mp_exptmod(&ctmp, &d_p, &p, &m1)); |
1103 | | /* 2. m2 = c**d_q mod q */ |
1104 | 6 | CHECK_MPI_OK(mp_mod(c, &q, &ctmp)); |
1105 | 6 | CHECK_MPI_OK(mp_exptmod(&ctmp, &d_q, &q, &m2)); |
1106 | | /* 3. h = (m1 - m2) * qInv mod p */ |
1107 | 6 | CHECK_MPI_OK(mp_submod(&m1, &m2, &p, &h)); |
1108 | 6 | CHECK_MPI_OK(mp_mulmod(&h, &qInv, &p, &h)); |
1109 | | /* 4. m = m2 + h * q */ |
1110 | 6 | CHECK_MPI_OK(mp_mul(&h, &q, m)); |
1111 | 6 | CHECK_MPI_OK(mp_add(m, &m2, m)); |
1112 | 6 | cleanup: |
1113 | 6 | mp_clear(&p); |
1114 | 6 | mp_clear(&q); |
1115 | 6 | mp_clear(&d_p); |
1116 | 6 | mp_clear(&d_q); |
1117 | 6 | mp_clear(&qInv); |
1118 | 6 | mp_clear(&m1); |
1119 | 6 | mp_clear(&m2); |
1120 | 6 | mp_clear(&h); |
1121 | 6 | mp_clear(&ctmp); |
1122 | 6 | mp_clear(&blinding_dp); |
1123 | 6 | mp_clear(&blinding_dq); |
1124 | 6 | mp_clear(&r1); |
1125 | 6 | mp_clear(&r2); |
1126 | 6 | if (err) { |
1127 | 0 | MP_TO_SEC_ERROR(err); |
1128 | 0 | rv = SECFailure; |
1129 | 0 | } |
1130 | 6 | return rv; |
1131 | 6 | } |
1132 | | |
1133 | | /* |
1134 | | ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: |
1135 | | ** "On the Importance of Eliminating Errors in Cryptographic Computations", |
1136 | | ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz |
1137 | | ** |
1138 | | ** As a defense against the attack, carry out the private key operation, |
1139 | | ** followed up with a public key operation to invert the result. |
1140 | | ** Verify that result against the input. |
1141 | | */ |
1142 | | static SECStatus |
1143 | | rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) |
1144 | 6 | { |
1145 | 6 | mp_int n, e, v; |
1146 | 6 | mp_err err = MP_OKAY; |
1147 | 6 | SECStatus rv = SECSuccess; |
1148 | 6 | MP_DIGITS(&n) = 0; |
1149 | 6 | MP_DIGITS(&e) = 0; |
1150 | 6 | MP_DIGITS(&v) = 0; |
1151 | 6 | CHECK_MPI_OK(mp_init(&n)); |
1152 | 6 | CHECK_MPI_OK(mp_init(&e)); |
1153 | 6 | CHECK_MPI_OK(mp_init(&v)); |
1154 | 6 | CHECK_SEC_OK(rsa_PrivateKeyOpCRTNoCheck(key, m, c)); |
1155 | 6 | SECITEM_TO_MPINT(key->modulus, &n); |
1156 | 6 | SECITEM_TO_MPINT(key->publicExponent, &e); |
1157 | | /* Perform a public key operation v = m ** e mod n */ |
1158 | 6 | CHECK_MPI_OK(mp_exptmod(m, &e, &n, &v)); |
1159 | 6 | if (mp_cmp(&v, c) != 0) { |
1160 | 0 | rv = SECFailure; |
1161 | 0 | } |
1162 | 6 | cleanup: |
1163 | 6 | mp_clear(&n); |
1164 | 6 | mp_clear(&e); |
1165 | 6 | mp_clear(&v); |
1166 | 6 | if (err) { |
1167 | 0 | MP_TO_SEC_ERROR(err); |
1168 | 0 | rv = SECFailure; |
1169 | 0 | } |
1170 | 6 | return rv; |
1171 | 6 | } |
1172 | | |
1173 | | static PRCallOnceType coBPInit = { 0, 0, 0 }; |
1174 | | static PRStatus |
1175 | | init_blinding_params_list(void) |
1176 | 2 | { |
1177 | 2 | blindingParamsList.lock = PZ_NewLock(nssILockOther); |
1178 | 2 | if (!blindingParamsList.lock) { |
1179 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
1180 | 0 | return PR_FAILURE; |
1181 | 0 | } |
1182 | 2 | blindingParamsList.cVar = PR_NewCondVar(blindingParamsList.lock); |
1183 | 2 | if (!blindingParamsList.cVar) { |
1184 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
1185 | 0 | return PR_FAILURE; |
1186 | 0 | } |
1187 | 2 | blindingParamsList.waitCount = 0; |
1188 | 2 | PR_INIT_CLIST(&blindingParamsList.head); |
1189 | 2 | return PR_SUCCESS; |
1190 | 2 | } |
1191 | | |
1192 | | static SECStatus |
1193 | | generate_blinding_params(RSAPrivateKey *key, mp_int *f, mp_int *g, mp_int *n, |
1194 | | unsigned int modLen) |
1195 | 2 | { |
1196 | 2 | SECStatus rv = SECSuccess; |
1197 | 2 | mp_int e, k; |
1198 | 2 | mp_err err = MP_OKAY; |
1199 | 2 | unsigned char *kb = NULL; |
1200 | | |
1201 | 2 | MP_DIGITS(&e) = 0; |
1202 | 2 | MP_DIGITS(&k) = 0; |
1203 | 2 | CHECK_MPI_OK(mp_init(&e)); |
1204 | 2 | CHECK_MPI_OK(mp_init(&k)); |
1205 | 2 | SECITEM_TO_MPINT(key->publicExponent, &e); |
1206 | | /* generate random k < n */ |
1207 | 2 | kb = PORT_Alloc(modLen); |
1208 | 2 | if (!kb) { |
1209 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
1210 | 0 | goto cleanup; |
1211 | 0 | } |
1212 | 2 | CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(kb, modLen)); |
1213 | 2 | CHECK_MPI_OK(mp_read_unsigned_octets(&k, kb, modLen)); |
1214 | | /* k < n */ |
1215 | 2 | CHECK_MPI_OK(mp_mod(&k, n, &k)); |
1216 | | /* f = k**e mod n */ |
1217 | 2 | CHECK_MPI_OK(mp_exptmod(&k, &e, n, f)); |
1218 | | /* g = k**-1 mod n */ |
1219 | 2 | CHECK_MPI_OK(mp_invmod(&k, n, g)); |
1220 | | /* g in montgomery form.. */ |
1221 | 2 | CHECK_MPI_OK(mp_to_mont(g, n, g)); |
1222 | 2 | cleanup: |
1223 | 2 | if (kb) |
1224 | 2 | PORT_ZFree(kb, modLen); |
1225 | 2 | mp_clear(&k); |
1226 | 2 | mp_clear(&e); |
1227 | 2 | if (err) { |
1228 | 0 | MP_TO_SEC_ERROR(err); |
1229 | 0 | rv = SECFailure; |
1230 | 0 | } |
1231 | 2 | return rv; |
1232 | 2 | } |
1233 | | |
1234 | | static SECStatus |
1235 | | init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key, |
1236 | | mp_int *n, unsigned int modLen) |
1237 | 2 | { |
1238 | 2 | blindingParams *bp = rsabp->array; |
1239 | 2 | int i = 0; |
1240 | | |
1241 | | /* Initialize the list pointer for the element */ |
1242 | 2 | PR_INIT_CLIST(&rsabp->link); |
1243 | 42 | for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) { |
1244 | 40 | bp->next = bp + 1; |
1245 | 40 | MP_DIGITS(&bp->f) = 0; |
1246 | 40 | MP_DIGITS(&bp->g) = 0; |
1247 | 40 | bp->counter = 0; |
1248 | 40 | } |
1249 | | /* The last bp->next value was initialized with out |
1250 | | * of rsabp->array pointer and must be set to NULL |
1251 | | */ |
1252 | 2 | rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL; |
1253 | | |
1254 | 2 | bp = rsabp->array; |
1255 | 2 | rsabp->bp = NULL; |
1256 | 2 | rsabp->free = bp; |
1257 | | |
1258 | | /* precalculate montgomery reduction parameter */ |
1259 | 2 | rsabp->n0i = mp_calculate_mont_n0i(n); |
1260 | | |
1261 | | /* List elements are keyed using the modulus */ |
1262 | 2 | return SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); |
1263 | 2 | } |
1264 | | |
1265 | | static SECStatus |
1266 | | get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, |
1267 | | mp_int *f, mp_int *g, mp_digit *n0i) |
1268 | 6 | { |
1269 | 6 | RSABlindingParams *rsabp = NULL; |
1270 | 6 | blindingParams *bpUnlinked = NULL; |
1271 | 6 | blindingParams *bp; |
1272 | 6 | PRCList *el; |
1273 | 6 | SECStatus rv = SECSuccess; |
1274 | 6 | mp_err err = MP_OKAY; |
1275 | 6 | int cmp = -1; |
1276 | 6 | PRBool holdingLock = PR_FALSE; |
1277 | | |
1278 | 6 | do { |
1279 | 6 | if (blindingParamsList.lock == NULL) { |
1280 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
1281 | 0 | return SECFailure; |
1282 | 0 | } |
1283 | | /* Acquire the list lock */ |
1284 | 6 | PZ_Lock(blindingParamsList.lock); |
1285 | 6 | holdingLock = PR_TRUE; |
1286 | | |
1287 | | /* Walk the list looking for the private key */ |
1288 | 6 | for (el = PR_NEXT_LINK(&blindingParamsList.head); |
1289 | 6 | el != &blindingParamsList.head; |
1290 | 6 | el = PR_NEXT_LINK(el)) { |
1291 | 4 | rsabp = (RSABlindingParams *)el; |
1292 | 4 | cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); |
1293 | 4 | if (cmp >= 0) { |
1294 | | /* The key is found or not in the list. */ |
1295 | 4 | break; |
1296 | 4 | } |
1297 | 4 | } |
1298 | | |
1299 | 6 | if (cmp) { |
1300 | | /* At this point, the key is not in the list. el should point to |
1301 | | ** the list element before which this key should be inserted. |
1302 | | */ |
1303 | 2 | rsabp = PORT_ZNew(RSABlindingParams); |
1304 | 2 | if (!rsabp) { |
1305 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
1306 | 0 | goto cleanup; |
1307 | 0 | } |
1308 | | |
1309 | 2 | rv = init_blinding_params(rsabp, key, n, modLen); |
1310 | 2 | if (rv != SECSuccess) { |
1311 | 0 | PORT_ZFree(rsabp, sizeof(RSABlindingParams)); |
1312 | 0 | goto cleanup; |
1313 | 0 | } |
1314 | | |
1315 | | /* Insert the new element into the list |
1316 | | ** If inserting in the middle of the list, el points to the link |
1317 | | ** to insert before. Otherwise, the link needs to be appended to |
1318 | | ** the end of the list, which is the same as inserting before the |
1319 | | ** head (since el would have looped back to the head). |
1320 | | */ |
1321 | 2 | PR_INSERT_BEFORE(&rsabp->link, el); |
1322 | 2 | } |
1323 | | |
1324 | | /* We've found (or created) the RSAblindingParams struct for this key. |
1325 | | * Now, search its list of ready blinding params for a usable one. |
1326 | | */ |
1327 | 6 | *n0i = rsabp->n0i; |
1328 | 6 | while (0 != (bp = rsabp->bp)) { |
1329 | | #ifdef UNSAFE_FUZZER_MODE |
1330 | | /* Found a match and there are still remaining uses left */ |
1331 | | /* Return the parameters */ |
1332 | | CHECK_MPI_OK(mp_copy(&bp->f, f)); |
1333 | | CHECK_MPI_OK(mp_copy(&bp->g, g)); |
1334 | | |
1335 | | PZ_Unlock(blindingParamsList.lock); |
1336 | | return SECSuccess; |
1337 | | #else |
1338 | 4 | if (--(bp->counter) > 0) { |
1339 | | /* Found a match and there are still remaining uses left */ |
1340 | | /* Return the parameters */ |
1341 | 4 | CHECK_MPI_OK(mp_copy(&bp->f, f)); |
1342 | 4 | CHECK_MPI_OK(mp_copy(&bp->g, g)); |
1343 | | |
1344 | 4 | PZ_Unlock(blindingParamsList.lock); |
1345 | 4 | return SECSuccess; |
1346 | 4 | } |
1347 | | /* exhausted this one, give its values to caller, and |
1348 | | * then retire it. |
1349 | | */ |
1350 | 0 | mp_exch(&bp->f, f); |
1351 | 0 | mp_exch(&bp->g, g); |
1352 | 0 | mp_clear(&bp->f); |
1353 | 0 | mp_clear(&bp->g); |
1354 | 0 | bp->counter = 0; |
1355 | | /* Move to free list */ |
1356 | 0 | rsabp->bp = bp->next; |
1357 | 0 | bp->next = rsabp->free; |
1358 | 0 | rsabp->free = bp; |
1359 | | /* In case there're threads waiting for new blinding |
1360 | | * value - notify 1 thread the value is ready |
1361 | | */ |
1362 | 0 | if (blindingParamsList.waitCount > 0) { |
1363 | 0 | PR_NotifyCondVar(blindingParamsList.cVar); |
1364 | 0 | blindingParamsList.waitCount--; |
1365 | 0 | } |
1366 | 0 | PZ_Unlock(blindingParamsList.lock); |
1367 | 0 | return SECSuccess; |
1368 | 4 | #endif |
1369 | 4 | } |
1370 | | /* We did not find a usable set of blinding params. Can we make one? */ |
1371 | | /* Find a free bp struct. */ |
1372 | 2 | if ((bp = rsabp->free) != NULL) { |
1373 | | /* unlink this bp */ |
1374 | 2 | rsabp->free = bp->next; |
1375 | 2 | bp->next = NULL; |
1376 | 2 | bpUnlinked = bp; /* In case we fail */ |
1377 | | |
1378 | 2 | PZ_Unlock(blindingParamsList.lock); |
1379 | 2 | holdingLock = PR_FALSE; |
1380 | | /* generate blinding parameter values for the current thread */ |
1381 | 2 | CHECK_SEC_OK(generate_blinding_params(key, f, g, n, modLen)); |
1382 | | |
1383 | | /* put the blinding parameter values into cache */ |
1384 | 2 | CHECK_MPI_OK(mp_init(&bp->f)); |
1385 | 2 | CHECK_MPI_OK(mp_init(&bp->g)); |
1386 | 2 | CHECK_MPI_OK(mp_copy(f, &bp->f)); |
1387 | 2 | CHECK_MPI_OK(mp_copy(g, &bp->g)); |
1388 | | |
1389 | | /* Put this at head of queue of usable params. */ |
1390 | 2 | PZ_Lock(blindingParamsList.lock); |
1391 | 2 | holdingLock = PR_TRUE; |
1392 | 2 | (void)holdingLock; |
1393 | | /* initialize RSABlindingParamsStr */ |
1394 | 2 | bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; |
1395 | 2 | bp->next = rsabp->bp; |
1396 | 2 | rsabp->bp = bp; |
1397 | 2 | bpUnlinked = NULL; |
1398 | | /* In case there're threads waiting for new blinding value |
1399 | | * just notify them the value is ready |
1400 | | */ |
1401 | 2 | if (blindingParamsList.waitCount > 0) { |
1402 | 0 | PR_NotifyAllCondVar(blindingParamsList.cVar); |
1403 | 0 | blindingParamsList.waitCount = 0; |
1404 | 0 | } |
1405 | 2 | PZ_Unlock(blindingParamsList.lock); |
1406 | 2 | return SECSuccess; |
1407 | 2 | } |
1408 | | /* Here, there are no usable blinding parameters available, |
1409 | | * and no free bp blocks, presumably because they're all |
1410 | | * actively having parameters generated for them. |
1411 | | * So, we need to wait here and not eat up CPU until some |
1412 | | * change happens. |
1413 | | */ |
1414 | 0 | blindingParamsList.waitCount++; |
1415 | 0 | PR_WaitCondVar(blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT); |
1416 | 0 | PZ_Unlock(blindingParamsList.lock); |
1417 | 0 | holdingLock = PR_FALSE; |
1418 | 0 | (void)holdingLock; |
1419 | 0 | } while (1); |
1420 | | |
1421 | 0 | cleanup: |
1422 | | /* It is possible to reach this after the lock is already released. */ |
1423 | 0 | if (bpUnlinked) { |
1424 | 0 | if (!holdingLock) { |
1425 | 0 | PZ_Lock(blindingParamsList.lock); |
1426 | 0 | holdingLock = PR_TRUE; |
1427 | 0 | } |
1428 | 0 | bp = bpUnlinked; |
1429 | 0 | mp_clear(&bp->f); |
1430 | 0 | mp_clear(&bp->g); |
1431 | 0 | bp->counter = 0; |
1432 | | /* Must put the unlinked bp back on the free list */ |
1433 | 0 | bp->next = rsabp->free; |
1434 | 0 | rsabp->free = bp; |
1435 | 0 | } |
1436 | 0 | if (holdingLock) { |
1437 | 0 | PZ_Unlock(blindingParamsList.lock); |
1438 | 0 | } |
1439 | 0 | if (err) { |
1440 | 0 | MP_TO_SEC_ERROR(err); |
1441 | 0 | } |
1442 | 0 | *n0i = 0; |
1443 | 0 | return SECFailure; |
1444 | 0 | } |
1445 | | |
1446 | | /* |
1447 | | ** Perform a raw private-key operation |
1448 | | ** Length of input and output buffers are equal to key's modulus len. |
1449 | | */ |
1450 | | static SECStatus |
1451 | | rsa_PrivateKeyOp(RSAPrivateKey *key, |
1452 | | unsigned char *output, |
1453 | | const unsigned char *input, |
1454 | | PRBool check) |
1455 | 6 | { |
1456 | 6 | unsigned int modLen; |
1457 | 6 | unsigned int offset; |
1458 | 6 | SECStatus rv = SECSuccess; |
1459 | 6 | mp_err err; |
1460 | 6 | mp_int n, c, m; |
1461 | 6 | mp_int f, g; |
1462 | 6 | mp_digit n0i; |
1463 | 6 | if (!key || !output || !input) { |
1464 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1465 | 0 | return SECFailure; |
1466 | 0 | } |
1467 | | /* check input out of range (needs to be in range [0..n-1]) */ |
1468 | 6 | modLen = rsa_modulusLen(&key->modulus); |
1469 | 6 | if (modLen == 0) { |
1470 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1471 | 0 | return SECFailure; |
1472 | 0 | } |
1473 | 6 | offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ |
1474 | 6 | if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { |
1475 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1476 | 0 | return SECFailure; |
1477 | 0 | } |
1478 | 6 | MP_DIGITS(&n) = 0; |
1479 | 6 | MP_DIGITS(&c) = 0; |
1480 | 6 | MP_DIGITS(&m) = 0; |
1481 | 6 | MP_DIGITS(&f) = 0; |
1482 | 6 | MP_DIGITS(&g) = 0; |
1483 | 6 | CHECK_MPI_OK(mp_init(&n)); |
1484 | 6 | CHECK_MPI_OK(mp_init(&c)); |
1485 | 6 | CHECK_MPI_OK(mp_init(&m)); |
1486 | 6 | CHECK_MPI_OK(mp_init(&f)); |
1487 | 6 | CHECK_MPI_OK(mp_init(&g)); |
1488 | 6 | SECITEM_TO_MPINT(key->modulus, &n); |
1489 | 6 | OCTETS_TO_MPINT(input, &c, modLen); |
1490 | | /* If blinding, compute pre-image of ciphertext by multiplying by |
1491 | | ** blinding factor |
1492 | | */ |
1493 | 6 | if (nssRSAUseBlinding) { |
1494 | 6 | CHECK_SEC_OK(get_blinding_params(key, &n, modLen, &f, &g, &n0i)); |
1495 | | /* c' = c*f mod n */ |
1496 | 6 | CHECK_MPI_OK(mp_mulmod(&c, &f, &n, &c)); |
1497 | 6 | } |
1498 | | /* Do the private key operation m = c**d mod n */ |
1499 | 6 | if (key->prime1.len == 0 || |
1500 | 6 | key->prime2.len == 0 || |
1501 | 6 | key->exponent1.len == 0 || |
1502 | 6 | key->exponent2.len == 0 || |
1503 | 6 | key->coefficient.len == 0) { |
1504 | 0 | CHECK_SEC_OK(rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen)); |
1505 | 6 | } else if (check) { |
1506 | 6 | CHECK_SEC_OK(rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c)); |
1507 | 6 | } else { |
1508 | 0 | CHECK_SEC_OK(rsa_PrivateKeyOpCRTNoCheck(key, &m, &c)); |
1509 | 0 | } |
1510 | | /* If blinding, compute post-image of plaintext by multiplying by |
1511 | | ** blinding factor |
1512 | | */ |
1513 | 6 | if (nssRSAUseBlinding) { |
1514 | | /* m = m'*g mod n */ |
1515 | 6 | CHECK_MPI_OK(mp_mulmontmodCT(&m, &g, &n, n0i, &m)); |
1516 | 6 | } |
1517 | 6 | err = mp_to_fixlen_octets(&m, output, modLen); |
1518 | 6 | if (err >= 0) |
1519 | 6 | err = MP_OKAY; |
1520 | 6 | cleanup: |
1521 | 6 | mp_clear(&n); |
1522 | 6 | mp_clear(&c); |
1523 | 6 | mp_clear(&m); |
1524 | 6 | mp_clear(&f); |
1525 | 6 | mp_clear(&g); |
1526 | 6 | if (err) { |
1527 | 0 | MP_TO_SEC_ERROR(err); |
1528 | 0 | rv = SECFailure; |
1529 | 0 | } |
1530 | 6 | return rv; |
1531 | 6 | } |
1532 | | |
1533 | | SECStatus |
1534 | | RSA_PrivateKeyOp(RSAPrivateKey *key, |
1535 | | unsigned char *output, |
1536 | | const unsigned char *input) |
1537 | 0 | { |
1538 | 0 | return rsa_PrivateKeyOp(key, output, input, PR_FALSE); |
1539 | 0 | } |
1540 | | |
1541 | | SECStatus |
1542 | | RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, |
1543 | | unsigned char *output, |
1544 | | const unsigned char *input) |
1545 | 6 | { |
1546 | 6 | return rsa_PrivateKeyOp(key, output, input, PR_TRUE); |
1547 | 6 | } |
1548 | | |
1549 | | SECStatus |
1550 | | RSA_PrivateKeyCheck(const RSAPrivateKey *key) |
1551 | 0 | { |
1552 | 0 | mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; |
1553 | 0 | mp_err err = MP_OKAY; |
1554 | 0 | SECStatus rv = SECSuccess; |
1555 | 0 | MP_DIGITS(&p) = 0; |
1556 | 0 | MP_DIGITS(&q) = 0; |
1557 | 0 | MP_DIGITS(&n) = 0; |
1558 | 0 | MP_DIGITS(&psub1) = 0; |
1559 | 0 | MP_DIGITS(&qsub1) = 0; |
1560 | 0 | MP_DIGITS(&e) = 0; |
1561 | 0 | MP_DIGITS(&d) = 0; |
1562 | 0 | MP_DIGITS(&d_p) = 0; |
1563 | 0 | MP_DIGITS(&d_q) = 0; |
1564 | 0 | MP_DIGITS(&qInv) = 0; |
1565 | 0 | MP_DIGITS(&res) = 0; |
1566 | 0 | CHECK_MPI_OK(mp_init(&p)); |
1567 | 0 | CHECK_MPI_OK(mp_init(&q)); |
1568 | 0 | CHECK_MPI_OK(mp_init(&n)); |
1569 | 0 | CHECK_MPI_OK(mp_init(&psub1)); |
1570 | 0 | CHECK_MPI_OK(mp_init(&qsub1)); |
1571 | 0 | CHECK_MPI_OK(mp_init(&e)); |
1572 | 0 | CHECK_MPI_OK(mp_init(&d)); |
1573 | 0 | CHECK_MPI_OK(mp_init(&d_p)); |
1574 | 0 | CHECK_MPI_OK(mp_init(&d_q)); |
1575 | 0 | CHECK_MPI_OK(mp_init(&qInv)); |
1576 | 0 | CHECK_MPI_OK(mp_init(&res)); |
1577 | | |
1578 | 0 | if (!key->modulus.data || !key->prime1.data || !key->prime2.data || |
1579 | 0 | !key->publicExponent.data || !key->privateExponent.data || |
1580 | 0 | !key->exponent1.data || !key->exponent2.data || |
1581 | 0 | !key->coefficient.data) { |
1582 | | /* call RSA_PopulatePrivateKey first, if the application wishes to |
1583 | | * recover these parameters */ |
1584 | 0 | err = MP_BADARG; |
1585 | 0 | goto cleanup; |
1586 | 0 | } |
1587 | | |
1588 | 0 | SECITEM_TO_MPINT(key->modulus, &n); |
1589 | 0 | SECITEM_TO_MPINT(key->prime1, &p); |
1590 | 0 | SECITEM_TO_MPINT(key->prime2, &q); |
1591 | 0 | SECITEM_TO_MPINT(key->publicExponent, &e); |
1592 | 0 | SECITEM_TO_MPINT(key->privateExponent, &d); |
1593 | 0 | SECITEM_TO_MPINT(key->exponent1, &d_p); |
1594 | 0 | SECITEM_TO_MPINT(key->exponent2, &d_q); |
1595 | 0 | SECITEM_TO_MPINT(key->coefficient, &qInv); |
1596 | | /* p and q must be distinct. */ |
1597 | 0 | if (mp_cmp(&p, &q) == 0) { |
1598 | 0 | rv = SECFailure; |
1599 | 0 | goto cleanup; |
1600 | 0 | } |
1601 | 0 | #define VERIFY_MPI_EQUAL(m1, m2) \ |
1602 | 0 | if (mp_cmp(m1, m2) != 0) { \ |
1603 | 0 | rv = SECFailure; \ |
1604 | 0 | goto cleanup; \ |
1605 | 0 | } |
1606 | 0 | #define VERIFY_MPI_EQUAL_1(m) \ |
1607 | 0 | if (mp_cmp_d(m, 1) != 0) { \ |
1608 | 0 | rv = SECFailure; \ |
1609 | 0 | goto cleanup; \ |
1610 | 0 | } |
1611 | | /* n == p * q */ |
1612 | 0 | CHECK_MPI_OK(mp_mul(&p, &q, &res)); |
1613 | 0 | VERIFY_MPI_EQUAL(&res, &n); |
1614 | | /* gcd(e, p-1) == 1 */ |
1615 | 0 | CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1)); |
1616 | 0 | CHECK_MPI_OK(mp_gcd(&e, &psub1, &res)); |
1617 | 0 | VERIFY_MPI_EQUAL_1(&res); |
1618 | | /* gcd(e, q-1) == 1 */ |
1619 | 0 | CHECK_MPI_OK(mp_sub_d(&q, 1, &qsub1)); |
1620 | 0 | CHECK_MPI_OK(mp_gcd(&e, &qsub1, &res)); |
1621 | 0 | VERIFY_MPI_EQUAL_1(&res); |
1622 | | /* d*e == 1 mod p-1 */ |
1623 | 0 | CHECK_MPI_OK(mp_mulmod(&d, &e, &psub1, &res)); |
1624 | 0 | VERIFY_MPI_EQUAL_1(&res); |
1625 | | /* d*e == 1 mod q-1 */ |
1626 | 0 | CHECK_MPI_OK(mp_mulmod(&d, &e, &qsub1, &res)); |
1627 | 0 | VERIFY_MPI_EQUAL_1(&res); |
1628 | | /* d_p == d mod p-1 */ |
1629 | 0 | CHECK_MPI_OK(mp_mod(&d, &psub1, &res)); |
1630 | 0 | VERIFY_MPI_EQUAL(&res, &d_p); |
1631 | | /* d_q == d mod q-1 */ |
1632 | 0 | CHECK_MPI_OK(mp_mod(&d, &qsub1, &res)); |
1633 | 0 | VERIFY_MPI_EQUAL(&res, &d_q); |
1634 | | /* q * q**-1 == 1 mod p */ |
1635 | 0 | CHECK_MPI_OK(mp_mulmod(&q, &qInv, &p, &res)); |
1636 | 0 | VERIFY_MPI_EQUAL_1(&res); |
1637 | |
|
1638 | 0 | cleanup: |
1639 | 0 | mp_clear(&n); |
1640 | 0 | mp_clear(&p); |
1641 | 0 | mp_clear(&q); |
1642 | 0 | mp_clear(&psub1); |
1643 | 0 | mp_clear(&qsub1); |
1644 | 0 | mp_clear(&e); |
1645 | 0 | mp_clear(&d); |
1646 | 0 | mp_clear(&d_p); |
1647 | 0 | mp_clear(&d_q); |
1648 | 0 | mp_clear(&qInv); |
1649 | 0 | mp_clear(&res); |
1650 | 0 | if (err) { |
1651 | 0 | MP_TO_SEC_ERROR(err); |
1652 | 0 | rv = SECFailure; |
1653 | 0 | } |
1654 | 0 | return rv; |
1655 | 0 | } |
1656 | | |
1657 | | SECStatus |
1658 | | RSA_Init(void) |
1659 | 6 | { |
1660 | 6 | if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) { |
1661 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
1662 | 0 | return SECFailure; |
1663 | 0 | } |
1664 | 6 | return SECSuccess; |
1665 | 6 | } |
1666 | | |
1667 | | /* cleanup at shutdown */ |
1668 | | void |
1669 | | RSA_Cleanup(void) |
1670 | 0 | { |
1671 | 0 | blindingParams *bp = NULL; |
1672 | 0 | if (!coBPInit.initialized) |
1673 | 0 | return; |
1674 | | |
1675 | 0 | while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) { |
1676 | 0 | RSABlindingParams *rsabp = |
1677 | 0 | (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head); |
1678 | 0 | PR_REMOVE_LINK(&rsabp->link); |
1679 | | /* clear parameters cache */ |
1680 | 0 | while (rsabp->bp != NULL) { |
1681 | 0 | bp = rsabp->bp; |
1682 | 0 | rsabp->bp = rsabp->bp->next; |
1683 | 0 | mp_clear(&bp->f); |
1684 | 0 | mp_clear(&bp->g); |
1685 | 0 | } |
1686 | 0 | SECITEM_ZfreeItem(&rsabp->modulus, PR_FALSE); |
1687 | 0 | PORT_Free(rsabp); |
1688 | 0 | } |
1689 | |
|
1690 | 0 | if (blindingParamsList.cVar) { |
1691 | 0 | PR_DestroyCondVar(blindingParamsList.cVar); |
1692 | 0 | blindingParamsList.cVar = NULL; |
1693 | 0 | } |
1694 | |
|
1695 | 0 | if (blindingParamsList.lock) { |
1696 | 0 | SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock)); |
1697 | 0 | blindingParamsList.lock = NULL; |
1698 | 0 | } |
1699 | |
|
1700 | 0 | coBPInit.initialized = 0; |
1701 | 0 | coBPInit.inProgress = 0; |
1702 | 0 | coBPInit.status = 0; |
1703 | 0 | } |
1704 | | |
1705 | | /* |
1706 | | * need a central place for this function to free up all the memory that |
1707 | | * free_bl may have allocated along the way. Currently only RSA does this, |
1708 | | * so I've put it here for now. |
1709 | | */ |
1710 | | void |
1711 | | BL_Cleanup(void) |
1712 | 0 | { |
1713 | 0 | RSA_Cleanup(); |
1714 | 0 | } |
1715 | | |
1716 | | PRBool bl_parentForkedAfterC_Initialize; |
1717 | | |
1718 | | /* |
1719 | | * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms. |
1720 | | */ |
1721 | | void |
1722 | | BL_SetForkState(PRBool forked) |
1723 | 0 | { |
1724 | 0 | bl_parentForkedAfterC_Initialize = forked; |
1725 | 0 | } |