Coverage Report

Created: 2024-11-21 07:03

/src/openssl/crypto/md2/md2_dgst.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * MD2 low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <stdio.h>
17
#include <stdlib.h>
18
#include <string.h>
19
#include <openssl/md2.h>
20
#include <openssl/opensslv.h>
21
#include <openssl/crypto.h>
22
23
/*
24
 * Implemented from RFC1319 The MD2 Message-Digest Algorithm
25
 */
26
27
#define UCHAR   unsigned char
28
29
static void md2_block(MD2_CTX *c, const unsigned char *d);
30
/*
31
 * The magic S table - I have converted it to hex since it is basically just
32
 * a random byte string.
33
 */
34
static const MD2_INT S[256] = {
35
    0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01,
36
    0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13,
37
    0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C,
38
    0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA,
39
    0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16,
40
    0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12,
41
    0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49,
42
    0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A,
43
    0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F,
44
    0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21,
45
    0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27,
46
    0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03,
47
    0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1,
48
    0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6,
49
    0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6,
50
    0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1,
51
    0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20,
52
    0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02,
53
    0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6,
54
    0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F,
55
    0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A,
56
    0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26,
57
    0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09,
58
    0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52,
59
    0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA,
60
    0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A,
61
    0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D,
62
    0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39,
63
    0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4,
64
    0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A,
65
    0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A,
66
    0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14,
67
};
68
69
const char *MD2_options(void)
70
0
{
71
0
    if (sizeof(MD2_INT) == 1)
72
0
        return "md2(char)";
73
0
    else
74
0
        return "md2(int)";
75
0
}
76
77
int MD2_Init(MD2_CTX *c)
78
0
{
79
0
    c->num = 0;
80
0
    memset(c->state, 0, sizeof(c->state));
81
0
    memset(c->cksm, 0, sizeof(c->cksm));
82
0
    memset(c->data, 0, sizeof(c->data));
83
0
    return 1;
84
0
}
85
86
int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len)
87
0
{
88
0
    register UCHAR *p;
89
90
0
    if (len == 0)
91
0
        return 1;
92
93
0
    p = c->data;
94
0
    if (c->num != 0) {
95
0
        if ((c->num + len) >= MD2_BLOCK) {
96
0
            memcpy(&(p[c->num]), data, MD2_BLOCK - c->num);
97
0
            md2_block(c, c->data);
98
0
            data += (MD2_BLOCK - c->num);
99
0
            len -= (MD2_BLOCK - c->num);
100
0
            c->num = 0;
101
            /* drop through and do the rest */
102
0
        } else {
103
0
            memcpy(&(p[c->num]), data, len);
104
            /* data+=len; */
105
0
            c->num += (int)len;
106
0
            return 1;
107
0
        }
108
0
    }
109
    /*
110
     * we now can process the input data in blocks of MD2_BLOCK chars and
111
     * save the leftovers to c->data.
112
     */
113
0
    while (len >= MD2_BLOCK) {
114
0
        md2_block(c, data);
115
0
        data += MD2_BLOCK;
116
0
        len -= MD2_BLOCK;
117
0
    }
118
0
    memcpy(p, data, len);
119
0
    c->num = (int)len;
120
0
    return 1;
121
0
}
122
123
static void md2_block(MD2_CTX *c, const unsigned char *d)
124
0
{
125
0
    register MD2_INT t, *sp1, *sp2;
126
0
    register int i, j;
127
0
    MD2_INT state[48];
128
129
0
    sp1 = c->state;
130
0
    sp2 = c->cksm;
131
0
    j = sp2[MD2_BLOCK - 1];
132
0
    for (i = 0; i < 16; i++) {
133
0
        state[i] = sp1[i];
134
0
        state[i + 16] = t = d[i];
135
0
        state[i + 32] = (t ^ sp1[i]);
136
0
        j = sp2[i] ^= S[t ^ j];
137
0
    }
138
0
    t = 0;
139
0
    for (i = 0; i < 18; i++) {
140
0
        for (j = 0; j < 48; j += 8) {
141
0
            t = state[j + 0] ^= S[t];
142
0
            t = state[j + 1] ^= S[t];
143
0
            t = state[j + 2] ^= S[t];
144
0
            t = state[j + 3] ^= S[t];
145
0
            t = state[j + 4] ^= S[t];
146
0
            t = state[j + 5] ^= S[t];
147
0
            t = state[j + 6] ^= S[t];
148
0
            t = state[j + 7] ^= S[t];
149
0
        }
150
0
        t = (t + i) & 0xff;
151
0
    }
152
0
    memcpy(sp1, state, 16 * sizeof(MD2_INT));
153
0
    OPENSSL_cleanse(state, 48 * sizeof(MD2_INT));
154
0
}
155
156
int MD2_Final(unsigned char *md, MD2_CTX *c)
157
0
{
158
0
    int i, v;
159
0
    register UCHAR *cp;
160
0
    register MD2_INT *p1, *p2;
161
162
0
    cp = c->data;
163
0
    p1 = c->state;
164
0
    p2 = c->cksm;
165
0
    v = MD2_BLOCK - c->num;
166
0
    for (i = c->num; i < MD2_BLOCK; i++)
167
0
        cp[i] = (UCHAR) v;
168
169
0
    md2_block(c, cp);
170
171
0
    for (i = 0; i < MD2_BLOCK; i++)
172
0
        cp[i] = (UCHAR) p2[i];
173
0
    md2_block(c, cp);
174
175
0
    for (i = 0; i < 16; i++)
176
0
        md[i] = (UCHAR) (p1[i] & 0xff);
177
0
    OPENSSL_cleanse(c, sizeof(*c));
178
0
    return 1;
179
0
}