/src/openssl/crypto/rsa/rsa_gen.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * NB: these functions have been "upgraded", the deprecated versions (which |
12 | | * are compatibility wrappers using these functions) are in rsa_depr.c. - |
13 | | * Geoff |
14 | | */ |
15 | | |
16 | | /* |
17 | | * RSA low level APIs are deprecated for public use, but still ok for |
18 | | * internal use. |
19 | | */ |
20 | | #include "internal/deprecated.h" |
21 | | |
22 | | #include <stdio.h> |
23 | | #include <time.h> |
24 | | #include "internal/cryptlib.h" |
25 | | #include <openssl/bn.h> |
26 | | #include <openssl/self_test.h> |
27 | | #include "prov/providercommon.h" |
28 | | #include "rsa_local.h" |
29 | | |
30 | | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg); |
31 | | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes, |
32 | | BIGNUM *e_value, BN_GENCB *cb, int pairwise_test); |
33 | | |
34 | | /* |
35 | | * NB: this wrapper would normally be placed in rsa_lib.c and the static |
36 | | * implementation would probably be in rsa_eay.c. Nonetheless, is kept here |
37 | | * so that we don't introduce a new linker dependency. Eg. any application |
38 | | * that wasn't previously linking object code related to key-generation won't |
39 | | * have to now just because key-generation is part of RSA_METHOD. |
40 | | */ |
41 | | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) |
42 | 0 | { |
43 | 0 | if (rsa->meth->rsa_keygen != NULL) |
44 | 0 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); |
45 | | |
46 | 0 | return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM, |
47 | 0 | e_value, cb); |
48 | 0 | } |
49 | | |
50 | | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, |
51 | | BIGNUM *e_value, BN_GENCB *cb) |
52 | 0 | { |
53 | 0 | #ifndef FIPS_MODULE |
54 | | /* multi-prime is only supported with the builtin key generation */ |
55 | 0 | if (rsa->meth->rsa_multi_prime_keygen != NULL) { |
56 | 0 | return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, |
57 | 0 | e_value, cb); |
58 | 0 | } else if (rsa->meth->rsa_keygen != NULL) { |
59 | | /* |
60 | | * However, if rsa->meth implements only rsa_keygen, then we |
61 | | * have to honour it in 2-prime case and assume that it wouldn't |
62 | | * know what to do with multi-prime key generated by builtin |
63 | | * subroutine... |
64 | | */ |
65 | 0 | if (primes == 2) |
66 | 0 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); |
67 | 0 | else |
68 | 0 | return 0; |
69 | 0 | } |
70 | 0 | #endif /* FIPS_MODULE */ |
71 | 0 | return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0); |
72 | 0 | } |
73 | | |
74 | | DEFINE_STACK_OF(BIGNUM) |
75 | | |
76 | | /* |
77 | | * Given input values, q, p, n, d and e, derive the exponents |
78 | | * and coefficients for each prime in this key, placing the result |
79 | | * on their respective exps and coeffs stacks |
80 | | */ |
81 | | #ifndef FIPS_MODULE |
82 | | int ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes, |
83 | | BIGNUM *e_value, |
84 | | STACK_OF(BIGNUM) *factors, |
85 | | STACK_OF(BIGNUM) *exps, |
86 | | STACK_OF(BIGNUM) *coeffs) |
87 | 0 | { |
88 | 0 | STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL; |
89 | 0 | BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL; |
90 | 0 | BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL; |
91 | 0 | BIGNUM *p = NULL, *q = NULL; |
92 | 0 | BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL; |
93 | 0 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL; |
94 | 0 | BN_CTX *ctx = NULL; |
95 | 0 | BIGNUM *tmp = NULL; |
96 | 0 | int i; |
97 | 0 | int ret = 0; |
98 | |
|
99 | 0 | ctx = BN_CTX_new_ex(rsa->libctx); |
100 | 0 | if (ctx == NULL) |
101 | 0 | goto err; |
102 | | |
103 | 0 | BN_CTX_start(ctx); |
104 | |
|
105 | 0 | pplist = sk_BIGNUM_new_null(); |
106 | 0 | if (pplist == NULL) |
107 | 0 | goto err; |
108 | | |
109 | 0 | pdlist = sk_BIGNUM_new_null(); |
110 | 0 | if (pdlist == NULL) |
111 | 0 | goto err; |
112 | | |
113 | 0 | r0 = BN_CTX_get(ctx); |
114 | 0 | r1 = BN_CTX_get(ctx); |
115 | 0 | r2 = BN_CTX_get(ctx); |
116 | |
|
117 | 0 | if (r2 == NULL) |
118 | 0 | goto err; |
119 | | |
120 | 0 | BN_set_flags(r0, BN_FLG_CONSTTIME); |
121 | 0 | BN_set_flags(r1, BN_FLG_CONSTTIME); |
122 | 0 | BN_set_flags(r2, BN_FLG_CONSTTIME); |
123 | |
|
124 | 0 | if (BN_copy(r1, rsa->n) == NULL) |
125 | 0 | goto err; |
126 | | |
127 | 0 | p = sk_BIGNUM_value(factors, 0); |
128 | 0 | q = sk_BIGNUM_value(factors, 1); |
129 | | |
130 | | /* Build list of partial products of primes */ |
131 | 0 | for (i = 0; i < sk_BIGNUM_num(factors); i++) { |
132 | 0 | switch (i) { |
133 | 0 | case 0: |
134 | | /* our first prime, p */ |
135 | 0 | if (!BN_sub(r2, p, BN_value_one())) |
136 | 0 | goto err; |
137 | 0 | BN_set_flags(r2, BN_FLG_CONSTTIME); |
138 | 0 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL) |
139 | 0 | goto err; |
140 | 0 | break; |
141 | 0 | case 1: |
142 | | /* second prime q */ |
143 | 0 | if (!BN_mul(r1, p, q, ctx)) |
144 | 0 | goto err; |
145 | 0 | tmp = BN_dup(r1); |
146 | 0 | if (tmp == NULL) |
147 | 0 | goto err; |
148 | 0 | if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist))) |
149 | 0 | goto err; |
150 | 0 | break; |
151 | 0 | default: |
152 | 0 | factor = sk_BIGNUM_value(factors, i); |
153 | | /* all other primes */ |
154 | 0 | if (!BN_mul(r1, r1, factor, ctx)) |
155 | 0 | goto err; |
156 | 0 | tmp = BN_dup(r1); |
157 | 0 | if (tmp == NULL) |
158 | 0 | goto err; |
159 | 0 | if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist))) |
160 | 0 | goto err; |
161 | 0 | break; |
162 | 0 | } |
163 | 0 | } |
164 | | |
165 | | /* build list of relative d values */ |
166 | | /* p -1 */ |
167 | 0 | if (!BN_sub(r1, p, BN_value_one())) |
168 | 0 | goto err; |
169 | 0 | if (!BN_sub(r2, q, BN_value_one())) |
170 | 0 | goto err; |
171 | 0 | if (!BN_mul(r0, r1, r2, ctx)) |
172 | 0 | goto err; |
173 | 0 | for (i = 2; i < sk_BIGNUM_num(factors); i++) { |
174 | 0 | factor = sk_BIGNUM_value(factors, i); |
175 | 0 | dval = BN_new(); |
176 | 0 | if (dval == NULL) |
177 | 0 | goto err; |
178 | 0 | BN_set_flags(dval, BN_FLG_CONSTTIME); |
179 | 0 | if (!BN_sub(dval, factor, BN_value_one())) |
180 | 0 | goto err; |
181 | 0 | if (!BN_mul(r0, r0, dval, ctx)) |
182 | 0 | goto err; |
183 | 0 | if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist))) |
184 | 0 | goto err; |
185 | 0 | } |
186 | | |
187 | | /* Calculate dmp1, dmq1 and additional exponents */ |
188 | 0 | dmp1 = BN_secure_new(); |
189 | 0 | if (dmp1 == NULL) |
190 | 0 | goto err; |
191 | 0 | dmq1 = BN_secure_new(); |
192 | 0 | if (dmq1 == NULL) |
193 | 0 | goto err; |
194 | | |
195 | 0 | if (!BN_mod(dmp1, rsa->d, r1, ctx)) |
196 | 0 | goto err; |
197 | 0 | if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps))) |
198 | 0 | goto err; |
199 | 0 | dmp1 = NULL; |
200 | |
|
201 | 0 | if (!BN_mod(dmq1, rsa->d, r2, ctx)) |
202 | 0 | goto err; |
203 | 0 | if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps))) |
204 | 0 | goto err; |
205 | 0 | dmq1 = NULL; |
206 | |
|
207 | 0 | for (i = 2; i < sk_BIGNUM_num(factors); i++) { |
208 | 0 | newpd = sk_BIGNUM_value(pdlist, i - 2); |
209 | 0 | newexp = BN_new(); |
210 | 0 | if (newexp == NULL) |
211 | 0 | goto err; |
212 | 0 | if (!BN_mod(newexp, rsa->d, newpd, ctx)) { |
213 | 0 | BN_free(newexp); |
214 | 0 | goto err; |
215 | 0 | } |
216 | 0 | if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps))) |
217 | 0 | goto err; |
218 | 0 | } |
219 | | |
220 | | /* Calculate iqmp and additional coefficients */ |
221 | 0 | iqmp = BN_new(); |
222 | 0 | if (iqmp == NULL) |
223 | 0 | goto err; |
224 | | |
225 | 0 | if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1), |
226 | 0 | sk_BIGNUM_value(factors, 0), ctx) == NULL) |
227 | 0 | goto err; |
228 | 0 | if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs))) |
229 | 0 | goto err; |
230 | 0 | iqmp = NULL; |
231 | |
|
232 | 0 | for (i = 2; i < sk_BIGNUM_num(factors); i++) { |
233 | 0 | newpp = sk_BIGNUM_value(pplist, i - 2); |
234 | 0 | newcoeff = BN_new(); |
235 | 0 | if (newcoeff == NULL) |
236 | 0 | goto err; |
237 | 0 | if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i), |
238 | 0 | ctx) == NULL) { |
239 | 0 | BN_free(newcoeff); |
240 | 0 | goto err; |
241 | 0 | } |
242 | 0 | if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs))) |
243 | 0 | goto err; |
244 | 0 | } |
245 | | |
246 | 0 | ret = 1; |
247 | 0 | err: |
248 | 0 | sk_BIGNUM_pop_free(pplist, BN_free); |
249 | 0 | sk_BIGNUM_pop_free(pdlist, BN_free); |
250 | 0 | BN_CTX_end(ctx); |
251 | 0 | BN_CTX_free(ctx); |
252 | 0 | BN_clear_free(dmp1); |
253 | 0 | BN_clear_free(dmq1); |
254 | 0 | BN_clear_free(iqmp); |
255 | 0 | return ret; |
256 | 0 | } |
257 | | |
258 | | static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes, |
259 | | BIGNUM *e_value, BN_GENCB *cb) |
260 | 0 | { |
261 | 0 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime; |
262 | 0 | int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; |
263 | 0 | int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; |
264 | 0 | RSA_PRIME_INFO *pinfo = NULL; |
265 | 0 | STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL; |
266 | 0 | STACK_OF(BIGNUM) *factors = NULL; |
267 | 0 | STACK_OF(BIGNUM) *exps = NULL; |
268 | 0 | STACK_OF(BIGNUM) *coeffs = NULL; |
269 | 0 | BN_CTX *ctx = NULL; |
270 | 0 | BN_ULONG bitst = 0; |
271 | 0 | unsigned long error = 0; |
272 | 0 | int ok = -1; |
273 | |
|
274 | 0 | if (bits < RSA_MIN_MODULUS_BITS) { |
275 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
276 | 0 | return 0; |
277 | 0 | } |
278 | 0 | if (e_value == NULL) { |
279 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
280 | 0 | return 0; |
281 | 0 | } |
282 | | /* A bad value for e can cause infinite loops */ |
283 | 0 | if (!ossl_rsa_check_public_exponent(e_value)) { |
284 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
285 | 0 | return 0; |
286 | 0 | } |
287 | | |
288 | 0 | if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) { |
289 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID); |
290 | 0 | return 0; |
291 | 0 | } |
292 | | |
293 | 0 | factors = sk_BIGNUM_new_null(); |
294 | 0 | if (factors == NULL) |
295 | 0 | return 0; |
296 | | |
297 | 0 | exps = sk_BIGNUM_new_null(); |
298 | 0 | if (exps == NULL) |
299 | 0 | goto err; |
300 | | |
301 | 0 | coeffs = sk_BIGNUM_new_null(); |
302 | 0 | if (coeffs == NULL) |
303 | 0 | goto err; |
304 | | |
305 | 0 | ctx = BN_CTX_new_ex(rsa->libctx); |
306 | 0 | if (ctx == NULL) |
307 | 0 | goto err; |
308 | 0 | BN_CTX_start(ctx); |
309 | 0 | r0 = BN_CTX_get(ctx); |
310 | 0 | r1 = BN_CTX_get(ctx); |
311 | 0 | r2 = BN_CTX_get(ctx); |
312 | 0 | if (r2 == NULL) |
313 | 0 | goto err; |
314 | | |
315 | | /* divide bits into 'primes' pieces evenly */ |
316 | 0 | quo = bits / primes; |
317 | 0 | rmd = bits % primes; |
318 | |
|
319 | 0 | for (i = 0; i < primes; i++) |
320 | 0 | bitsr[i] = (i < rmd) ? quo + 1 : quo; |
321 | |
|
322 | 0 | rsa->dirty_cnt++; |
323 | | |
324 | | /* We need the RSA components non-NULL */ |
325 | 0 | if (!rsa->n && ((rsa->n = BN_new()) == NULL)) |
326 | 0 | goto err; |
327 | 0 | if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL)) |
328 | 0 | goto err; |
329 | 0 | BN_set_flags(rsa->d, BN_FLG_CONSTTIME); |
330 | 0 | if (!rsa->e && ((rsa->e = BN_new()) == NULL)) |
331 | 0 | goto err; |
332 | 0 | if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL)) |
333 | 0 | goto err; |
334 | 0 | BN_set_flags(rsa->p, BN_FLG_CONSTTIME); |
335 | 0 | if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL)) |
336 | 0 | goto err; |
337 | 0 | BN_set_flags(rsa->q, BN_FLG_CONSTTIME); |
338 | | |
339 | | /* initialize multi-prime components */ |
340 | 0 | if (primes > RSA_DEFAULT_PRIME_NUM) { |
341 | 0 | rsa->version = RSA_ASN1_VERSION_MULTI; |
342 | 0 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2); |
343 | 0 | if (prime_infos == NULL) |
344 | 0 | goto err; |
345 | 0 | if (rsa->prime_infos != NULL) { |
346 | | /* could this happen? */ |
347 | 0 | sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, |
348 | 0 | ossl_rsa_multip_info_free); |
349 | 0 | } |
350 | 0 | rsa->prime_infos = prime_infos; |
351 | | |
352 | | /* prime_info from 2 to |primes| -1 */ |
353 | 0 | for (i = 2; i < primes; i++) { |
354 | 0 | pinfo = ossl_rsa_multip_info_new(); |
355 | 0 | if (pinfo == NULL) |
356 | 0 | goto err; |
357 | 0 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
358 | 0 | } |
359 | 0 | } |
360 | | |
361 | 0 | if (BN_copy(rsa->e, e_value) == NULL) |
362 | 0 | goto err; |
363 | | |
364 | | /* generate p, q and other primes (if any) */ |
365 | 0 | for (i = 0; i < primes; i++) { |
366 | 0 | adj = 0; |
367 | 0 | retries = 0; |
368 | |
|
369 | 0 | if (i == 0) { |
370 | 0 | prime = rsa->p; |
371 | 0 | } else if (i == 1) { |
372 | 0 | prime = rsa->q; |
373 | 0 | } else { |
374 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
375 | 0 | prime = pinfo->r; |
376 | 0 | } |
377 | 0 | BN_set_flags(prime, BN_FLG_CONSTTIME); |
378 | |
|
379 | 0 | for (;;) { |
380 | 0 | redo: |
381 | 0 | if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL, |
382 | 0 | cb, ctx)) |
383 | 0 | goto err; |
384 | | /* |
385 | | * prime should not be equal to p, q, r_3... |
386 | | * (those primes prior to this one) |
387 | | */ |
388 | 0 | { |
389 | 0 | int j; |
390 | |
|
391 | 0 | for (j = 0; j < i; j++) { |
392 | 0 | BIGNUM *prev_prime; |
393 | |
|
394 | 0 | if (j == 0) |
395 | 0 | prev_prime = rsa->p; |
396 | 0 | else if (j == 1) |
397 | 0 | prev_prime = rsa->q; |
398 | 0 | else |
399 | 0 | prev_prime = sk_RSA_PRIME_INFO_value(prime_infos, |
400 | 0 | j - 2)->r; |
401 | |
|
402 | 0 | if (!BN_cmp(prime, prev_prime)) { |
403 | 0 | goto redo; |
404 | 0 | } |
405 | 0 | } |
406 | 0 | } |
407 | 0 | if (!BN_sub(r2, prime, BN_value_one())) |
408 | 0 | goto err; |
409 | 0 | ERR_set_mark(); |
410 | 0 | BN_set_flags(r2, BN_FLG_CONSTTIME); |
411 | 0 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { |
412 | | /* GCD == 1 since inverse exists */ |
413 | 0 | break; |
414 | 0 | } |
415 | 0 | error = ERR_peek_last_error(); |
416 | 0 | if (ERR_GET_LIB(error) == ERR_LIB_BN |
417 | 0 | && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { |
418 | | /* GCD != 1 */ |
419 | 0 | ERR_pop_to_mark(); |
420 | 0 | } else { |
421 | 0 | goto err; |
422 | 0 | } |
423 | 0 | if (!BN_GENCB_call(cb, 2, n++)) |
424 | 0 | goto err; |
425 | 0 | } |
426 | | |
427 | 0 | bitse += bitsr[i]; |
428 | | |
429 | | /* calculate n immediately to see if it's sufficient */ |
430 | 0 | if (i == 1) { |
431 | | /* we get at least 2 primes */ |
432 | 0 | if (!BN_mul(r1, rsa->p, rsa->q, ctx)) |
433 | 0 | goto err; |
434 | 0 | } else if (i != 0) { |
435 | | /* modulus n = p * q * r_3 * r_4 ... */ |
436 | 0 | if (!BN_mul(r1, rsa->n, prime, ctx)) |
437 | 0 | goto err; |
438 | 0 | } else { |
439 | | /* i == 0, do nothing */ |
440 | 0 | if (!BN_GENCB_call(cb, 3, i)) |
441 | 0 | goto err; |
442 | 0 | tmp = BN_dup(prime); |
443 | 0 | if (tmp == NULL) |
444 | 0 | goto err; |
445 | 0 | if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors))) |
446 | 0 | goto err; |
447 | 0 | continue; |
448 | 0 | } |
449 | | |
450 | | /* |
451 | | * if |r1|, product of factors so far, is not as long as expected |
452 | | * (by checking the first 4 bits are less than 0x9 or greater than |
453 | | * 0xF). If so, re-generate the last prime. |
454 | | * |
455 | | * NOTE: This actually can't happen in two-prime case, because of |
456 | | * the way factors are generated. |
457 | | * |
458 | | * Besides, another consideration is, for multi-prime case, even the |
459 | | * length modulus is as long as expected, the modulus could start at |
460 | | * 0x8, which could be utilized to distinguish a multi-prime private |
461 | | * key by using the modulus in a certificate. This is also covered |
462 | | * by checking the length should not be less than 0x9. |
463 | | */ |
464 | 0 | if (!BN_rshift(r2, r1, bitse - 4)) |
465 | 0 | goto err; |
466 | 0 | bitst = BN_get_word(r2); |
467 | |
|
468 | 0 | if (bitst < 0x9 || bitst > 0xF) { |
469 | | /* |
470 | | * For keys with more than 4 primes, we attempt longer factor to |
471 | | * meet length requirement. |
472 | | * |
473 | | * Otherwise, we just re-generate the prime with the same length. |
474 | | * |
475 | | * This strategy has the following goals: |
476 | | * |
477 | | * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key |
478 | | * 2. stay the same logic with normal 2-prime key |
479 | | */ |
480 | 0 | bitse -= bitsr[i]; |
481 | 0 | if (!BN_GENCB_call(cb, 2, n++)) |
482 | 0 | goto err; |
483 | 0 | if (primes > 4) { |
484 | 0 | if (bitst < 0x9) |
485 | 0 | adj++; |
486 | 0 | else |
487 | 0 | adj--; |
488 | 0 | } else if (retries == 4) { |
489 | | /* |
490 | | * re-generate all primes from scratch, mainly used |
491 | | * in 4 prime case to avoid long loop. Max retry times |
492 | | * is set to 4. |
493 | | */ |
494 | 0 | i = -1; |
495 | 0 | bitse = 0; |
496 | 0 | sk_BIGNUM_pop_free(factors, BN_clear_free); |
497 | 0 | factors = sk_BIGNUM_new_null(); |
498 | 0 | if (factors == NULL) |
499 | 0 | goto err; |
500 | 0 | continue; |
501 | 0 | } |
502 | 0 | retries++; |
503 | 0 | goto redo; |
504 | 0 | } |
505 | | /* save product of primes for further use, for multi-prime only */ |
506 | 0 | if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL) |
507 | 0 | goto err; |
508 | 0 | if (BN_copy(rsa->n, r1) == NULL) |
509 | 0 | goto err; |
510 | 0 | if (!BN_GENCB_call(cb, 3, i)) |
511 | 0 | goto err; |
512 | 0 | tmp = BN_dup(prime); |
513 | 0 | if (tmp == NULL) |
514 | 0 | goto err; |
515 | 0 | if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors))) |
516 | 0 | goto err; |
517 | 0 | } |
518 | | |
519 | 0 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
520 | 0 | tmp = rsa->p; |
521 | 0 | rsa->p = rsa->q; |
522 | 0 | rsa->q = tmp; |
523 | | /* mirror this in our factor stack */ |
524 | 0 | if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1)) |
525 | 0 | goto err; |
526 | 0 | } |
527 | | |
528 | | /* calculate d */ |
529 | | |
530 | | /* p - 1 */ |
531 | 0 | if (!BN_sub(r1, rsa->p, BN_value_one())) |
532 | 0 | goto err; |
533 | | /* q - 1 */ |
534 | 0 | if (!BN_sub(r2, rsa->q, BN_value_one())) |
535 | 0 | goto err; |
536 | | /* (p - 1)(q - 1) */ |
537 | 0 | if (!BN_mul(r0, r1, r2, ctx)) |
538 | 0 | goto err; |
539 | | /* multi-prime */ |
540 | 0 | for (i = 2; i < primes; i++) { |
541 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
542 | | /* save r_i - 1 to pinfo->d temporarily */ |
543 | 0 | if (!BN_sub(pinfo->d, pinfo->r, BN_value_one())) |
544 | 0 | goto err; |
545 | 0 | if (!BN_mul(r0, r0, pinfo->d, ctx)) |
546 | 0 | goto err; |
547 | 0 | } |
548 | | |
549 | | |
550 | 0 | BN_set_flags(r0, BN_FLG_CONSTTIME); |
551 | 0 | if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) { |
552 | 0 | goto err; /* d */ |
553 | 0 | } |
554 | | |
555 | | /* derive any missing exponents and coefficients */ |
556 | 0 | if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value, |
557 | 0 | factors, exps, coeffs)) |
558 | 0 | goto err; |
559 | | |
560 | | /* |
561 | | * first 2 factors/exps are already tracked in p/q/dmq1/dmp1 |
562 | | * and the first coeff is in iqmp, so pop those off the stack |
563 | | * Note, the first 2 factors/exponents are already tracked by p and q |
564 | | * assign dmp1/dmq1 and iqmp |
565 | | * the remaining pinfo values are separately allocated, so copy and delete |
566 | | * those |
567 | | */ |
568 | 0 | BN_clear_free(sk_BIGNUM_delete(factors, 0)); |
569 | 0 | BN_clear_free(sk_BIGNUM_delete(factors, 0)); |
570 | 0 | rsa->dmp1 = sk_BIGNUM_delete(exps, 0); |
571 | 0 | rsa->dmq1 = sk_BIGNUM_delete(exps, 0); |
572 | 0 | rsa->iqmp = sk_BIGNUM_delete(coeffs, 0); |
573 | 0 | for (i = 2; i < primes; i++) { |
574 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
575 | 0 | tmp = sk_BIGNUM_delete(factors, 0); |
576 | 0 | BN_copy(pinfo->r, tmp); |
577 | 0 | BN_clear_free(tmp); |
578 | 0 | tmp = sk_BIGNUM_delete(exps, 0); |
579 | 0 | tmp2 = BN_copy(pinfo->d, tmp); |
580 | 0 | BN_clear_free(tmp); |
581 | 0 | if (tmp2 == NULL) |
582 | 0 | goto err; |
583 | 0 | tmp = sk_BIGNUM_delete(coeffs, 0); |
584 | 0 | tmp2 = BN_copy(pinfo->t, tmp); |
585 | 0 | BN_clear_free(tmp); |
586 | 0 | if (tmp2 == NULL) |
587 | 0 | goto err; |
588 | 0 | } |
589 | 0 | ok = 1; |
590 | 0 | err: |
591 | 0 | sk_BIGNUM_free(factors); |
592 | 0 | sk_BIGNUM_free(exps); |
593 | 0 | sk_BIGNUM_free(coeffs); |
594 | 0 | if (ok == -1) { |
595 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); |
596 | 0 | ok = 0; |
597 | 0 | } |
598 | 0 | BN_CTX_end(ctx); |
599 | 0 | BN_CTX_free(ctx); |
600 | 0 | return ok; |
601 | 0 | } |
602 | | #endif /* FIPS_MODULE */ |
603 | | |
604 | | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes, |
605 | | BIGNUM *e_value, BN_GENCB *cb, int pairwise_test) |
606 | 0 | { |
607 | 0 | int ok = 0; |
608 | |
|
609 | | #ifdef FIPS_MODULE |
610 | | ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); |
611 | | pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */ |
612 | | #else |
613 | | /* |
614 | | * Only multi-prime keys or insecure keys with a small key length or a |
615 | | * public exponent <= 2^16 will use the older rsa_multiprime_keygen(). |
616 | | */ |
617 | 0 | if (primes == 2 |
618 | 0 | && bits >= 2048 |
619 | 0 | && (e_value == NULL || BN_num_bits(e_value) > 16)) |
620 | 0 | ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); |
621 | 0 | else |
622 | 0 | ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb); |
623 | 0 | #endif /* FIPS_MODULE */ |
624 | |
|
625 | 0 | if (pairwise_test && ok > 0) { |
626 | 0 | OSSL_CALLBACK *stcb = NULL; |
627 | 0 | void *stcbarg = NULL; |
628 | |
|
629 | 0 | OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg); |
630 | 0 | ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg); |
631 | 0 | if (!ok) { |
632 | 0 | ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT); |
633 | | /* Clear intermediate results */ |
634 | 0 | BN_clear_free(rsa->d); |
635 | 0 | BN_clear_free(rsa->p); |
636 | 0 | BN_clear_free(rsa->q); |
637 | 0 | BN_clear_free(rsa->dmp1); |
638 | 0 | BN_clear_free(rsa->dmq1); |
639 | 0 | BN_clear_free(rsa->iqmp); |
640 | 0 | rsa->d = NULL; |
641 | 0 | rsa->p = NULL; |
642 | 0 | rsa->q = NULL; |
643 | 0 | rsa->dmp1 = NULL; |
644 | 0 | rsa->dmq1 = NULL; |
645 | 0 | rsa->iqmp = NULL; |
646 | 0 | } |
647 | 0 | } |
648 | 0 | return ok; |
649 | 0 | } |
650 | | |
651 | | /* |
652 | | * AS10.35 (and its VEs/TEs) of the FIPS 140-3 standard requires a PCT for every |
653 | | * generated key pair. There are 3 options: |
654 | | * 1) If the key pair is to be used for key transport (asymmetric cipher), the |
655 | | * PCT consists of encrypting a plaintext, verifying that the result |
656 | | * (ciphertext) is not equal to the plaintext, decrypting the ciphertext, and |
657 | | * verifying that the result is equal to the plaintext. |
658 | | * 2) If the key pair is to be used for digital signatures, the PCT consists of |
659 | | * computing and verifying a signature. |
660 | | * 3) If the key pair is to be used for key agreement, the exact PCT is defined |
661 | | * in the applicable standards. For RSA-based schemes, this is defined in |
662 | | * SP 800-56Br2 (Section 6.4.1.1) as: |
663 | | * "The owner shall perform a pair-wise consistency test by verifying that m |
664 | | * = (m^e)^d mod n for some integer m satisfying 1 < m < (n - 1)." |
665 | | * |
666 | | * OpenSSL implements all three use cases: RSA-OAEP for key transport, |
667 | | * RSA signatures with PKCS#1 v1.5 or PSS padding, and KAS-IFC-SSC (KAS1/KAS2) |
668 | | * using RSASVE. |
669 | | * |
670 | | * According to FIPS 140-3 IG 10.3.A, if at the time when the PCT is performed |
671 | | * the keys' intended usage is not known, then any of the three PCTs described |
672 | | * in AS10.35 shall be performed on this key pair. |
673 | | * |
674 | | * Because of this allowance from the IG, the simplest option is 3, i.e. |
675 | | * RSA_public_encrypt() and RSA_private_decrypt() with RSA_NO_PADDING. |
676 | | */ |
677 | | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg) |
678 | 0 | { |
679 | 0 | int ret = 0; |
680 | 0 | unsigned int plaintxt_len; |
681 | 0 | unsigned char *plaintxt = NULL; |
682 | 0 | unsigned int ciphertxt_len; |
683 | 0 | unsigned char *ciphertxt = NULL; |
684 | 0 | unsigned char *decoded = NULL; |
685 | 0 | unsigned int decoded_len; |
686 | 0 | int padding = RSA_NO_PADDING; |
687 | 0 | OSSL_SELF_TEST *st = NULL; |
688 | |
|
689 | 0 | st = OSSL_SELF_TEST_new(cb, cbarg); |
690 | 0 | if (st == NULL) |
691 | 0 | goto err; |
692 | 0 | OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT, |
693 | 0 | OSSL_SELF_TEST_DESC_PCT_RSA); |
694 | | |
695 | | /* |
696 | | * For RSA_NO_PADDING, RSA_public_encrypt() and RSA_private_decrypt() |
697 | | * require the 'to' and 'from' parameters to have equal length and a |
698 | | * maximum of RSA_size() - allocate space for plaintxt, ciphertxt, and |
699 | | * decoded. |
700 | | */ |
701 | 0 | plaintxt_len = RSA_size(rsa); |
702 | 0 | plaintxt = OPENSSL_zalloc(plaintxt_len * 3); |
703 | 0 | if (plaintxt == NULL) |
704 | 0 | goto err; |
705 | 0 | ciphertxt = plaintxt + plaintxt_len; |
706 | 0 | decoded = ciphertxt + plaintxt_len; |
707 | | |
708 | | /* SP 800-56Br2 Section 6.4.1.1 requires that plaintext is greater than 1 */ |
709 | 0 | plaintxt[plaintxt_len - 1] = 2; |
710 | |
|
711 | 0 | ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa, |
712 | 0 | padding); |
713 | 0 | if (ciphertxt_len <= 0) |
714 | 0 | goto err; |
715 | | |
716 | 0 | OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt); |
717 | |
|
718 | 0 | decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa, |
719 | 0 | padding); |
720 | 0 | if (decoded_len != plaintxt_len |
721 | 0 | || memcmp(decoded, plaintxt, decoded_len) != 0) |
722 | 0 | goto err; |
723 | | |
724 | 0 | ret = 1; |
725 | 0 | err: |
726 | 0 | OSSL_SELF_TEST_onend(st, ret); |
727 | 0 | OSSL_SELF_TEST_free(st); |
728 | 0 | OPENSSL_free(plaintxt); |
729 | |
|
730 | 0 | return ret; |
731 | 0 | } |