Coverage Report

Created: 2024-11-21 07:03

/src/openssl/providers/implementations/kdfs/scrypt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <stdarg.h>
12
#include <string.h>
13
#include <openssl/evp.h>
14
#include <openssl/kdf.h>
15
#include <openssl/err.h>
16
#include <openssl/core_names.h>
17
#include <openssl/proverr.h>
18
#include "crypto/evp.h"
19
#include "internal/numbers.h"
20
#include "prov/implementations.h"
21
#include "prov/provider_ctx.h"
22
#include "prov/providercommon.h"
23
#include "prov/provider_util.h"
24
25
#ifndef OPENSSL_NO_SCRYPT
26
27
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
29
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
30
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
31
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
32
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
33
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
34
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
35
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
36
37
static int scrypt_alg(const char *pass, size_t passlen,
38
                      const unsigned char *salt, size_t saltlen,
39
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
40
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
41
                      OSSL_LIB_CTX *libctx, const char *propq);
42
43
typedef struct {
44
    OSSL_LIB_CTX *libctx;
45
    char *propq;
46
    unsigned char *pass;
47
    size_t pass_len;
48
    unsigned char *salt;
49
    size_t salt_len;
50
    uint64_t N;
51
    uint64_t r, p;
52
    uint64_t maxmem_bytes;
53
    EVP_MD *sha256;
54
} KDF_SCRYPT;
55
56
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
57
58
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
59
207
{
60
207
    KDF_SCRYPT *ctx;
61
62
207
    if (!ossl_prov_is_running())
63
0
        return NULL;
64
65
207
    ctx = OPENSSL_zalloc(sizeof(*ctx));
66
207
    if (ctx == NULL)
67
0
        return NULL;
68
207
    ctx->libctx = libctx;
69
207
    kdf_scrypt_init(ctx);
70
207
    return ctx;
71
207
}
72
73
static void *kdf_scrypt_new(void *provctx)
74
207
{
75
207
    return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
76
207
}
77
78
static void kdf_scrypt_free(void *vctx)
79
207
{
80
207
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
81
82
207
    if (ctx != NULL) {
83
207
        OPENSSL_free(ctx->propq);
84
207
        EVP_MD_free(ctx->sha256);
85
207
        kdf_scrypt_reset(ctx);
86
207
        OPENSSL_free(ctx);
87
207
    }
88
207
}
89
90
static void kdf_scrypt_reset(void *vctx)
91
207
{
92
207
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
93
94
207
    OPENSSL_free(ctx->salt);
95
207
    OPENSSL_clear_free(ctx->pass, ctx->pass_len);
96
207
    kdf_scrypt_init(ctx);
97
207
}
98
99
static void *kdf_scrypt_dup(void *vctx)
100
0
{
101
0
    const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
102
0
    KDF_SCRYPT *dest;
103
104
0
    dest = kdf_scrypt_new_inner(src->libctx);
105
0
    if (dest != NULL) {
106
0
        if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
107
0
            goto err;
108
0
        if (src->propq != NULL) {
109
0
            dest->propq = OPENSSL_strdup(src->propq);
110
0
            if (dest->propq == NULL)
111
0
                goto err;
112
0
        }
113
0
        if (!ossl_prov_memdup(src->salt, src->salt_len,
114
0
                              &dest->salt, &dest->salt_len)
115
0
                || !ossl_prov_memdup(src->pass, src->pass_len,
116
0
                                     &dest->pass , &dest->pass_len))
117
0
            goto err;
118
0
        dest->N = src->N;
119
0
        dest->r = src->r;
120
0
        dest->p = src->p;
121
0
        dest->maxmem_bytes = src->maxmem_bytes;
122
0
        dest->sha256 = src->sha256;
123
0
    }
124
0
    return dest;
125
126
0
 err:
127
0
    kdf_scrypt_free(dest);
128
0
    return NULL;
129
0
}
130
131
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
132
414
{
133
    /* Default values are the most conservative recommendation given in the
134
     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
135
     * for this parameter choice (approx. 128 * r * N * p bytes).
136
     */
137
414
    ctx->N = 1 << 20;
138
414
    ctx->r = 8;
139
414
    ctx->p = 1;
140
414
    ctx->maxmem_bytes = 1025 * 1024 * 1024;
141
414
}
142
143
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
144
                             const OSSL_PARAM *p)
145
414
{
146
414
    OPENSSL_clear_free(*buffer, *buflen);
147
414
    *buffer = NULL;
148
414
    *buflen = 0;
149
150
414
    if (p->data_size == 0) {
151
53
        if ((*buffer = OPENSSL_malloc(1)) == NULL)
152
0
            return 0;
153
361
    } else if (p->data != NULL) {
154
361
        if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
155
0
            return 0;
156
361
    }
157
414
    return 1;
158
414
}
159
160
static int set_digest(KDF_SCRYPT *ctx)
161
133
{
162
133
    EVP_MD_free(ctx->sha256);
163
133
    ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
164
133
    if (ctx->sha256 == NULL) {
165
0
        OPENSSL_free(ctx);
166
0
        ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
167
0
        return 0;
168
0
    }
169
133
    return 1;
170
133
}
171
172
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
173
0
{
174
0
    OPENSSL_free(ctx->propq);
175
0
    ctx->propq = NULL;
176
0
    if (propq != NULL) {
177
0
        ctx->propq = OPENSSL_strdup(propq);
178
0
        if (ctx->propq == NULL)
179
0
            return 0;
180
0
    }
181
0
    return 1;
182
0
}
183
184
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
185
                             const OSSL_PARAM params[])
186
152
{
187
152
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
188
189
152
    if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
190
19
        return 0;
191
192
133
    if (ctx->pass == NULL) {
193
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
194
0
        return 0;
195
0
    }
196
197
133
    if (ctx->salt == NULL) {
198
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
199
0
        return 0;
200
0
    }
201
202
133
    if (ctx->sha256 == NULL && !set_digest(ctx))
203
0
        return 0;
204
205
133
    return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
206
133
                      ctx->salt_len, ctx->N, ctx->r, ctx->p,
207
133
                      ctx->maxmem_bytes, key, keylen, ctx->sha256,
208
133
                      ctx->libctx, ctx->propq);
209
133
}
210
211
static int is_power_of_two(uint64_t value)
212
169
{
213
169
    return (value != 0) && ((value & (value - 1)) == 0);
214
169
}
215
216
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
217
834
{
218
834
    const OSSL_PARAM *p;
219
834
    KDF_SCRYPT *ctx = vctx;
220
834
    uint64_t u64_value;
221
222
834
    if (ossl_param_is_empty(params))
223
199
        return 1;
224
225
635
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
226
207
        if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
227
0
            return 0;
228
229
635
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
230
207
        if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
231
0
            return 0;
232
233
635
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
234
635
        != NULL) {
235
207
        if (!OSSL_PARAM_get_uint64(p, &u64_value)
236
207
            || u64_value <= 1
237
207
            || !is_power_of_two(u64_value))
238
53
            return 0;
239
154
        ctx->N = u64_value;
240
154
    }
241
242
582
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
243
582
        != NULL) {
244
154
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
245
6
            return 0;
246
148
        ctx->r = u64_value;
247
148
    }
248
249
576
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
250
576
        != NULL) {
251
148
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
252
7
            return 0;
253
141
        ctx->p = u64_value;
254
141
    }
255
256
569
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
257
569
        != NULL) {
258
61
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
259
0
            return 0;
260
61
        ctx->maxmem_bytes = u64_value;
261
61
    }
262
263
569
    p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
264
569
    if (p != NULL) {
265
0
        if (p->data_type != OSSL_PARAM_UTF8_STRING
266
0
            || !set_property_query(ctx, p->data)
267
0
            || !set_digest(ctx))
268
0
            return 0;
269
0
    }
270
569
    return 1;
271
569
}
272
273
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
274
                                                        ossl_unused void *p_ctx)
275
0
{
276
0
    static const OSSL_PARAM known_settable_ctx_params[] = {
277
0
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
278
0
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
279
0
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
280
0
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
281
0
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
282
0
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
283
0
        OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
284
0
        OSSL_PARAM_END
285
0
    };
286
0
    return known_settable_ctx_params;
287
0
}
288
289
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
290
80
{
291
80
    OSSL_PARAM *p;
292
293
80
    if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
294
80
        return OSSL_PARAM_set_size_t(p, SIZE_MAX);
295
0
    return -2;
296
80
}
297
298
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
299
                                                        ossl_unused void *p_ctx)
300
0
{
301
0
    static const OSSL_PARAM known_gettable_ctx_params[] = {
302
0
        OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
303
0
        OSSL_PARAM_END
304
0
    };
305
0
    return known_gettable_ctx_params;
306
0
}
307
308
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
309
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
310
    { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
311
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
312
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
313
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
314
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
315
      (void(*)(void))kdf_scrypt_settable_ctx_params },
316
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
317
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
318
      (void(*)(void))kdf_scrypt_gettable_ctx_params },
319
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
320
    OSSL_DISPATCH_END
321
};
322
323
2.77M
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
324
static void salsa208_word_specification(uint32_t inout[16])
325
21.7k
{
326
21.7k
    int i;
327
21.7k
    uint32_t x[16];
328
329
21.7k
    memcpy(x, inout, sizeof(x));
330
108k
    for (i = 8; i > 0; i -= 2) {
331
86.8k
        x[4] ^= R(x[0] + x[12], 7);
332
86.8k
        x[8] ^= R(x[4] + x[0], 9);
333
86.8k
        x[12] ^= R(x[8] + x[4], 13);
334
86.8k
        x[0] ^= R(x[12] + x[8], 18);
335
86.8k
        x[9] ^= R(x[5] + x[1], 7);
336
86.8k
        x[13] ^= R(x[9] + x[5], 9);
337
86.8k
        x[1] ^= R(x[13] + x[9], 13);
338
86.8k
        x[5] ^= R(x[1] + x[13], 18);
339
86.8k
        x[14] ^= R(x[10] + x[6], 7);
340
86.8k
        x[2] ^= R(x[14] + x[10], 9);
341
86.8k
        x[6] ^= R(x[2] + x[14], 13);
342
86.8k
        x[10] ^= R(x[6] + x[2], 18);
343
86.8k
        x[3] ^= R(x[15] + x[11], 7);
344
86.8k
        x[7] ^= R(x[3] + x[15], 9);
345
86.8k
        x[11] ^= R(x[7] + x[3], 13);
346
86.8k
        x[15] ^= R(x[11] + x[7], 18);
347
86.8k
        x[1] ^= R(x[0] + x[3], 7);
348
86.8k
        x[2] ^= R(x[1] + x[0], 9);
349
86.8k
        x[3] ^= R(x[2] + x[1], 13);
350
86.8k
        x[0] ^= R(x[3] + x[2], 18);
351
86.8k
        x[6] ^= R(x[5] + x[4], 7);
352
86.8k
        x[7] ^= R(x[6] + x[5], 9);
353
86.8k
        x[4] ^= R(x[7] + x[6], 13);
354
86.8k
        x[5] ^= R(x[4] + x[7], 18);
355
86.8k
        x[11] ^= R(x[10] + x[9], 7);
356
86.8k
        x[8] ^= R(x[11] + x[10], 9);
357
86.8k
        x[9] ^= R(x[8] + x[11], 13);
358
86.8k
        x[10] ^= R(x[9] + x[8], 18);
359
86.8k
        x[12] ^= R(x[15] + x[14], 7);
360
86.8k
        x[13] ^= R(x[12] + x[15], 9);
361
86.8k
        x[14] ^= R(x[13] + x[12], 13);
362
86.8k
        x[15] ^= R(x[14] + x[13], 18);
363
86.8k
    }
364
368k
    for (i = 0; i < 16; ++i)
365
347k
        inout[i] += x[i];
366
21.7k
    OPENSSL_cleanse(x, sizeof(x));
367
21.7k
}
368
369
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
370
1.19k
{
371
1.19k
    uint64_t i, j;
372
1.19k
    uint32_t X[16], *pB;
373
374
1.19k
    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
375
1.19k
    pB = B;
376
11.7k
    for (i = 0; i < r * 2; i++) {
377
179k
        for (j = 0; j < 16; j++)
378
168k
            X[j] ^= *pB++;
379
10.5k
        salsa208_word_specification(X);
380
10.5k
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
381
10.5k
    }
382
1.19k
    OPENSSL_cleanse(X, sizeof(X));
383
1.19k
}
384
385
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
386
                        uint32_t *X, uint32_t *T, uint32_t *V)
387
196
{
388
196
    unsigned char *pB;
389
196
    uint32_t *pV;
390
196
    uint64_t i, k;
391
392
    /* Convert from little endian input */
393
27.3k
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
394
27.1k
        *pV = *pB++;
395
27.1k
        *pV |= *pB++ << 8;
396
27.1k
        *pV |= *pB++ << 16;
397
27.1k
        *pV |= (uint32_t)*pB++ << 24;
398
27.1k
    }
399
400
596
    for (i = 1; i < N; i++, pV += 32 * r)
401
400
        scryptBlockMix(pV, pV - 32 * r, r);
402
403
196
    scryptBlockMix(X, V + (N - 1) * 32 * r, r);
404
405
792
    for (i = 0; i < N; i++) {
406
596
        uint32_t j;
407
596
        j = X[16 * (2 * r - 1)] % N;
408
596
        pV = V + 32 * r * j;
409
85.0k
        for (k = 0; k < 32 * r; k++)
410
84.4k
            T[k] = X[k] ^ *pV++;
411
596
        scryptBlockMix(X, T, r);
412
596
    }
413
    /* Convert output to little endian */
414
27.3k
    for (i = 0, pB = B; i < 32 * r; i++) {
415
27.1k
        uint32_t xtmp = X[i];
416
27.1k
        *pB++ = xtmp & 0xff;
417
27.1k
        *pB++ = (xtmp >> 8) & 0xff;
418
27.1k
        *pB++ = (xtmp >> 16) & 0xff;
419
27.1k
        *pB++ = (xtmp >> 24) & 0xff;
420
27.1k
    }
421
196
}
422
423
#ifndef SIZE_MAX
424
# define SIZE_MAX    ((size_t)-1)
425
#endif
426
427
/*
428
 * Maximum power of two that will fit in uint64_t: this should work on
429
 * most (all?) platforms.
430
 */
431
432
133
#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
433
434
/*
435
 * Maximum value of p * r:
436
 * p <= ((2^32-1) * hLen) / MFLen =>
437
 * p <= ((2^32-1) * 32) / (128 * r) =>
438
 * p * r <= (2^30-1)
439
 */
440
441
133
#define SCRYPT_PR_MAX   ((1 << 30) - 1)
442
443
static int scrypt_alg(const char *pass, size_t passlen,
444
                      const unsigned char *salt, size_t saltlen,
445
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
446
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
447
                      OSSL_LIB_CTX *libctx, const char *propq)
448
133
{
449
133
    int rv = 0;
450
133
    unsigned char *B;
451
133
    uint32_t *X, *V, *T;
452
133
    uint64_t i, Blen, Vlen;
453
454
    /* Sanity check parameters */
455
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
456
133
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
457
0
        return 0;
458
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
459
133
    if (p > SCRYPT_PR_MAX / r) {
460
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
461
0
        return 0;
462
0
    }
463
464
    /*
465
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
466
     * automatically satisfied since N <= UINT64_MAX.
467
     */
468
469
133
    if (16 * r <= LOG2_UINT64_MAX) {
470
54
        if (N >= (((uint64_t)1) << (16 * r))) {
471
0
            ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
472
0
            return 0;
473
0
        }
474
54
    }
475
476
    /* Memory checks: check total allocated buffer size fits in uint64_t */
477
478
    /*
479
     * B size in section 5 step 1.S
480
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
481
     * p * r < SCRYPT_PR_MAX
482
     */
483
133
    Blen = p * 128 * r;
484
    /*
485
     * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
486
     * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
487
     */
488
133
    if (Blen > INT_MAX) {
489
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
490
0
        return 0;
491
0
    }
492
493
    /*
494
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
495
     * This is combined size V, X and T (section 4)
496
     */
497
133
    i = UINT64_MAX / (32 * sizeof(uint32_t));
498
133
    if (N + 2 > i / r) {
499
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
500
0
        return 0;
501
0
    }
502
133
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
503
504
    /* check total allocated size fits in uint64_t */
505
133
    if (Blen > UINT64_MAX - Vlen) {
506
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
507
0
        return 0;
508
0
    }
509
510
    /* Check that the maximum memory doesn't exceed a size_t limits */
511
133
    if (maxmem > SIZE_MAX)
512
0
        maxmem = SIZE_MAX;
513
514
133
    if (Blen + Vlen > maxmem) {
515
53
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
516
53
        return 0;
517
53
    }
518
519
    /* If no key return to indicate parameters are OK */
520
80
    if (key == NULL)
521
0
        return 1;
522
523
80
    B = OPENSSL_malloc((size_t)(Blen + Vlen));
524
80
    if (B == NULL)
525
0
        return 0;
526
80
    X = (uint32_t *)(B + Blen);
527
80
    T = X + 32 * r;
528
80
    V = T + 32 * r;
529
80
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
530
80
                                  (int)Blen, B, libctx, propq) == 0)
531
0
        goto err;
532
533
276
    for (i = 0; i < p; i++)
534
196
        scryptROMix(B + 128 * r * i, r, N, X, T, V);
535
536
80
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
537
80
                                  keylen, key, libctx, propq) == 0)
538
0
        goto err;
539
80
    rv = 1;
540
80
 err:
541
80
    if (rv == 0)
542
80
        ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
543
544
80
    OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
545
80
    return rv;
546
80
}
547
548
#endif