/src/openssl/providers/implementations/rands/drbg_ctr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2011-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdlib.h> |
11 | | #include <string.h> |
12 | | #include <openssl/crypto.h> |
13 | | #include <openssl/err.h> |
14 | | #include <openssl/rand.h> |
15 | | #include <openssl/aes.h> |
16 | | #include <openssl/proverr.h> |
17 | | #include "crypto/modes.h" |
18 | | #include "internal/thread_once.h" |
19 | | #include "prov/implementations.h" |
20 | | #include "prov/providercommon.h" |
21 | | #include "prov/provider_ctx.h" |
22 | | #include "drbg_local.h" |
23 | | |
24 | | static OSSL_FUNC_rand_newctx_fn drbg_ctr_new_wrapper; |
25 | | static OSSL_FUNC_rand_freectx_fn drbg_ctr_free; |
26 | | static OSSL_FUNC_rand_instantiate_fn drbg_ctr_instantiate_wrapper; |
27 | | static OSSL_FUNC_rand_uninstantiate_fn drbg_ctr_uninstantiate_wrapper; |
28 | | static OSSL_FUNC_rand_generate_fn drbg_ctr_generate_wrapper; |
29 | | static OSSL_FUNC_rand_reseed_fn drbg_ctr_reseed_wrapper; |
30 | | static OSSL_FUNC_rand_settable_ctx_params_fn drbg_ctr_settable_ctx_params; |
31 | | static OSSL_FUNC_rand_set_ctx_params_fn drbg_ctr_set_ctx_params; |
32 | | static OSSL_FUNC_rand_gettable_ctx_params_fn drbg_ctr_gettable_ctx_params; |
33 | | static OSSL_FUNC_rand_get_ctx_params_fn drbg_ctr_get_ctx_params; |
34 | | static OSSL_FUNC_rand_verify_zeroization_fn drbg_ctr_verify_zeroization; |
35 | | |
36 | | static int drbg_ctr_set_ctx_params_locked(void *vctx, const OSSL_PARAM params[]); |
37 | | |
38 | | /* |
39 | | * The state of a DRBG AES-CTR. |
40 | | */ |
41 | | typedef struct rand_drbg_ctr_st { |
42 | | EVP_CIPHER_CTX *ctx_ecb; |
43 | | EVP_CIPHER_CTX *ctx_ctr; |
44 | | EVP_CIPHER_CTX *ctx_df; |
45 | | EVP_CIPHER *cipher_ecb; |
46 | | EVP_CIPHER *cipher_ctr; |
47 | | size_t keylen; |
48 | | int use_df; |
49 | | unsigned char K[32]; |
50 | | unsigned char V[16]; |
51 | | /* Temporary block storage used by ctr_df */ |
52 | | unsigned char bltmp[16]; |
53 | | size_t bltmp_pos; |
54 | | unsigned char KX[48]; |
55 | | } PROV_DRBG_CTR; |
56 | | |
57 | | /* |
58 | | * Implementation of NIST SP 800-90A CTR DRBG. |
59 | | */ |
60 | | static void inc_128(PROV_DRBG_CTR *ctr) |
61 | 377k | { |
62 | 377k | unsigned char *p = &ctr->V[0]; |
63 | 377k | u32 n = 16, c = 1; |
64 | | |
65 | 6.04M | do { |
66 | 6.04M | --n; |
67 | 6.04M | c += p[n]; |
68 | 6.04M | p[n] = (u8)c; |
69 | 6.04M | c >>= 8; |
70 | 6.04M | } while (n); |
71 | 377k | } |
72 | | |
73 | | static void ctr_XOR(PROV_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) |
74 | 20 | { |
75 | 20 | size_t i, n; |
76 | | |
77 | 20 | if (in == NULL || inlen == 0) |
78 | 0 | return; |
79 | | |
80 | | /* |
81 | | * Any zero padding will have no effect on the result as we |
82 | | * are XORing. So just process however much input we have. |
83 | | */ |
84 | 20 | n = inlen < ctr->keylen ? inlen : ctr->keylen; |
85 | 660 | for (i = 0; i < n; i++) |
86 | 640 | ctr->K[i] ^= in[i]; |
87 | 20 | if (inlen <= ctr->keylen) |
88 | 0 | return; |
89 | | |
90 | 20 | n = inlen - ctr->keylen; |
91 | 20 | if (n > 16) { |
92 | | /* Should never happen */ |
93 | 0 | n = 16; |
94 | 0 | } |
95 | 340 | for (i = 0; i < n; i++) |
96 | 320 | ctr->V[i] ^= in[i + ctr->keylen]; |
97 | 20 | } |
98 | | |
99 | | /* |
100 | | * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 |
101 | | */ |
102 | | __owur static int ctr_BCC_block(PROV_DRBG_CTR *ctr, unsigned char *out, |
103 | | const unsigned char *in, int len) |
104 | 62 | { |
105 | 62 | int i, outlen = AES_BLOCK_SIZE; |
106 | | |
107 | 3.03k | for (i = 0; i < len; i++) |
108 | 2.97k | out[i] ^= in[i]; |
109 | | |
110 | 62 | if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len) |
111 | 62 | || outlen != len) |
112 | 0 | return 0; |
113 | 62 | return 1; |
114 | 62 | } |
115 | | |
116 | | |
117 | | /* |
118 | | * Handle several BCC operations for as much data as we need for K and X |
119 | | */ |
120 | | __owur static int ctr_BCC_blocks(PROV_DRBG_CTR *ctr, const unsigned char *in) |
121 | 48 | { |
122 | 48 | unsigned char in_tmp[48]; |
123 | 48 | unsigned char num_of_blk = 2; |
124 | | |
125 | 48 | memcpy(in_tmp, in, 16); |
126 | 48 | memcpy(in_tmp + 16, in, 16); |
127 | 48 | if (ctr->keylen != 16) { |
128 | 48 | memcpy(in_tmp + 32, in, 16); |
129 | 48 | num_of_blk = 3; |
130 | 48 | } |
131 | 48 | return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk); |
132 | 48 | } |
133 | | |
134 | | /* |
135 | | * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: |
136 | | * see 10.3.1 stage 7. |
137 | | */ |
138 | | __owur static int ctr_BCC_init(PROV_DRBG_CTR *ctr) |
139 | 14 | { |
140 | 14 | unsigned char bltmp[48] = {0}; |
141 | 14 | unsigned char num_of_blk; |
142 | | |
143 | 14 | memset(ctr->KX, 0, 48); |
144 | 14 | num_of_blk = ctr->keylen == 16 ? 2 : 3; |
145 | 14 | bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1; |
146 | 14 | bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2; |
147 | 14 | return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE); |
148 | 14 | } |
149 | | |
150 | | /* |
151 | | * Process several blocks into BCC algorithm, some possibly partial |
152 | | */ |
153 | | __owur static int ctr_BCC_update(PROV_DRBG_CTR *ctr, |
154 | | const unsigned char *in, size_t inlen) |
155 | 56 | { |
156 | 56 | if (in == NULL || inlen == 0) |
157 | 24 | return 1; |
158 | | |
159 | | /* If we have partial block handle it first */ |
160 | 32 | if (ctr->bltmp_pos) { |
161 | 26 | size_t left = 16 - ctr->bltmp_pos; |
162 | | |
163 | | /* If we now have a complete block process it */ |
164 | 26 | if (inlen >= left) { |
165 | 18 | memcpy(ctr->bltmp + ctr->bltmp_pos, in, left); |
166 | 18 | if (!ctr_BCC_blocks(ctr, ctr->bltmp)) |
167 | 0 | return 0; |
168 | 18 | ctr->bltmp_pos = 0; |
169 | 18 | inlen -= left; |
170 | 18 | in += left; |
171 | 18 | } |
172 | 26 | } |
173 | | |
174 | | /* Process zero or more complete blocks */ |
175 | 48 | for (; inlen >= 16; in += 16, inlen -= 16) { |
176 | 16 | if (!ctr_BCC_blocks(ctr, in)) |
177 | 0 | return 0; |
178 | 16 | } |
179 | | |
180 | | /* Copy any remaining partial block to the temporary buffer */ |
181 | 32 | if (inlen > 0) { |
182 | 26 | memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen); |
183 | 26 | ctr->bltmp_pos += inlen; |
184 | 26 | } |
185 | 32 | return 1; |
186 | 32 | } |
187 | | |
188 | | __owur static int ctr_BCC_final(PROV_DRBG_CTR *ctr) |
189 | 14 | { |
190 | 14 | if (ctr->bltmp_pos) { |
191 | 14 | memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos); |
192 | 14 | if (!ctr_BCC_blocks(ctr, ctr->bltmp)) |
193 | 0 | return 0; |
194 | 14 | } |
195 | 14 | return 1; |
196 | 14 | } |
197 | | |
198 | | __owur static int ctr_df(PROV_DRBG_CTR *ctr, |
199 | | const unsigned char *in1, size_t in1len, |
200 | | const unsigned char *in2, size_t in2len, |
201 | | const unsigned char *in3, size_t in3len) |
202 | 14 | { |
203 | 14 | static unsigned char c80 = 0x80; |
204 | 14 | size_t inlen; |
205 | 14 | unsigned char *p = ctr->bltmp; |
206 | 14 | int outlen = AES_BLOCK_SIZE; |
207 | | |
208 | 14 | if (!ctr_BCC_init(ctr)) |
209 | 0 | return 0; |
210 | 14 | if (in1 == NULL) |
211 | 0 | in1len = 0; |
212 | 14 | if (in2 == NULL) |
213 | 14 | in2len = 0; |
214 | 14 | if (in3 == NULL) |
215 | 10 | in3len = 0; |
216 | 14 | inlen = in1len + in2len + in3len; |
217 | | /* Initialise L||N in temporary block */ |
218 | 14 | *p++ = (inlen >> 24) & 0xff; |
219 | 14 | *p++ = (inlen >> 16) & 0xff; |
220 | 14 | *p++ = (inlen >> 8) & 0xff; |
221 | 14 | *p++ = inlen & 0xff; |
222 | | |
223 | | /* NB keylen is at most 32 bytes */ |
224 | 14 | *p++ = 0; |
225 | 14 | *p++ = 0; |
226 | 14 | *p++ = 0; |
227 | 14 | *p = (unsigned char)((ctr->keylen + 16) & 0xff); |
228 | 14 | ctr->bltmp_pos = 8; |
229 | 14 | if (!ctr_BCC_update(ctr, in1, in1len) |
230 | 14 | || !ctr_BCC_update(ctr, in2, in2len) |
231 | 14 | || !ctr_BCC_update(ctr, in3, in3len) |
232 | 14 | || !ctr_BCC_update(ctr, &c80, 1) |
233 | 14 | || !ctr_BCC_final(ctr)) |
234 | 0 | return 0; |
235 | | /* Set up key K */ |
236 | 14 | if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1)) |
237 | 0 | return 0; |
238 | | /* X follows key K */ |
239 | 14 | if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen, |
240 | 14 | AES_BLOCK_SIZE) |
241 | 14 | || outlen != AES_BLOCK_SIZE) |
242 | 0 | return 0; |
243 | 14 | if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX, |
244 | 14 | AES_BLOCK_SIZE) |
245 | 14 | || outlen != AES_BLOCK_SIZE) |
246 | 0 | return 0; |
247 | 14 | if (ctr->keylen != 16) |
248 | 14 | if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen, |
249 | 14 | ctr->KX + 16, AES_BLOCK_SIZE) |
250 | 14 | || outlen != AES_BLOCK_SIZE) |
251 | 0 | return 0; |
252 | 14 | return 1; |
253 | 14 | } |
254 | | |
255 | | /* |
256 | | * NB the no-df Update in SP800-90A specifies a constant input length |
257 | | * of seedlen, however other uses of this algorithm pad the input with |
258 | | * zeroes if necessary and have up to two parameters XORed together, |
259 | | * so we handle both cases in this function instead. |
260 | | */ |
261 | | __owur static int ctr_update(PROV_DRBG *drbg, |
262 | | const unsigned char *in1, size_t in1len, |
263 | | const unsigned char *in2, size_t in2len, |
264 | | const unsigned char *nonce, size_t noncelen) |
265 | 125k | { |
266 | 125k | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
267 | 125k | int outlen = AES_BLOCK_SIZE; |
268 | 125k | unsigned char V_tmp[48], out[48]; |
269 | 125k | unsigned char len; |
270 | | |
271 | | /* correct key is already set up. */ |
272 | 125k | memcpy(V_tmp, ctr->V, 16); |
273 | 125k | inc_128(ctr); |
274 | 125k | memcpy(V_tmp + 16, ctr->V, 16); |
275 | 125k | if (ctr->keylen == 16) { |
276 | 0 | len = 32; |
277 | 125k | } else { |
278 | 125k | inc_128(ctr); |
279 | 125k | memcpy(V_tmp + 32, ctr->V, 16); |
280 | 125k | len = 48; |
281 | 125k | } |
282 | 125k | if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len) |
283 | 125k | || outlen != len) |
284 | 0 | return 0; |
285 | 125k | memcpy(ctr->K, out, ctr->keylen); |
286 | 125k | memcpy(ctr->V, out + ctr->keylen, 16); |
287 | | |
288 | 125k | if (ctr->use_df) { |
289 | | /* If no input reuse existing derived value */ |
290 | 125k | if (in1 != NULL || nonce != NULL || in2 != NULL) |
291 | 14 | if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len)) |
292 | 0 | return 0; |
293 | | /* If this a reuse input in1len != 0 */ |
294 | 125k | if (in1len) |
295 | 20 | ctr_XOR(ctr, ctr->KX, drbg->seedlen); |
296 | 125k | } else { |
297 | 0 | ctr_XOR(ctr, in1, in1len); |
298 | 0 | ctr_XOR(ctr, in2, in2len); |
299 | 0 | } |
300 | | |
301 | 125k | if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1) |
302 | 125k | || !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1)) |
303 | 0 | return 0; |
304 | 125k | return 1; |
305 | 125k | } |
306 | | |
307 | | static int drbg_ctr_instantiate(PROV_DRBG *drbg, |
308 | | const unsigned char *entropy, size_t entropylen, |
309 | | const unsigned char *nonce, size_t noncelen, |
310 | | const unsigned char *pers, size_t perslen) |
311 | 4 | { |
312 | 4 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
313 | | |
314 | 4 | if (entropy == NULL) |
315 | 0 | return 0; |
316 | | |
317 | 4 | memset(ctr->K, 0, sizeof(ctr->K)); |
318 | 4 | memset(ctr->V, 0, sizeof(ctr->V)); |
319 | 4 | if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)) |
320 | 0 | return 0; |
321 | | |
322 | 4 | inc_128(ctr); |
323 | 4 | if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen)) |
324 | 0 | return 0; |
325 | 4 | return 1; |
326 | 4 | } |
327 | | |
328 | | static int drbg_ctr_instantiate_wrapper(void *vdrbg, unsigned int strength, |
329 | | int prediction_resistance, |
330 | | const unsigned char *pstr, |
331 | | size_t pstr_len, |
332 | | const OSSL_PARAM params[]) |
333 | 4 | { |
334 | 4 | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
335 | 4 | int ret = 0; |
336 | | |
337 | 4 | if (drbg->lock != NULL && !CRYPTO_THREAD_write_lock(drbg->lock)) |
338 | 0 | return 0; |
339 | | |
340 | 4 | if (!ossl_prov_is_running() |
341 | 4 | || !drbg_ctr_set_ctx_params_locked(drbg, params)) |
342 | 0 | goto err; |
343 | 4 | ret = ossl_prov_drbg_instantiate(drbg, strength, prediction_resistance, |
344 | 4 | pstr, pstr_len); |
345 | 4 | err: |
346 | 4 | if (drbg->lock != NULL) |
347 | 0 | CRYPTO_THREAD_unlock(drbg->lock); |
348 | 4 | return ret; |
349 | 4 | } |
350 | | |
351 | | static int drbg_ctr_reseed(PROV_DRBG *drbg, |
352 | | const unsigned char *entropy, size_t entropylen, |
353 | | const unsigned char *adin, size_t adinlen) |
354 | 4 | { |
355 | 4 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
356 | | |
357 | 4 | if (entropy == NULL) |
358 | 0 | return 0; |
359 | | |
360 | 4 | inc_128(ctr); |
361 | 4 | if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0)) |
362 | 0 | return 0; |
363 | 4 | return 1; |
364 | 4 | } |
365 | | |
366 | | static int drbg_ctr_reseed_wrapper(void *vdrbg, int prediction_resistance, |
367 | | const unsigned char *ent, size_t ent_len, |
368 | | const unsigned char *adin, size_t adin_len) |
369 | 0 | { |
370 | 0 | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
371 | |
|
372 | 0 | return ossl_prov_drbg_reseed(drbg, prediction_resistance, ent, ent_len, |
373 | 0 | adin, adin_len); |
374 | 0 | } |
375 | | |
376 | | static void ctr96_inc(unsigned char *counter) |
377 | 0 | { |
378 | 0 | u32 n = 12, c = 1; |
379 | |
|
380 | 0 | do { |
381 | 0 | --n; |
382 | 0 | c += counter[n]; |
383 | 0 | counter[n] = (u8)c; |
384 | 0 | c >>= 8; |
385 | 0 | } while (n); |
386 | 0 | } |
387 | | |
388 | | static int drbg_ctr_generate(PROV_DRBG *drbg, |
389 | | unsigned char *out, size_t outlen, |
390 | | const unsigned char *adin, size_t adinlen) |
391 | 251k | { |
392 | 251k | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
393 | 251k | unsigned int ctr32, blocks; |
394 | 251k | int outl, buflen; |
395 | | |
396 | 251k | if (adin != NULL && adinlen != 0) { |
397 | 12 | inc_128(ctr); |
398 | | |
399 | 12 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) |
400 | 0 | return 0; |
401 | | /* This means we reuse derived value */ |
402 | 12 | if (ctr->use_df) { |
403 | 12 | adin = NULL; |
404 | 12 | adinlen = 1; |
405 | 12 | } |
406 | 251k | } else { |
407 | 251k | adinlen = 0; |
408 | 251k | } |
409 | | |
410 | 251k | inc_128(ctr); |
411 | | |
412 | 251k | if (outlen == 0) { |
413 | 0 | inc_128(ctr); |
414 | |
|
415 | 0 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) |
416 | 0 | return 0; |
417 | 0 | return 1; |
418 | 0 | } |
419 | | |
420 | 251k | memset(out, 0, outlen); |
421 | | |
422 | 251k | do { |
423 | 251k | if (!EVP_CipherInit_ex(ctr->ctx_ctr, |
424 | 251k | NULL, NULL, NULL, ctr->V, -1)) |
425 | 0 | return 0; |
426 | | |
427 | | /*- |
428 | | * outlen has type size_t while EVP_CipherUpdate takes an |
429 | | * int argument and thus cannot be guaranteed to process more |
430 | | * than 2^31-1 bytes at a time. We process such huge generate |
431 | | * requests in 2^30 byte chunks, which is the greatest multiple |
432 | | * of AES block size lower than or equal to 2^31-1. |
433 | | */ |
434 | 251k | buflen = outlen > (1U << 30) ? (1U << 30) : outlen; |
435 | 251k | blocks = (buflen + 15) / 16; |
436 | | |
437 | 251k | ctr32 = GETU32(ctr->V + 12) + blocks; |
438 | 251k | if (ctr32 < blocks) { |
439 | | /* 32-bit counter overflow into V. */ |
440 | 0 | if (ctr32 != 0) { |
441 | 0 | blocks -= ctr32; |
442 | 0 | buflen = blocks * 16; |
443 | 0 | ctr32 = 0; |
444 | 0 | } |
445 | 0 | ctr96_inc(ctr->V); |
446 | 0 | } |
447 | 251k | PUTU32(ctr->V + 12, ctr32); |
448 | | |
449 | 251k | if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen) |
450 | 251k | || outl != buflen) |
451 | 0 | return 0; |
452 | | |
453 | 251k | out += buflen; |
454 | 251k | outlen -= buflen; |
455 | 251k | } while (outlen); |
456 | | |
457 | 251k | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) |
458 | 0 | return 0; |
459 | 251k | return 1; |
460 | 251k | } drbg_ctr.c:drbg_ctr_generate Line | Count | Source | 391 | 125k | { | 392 | 125k | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; | 393 | 125k | unsigned int ctr32, blocks; | 394 | 125k | int outl, buflen; | 395 | | | 396 | 125k | if (adin != NULL && adinlen != 0) { | 397 | 6 | inc_128(ctr); | 398 | | | 399 | 6 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) | 400 | 0 | return 0; | 401 | | /* This means we reuse derived value */ | 402 | 6 | if (ctr->use_df) { | 403 | 6 | adin = NULL; | 404 | 6 | adinlen = 1; | 405 | 6 | } | 406 | 125k | } else { | 407 | 125k | adinlen = 0; | 408 | 125k | } | 409 | | | 410 | 125k | inc_128(ctr); | 411 | | | 412 | 125k | if (outlen == 0) { | 413 | 0 | inc_128(ctr); | 414 | |
| 415 | 0 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) | 416 | 0 | return 0; | 417 | 0 | return 1; | 418 | 0 | } | 419 | | | 420 | 125k | memset(out, 0, outlen); | 421 | | | 422 | 125k | do { | 423 | 125k | if (!EVP_CipherInit_ex(ctr->ctx_ctr, | 424 | 125k | NULL, NULL, NULL, ctr->V, -1)) | 425 | 0 | return 0; | 426 | | | 427 | | /*- | 428 | | * outlen has type size_t while EVP_CipherUpdate takes an | 429 | | * int argument and thus cannot be guaranteed to process more | 430 | | * than 2^31-1 bytes at a time. We process such huge generate | 431 | | * requests in 2^30 byte chunks, which is the greatest multiple | 432 | | * of AES block size lower than or equal to 2^31-1. | 433 | | */ | 434 | 125k | buflen = outlen > (1U << 30) ? (1U << 30) : outlen; | 435 | 125k | blocks = (buflen + 15) / 16; | 436 | | | 437 | 125k | ctr32 = GETU32(ctr->V + 12) + blocks; | 438 | 125k | if (ctr32 < blocks) { | 439 | | /* 32-bit counter overflow into V. */ | 440 | 0 | if (ctr32 != 0) { | 441 | 0 | blocks -= ctr32; | 442 | 0 | buflen = blocks * 16; | 443 | 0 | ctr32 = 0; | 444 | 0 | } | 445 | 0 | ctr96_inc(ctr->V); | 446 | 0 | } | 447 | 125k | PUTU32(ctr->V + 12, ctr32); | 448 | | | 449 | 125k | if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen) | 450 | 125k | || outl != buflen) | 451 | 0 | return 0; | 452 | | | 453 | 125k | out += buflen; | 454 | 125k | outlen -= buflen; | 455 | 125k | } while (outlen); | 456 | | | 457 | 125k | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) | 458 | 0 | return 0; | 459 | 125k | return 1; | 460 | 125k | } |
drbg_ctr.c:drbg_ctr_generate Line | Count | Source | 391 | 125k | { | 392 | 125k | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; | 393 | 125k | unsigned int ctr32, blocks; | 394 | 125k | int outl, buflen; | 395 | | | 396 | 125k | if (adin != NULL && adinlen != 0) { | 397 | 6 | inc_128(ctr); | 398 | | | 399 | 6 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) | 400 | 0 | return 0; | 401 | | /* This means we reuse derived value */ | 402 | 6 | if (ctr->use_df) { | 403 | 6 | adin = NULL; | 404 | 6 | adinlen = 1; | 405 | 6 | } | 406 | 125k | } else { | 407 | 125k | adinlen = 0; | 408 | 125k | } | 409 | | | 410 | 125k | inc_128(ctr); | 411 | | | 412 | 125k | if (outlen == 0) { | 413 | 0 | inc_128(ctr); | 414 | |
| 415 | 0 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) | 416 | 0 | return 0; | 417 | 0 | return 1; | 418 | 0 | } | 419 | | | 420 | 125k | memset(out, 0, outlen); | 421 | | | 422 | 125k | do { | 423 | 125k | if (!EVP_CipherInit_ex(ctr->ctx_ctr, | 424 | 125k | NULL, NULL, NULL, ctr->V, -1)) | 425 | 0 | return 0; | 426 | | | 427 | | /*- | 428 | | * outlen has type size_t while EVP_CipherUpdate takes an | 429 | | * int argument and thus cannot be guaranteed to process more | 430 | | * than 2^31-1 bytes at a time. We process such huge generate | 431 | | * requests in 2^30 byte chunks, which is the greatest multiple | 432 | | * of AES block size lower than or equal to 2^31-1. | 433 | | */ | 434 | 125k | buflen = outlen > (1U << 30) ? (1U << 30) : outlen; | 435 | 125k | blocks = (buflen + 15) / 16; | 436 | | | 437 | 125k | ctr32 = GETU32(ctr->V + 12) + blocks; | 438 | 125k | if (ctr32 < blocks) { | 439 | | /* 32-bit counter overflow into V. */ | 440 | 0 | if (ctr32 != 0) { | 441 | 0 | blocks -= ctr32; | 442 | 0 | buflen = blocks * 16; | 443 | 0 | ctr32 = 0; | 444 | 0 | } | 445 | 0 | ctr96_inc(ctr->V); | 446 | 0 | } | 447 | 125k | PUTU32(ctr->V + 12, ctr32); | 448 | | | 449 | 125k | if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen) | 450 | 125k | || outl != buflen) | 451 | 0 | return 0; | 452 | | | 453 | 125k | out += buflen; | 454 | 125k | outlen -= buflen; | 455 | 125k | } while (outlen); | 456 | | | 457 | 125k | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) | 458 | 0 | return 0; | 459 | 125k | return 1; | 460 | 125k | } |
|
461 | | |
462 | | static int drbg_ctr_generate_wrapper |
463 | | (void *vdrbg, unsigned char *out, size_t outlen, |
464 | | unsigned int strength, int prediction_resistance, |
465 | | const unsigned char *adin, size_t adin_len) |
466 | 125k | { |
467 | 125k | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
468 | | |
469 | 125k | return ossl_prov_drbg_generate(drbg, out, outlen, strength, |
470 | 125k | prediction_resistance, adin, adin_len); |
471 | 125k | } |
472 | | |
473 | | static int drbg_ctr_uninstantiate(PROV_DRBG *drbg) |
474 | 0 | { |
475 | 0 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
476 | |
|
477 | 0 | OPENSSL_cleanse(ctr->K, sizeof(ctr->K)); |
478 | 0 | OPENSSL_cleanse(ctr->V, sizeof(ctr->V)); |
479 | 0 | OPENSSL_cleanse(ctr->bltmp, sizeof(ctr->bltmp)); |
480 | 0 | OPENSSL_cleanse(ctr->KX, sizeof(ctr->KX)); |
481 | 0 | ctr->bltmp_pos = 0; |
482 | 0 | return ossl_prov_drbg_uninstantiate(drbg); |
483 | 0 | } |
484 | | |
485 | | static int drbg_ctr_uninstantiate_wrapper(void *vdrbg) |
486 | 0 | { |
487 | 0 | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
488 | 0 | int ret; |
489 | |
|
490 | 0 | if (drbg->lock != NULL && !CRYPTO_THREAD_write_lock(drbg->lock)) |
491 | 0 | return 0; |
492 | | |
493 | 0 | ret = drbg_ctr_uninstantiate(drbg); |
494 | |
|
495 | 0 | if (drbg->lock != NULL) |
496 | 0 | CRYPTO_THREAD_unlock(drbg->lock); |
497 | |
|
498 | 0 | return ret; |
499 | 0 | } |
500 | | |
501 | | static int drbg_ctr_verify_zeroization(void *vdrbg) |
502 | 0 | { |
503 | 0 | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
504 | 0 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
505 | 0 | int ret = 0; |
506 | |
|
507 | 0 | if (drbg->lock != NULL && !CRYPTO_THREAD_read_lock(drbg->lock)) |
508 | 0 | return 0; |
509 | | |
510 | 0 | PROV_DRBG_VERIFY_ZEROIZATION(ctr->K); |
511 | 0 | PROV_DRBG_VERIFY_ZEROIZATION(ctr->V); |
512 | 0 | PROV_DRBG_VERIFY_ZEROIZATION(ctr->bltmp); |
513 | 0 | PROV_DRBG_VERIFY_ZEROIZATION(ctr->KX); |
514 | 0 | if (ctr->bltmp_pos != 0) |
515 | 0 | goto err; |
516 | | |
517 | 0 | ret = 1; |
518 | 0 | err: |
519 | 0 | if (drbg->lock != NULL) |
520 | 0 | CRYPTO_THREAD_unlock(drbg->lock); |
521 | 0 | return ret; |
522 | 0 | } |
523 | | |
524 | | static int drbg_ctr_init_lengths(PROV_DRBG *drbg) |
525 | 8 | { |
526 | 8 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
527 | 8 | int res = 1; |
528 | | |
529 | | /* Maximum number of bits per request = 2^19 = 2^16 bytes */ |
530 | 8 | drbg->max_request = 1 << 16; |
531 | 8 | if (ctr->use_df) { |
532 | 8 | drbg->min_entropylen = 0; |
533 | 8 | drbg->max_entropylen = DRBG_MAX_LENGTH; |
534 | 8 | drbg->min_noncelen = 0; |
535 | 8 | drbg->max_noncelen = DRBG_MAX_LENGTH; |
536 | 8 | drbg->max_perslen = DRBG_MAX_LENGTH; |
537 | 8 | drbg->max_adinlen = DRBG_MAX_LENGTH; |
538 | | |
539 | 8 | if (ctr->keylen > 0) { |
540 | 4 | drbg->min_entropylen = ctr->keylen; |
541 | 4 | drbg->min_noncelen = drbg->min_entropylen / 2; |
542 | 4 | } |
543 | 8 | } else { |
544 | 0 | const size_t len = ctr->keylen > 0 ? drbg->seedlen : DRBG_MAX_LENGTH; |
545 | |
|
546 | 0 | drbg->min_entropylen = len; |
547 | 0 | drbg->max_entropylen = len; |
548 | | /* Nonce not used */ |
549 | 0 | drbg->min_noncelen = 0; |
550 | 0 | drbg->max_noncelen = 0; |
551 | 0 | drbg->max_perslen = len; |
552 | 0 | drbg->max_adinlen = len; |
553 | 0 | } |
554 | 8 | return res; |
555 | 8 | } |
556 | | |
557 | | static int drbg_ctr_init(PROV_DRBG *drbg) |
558 | 4 | { |
559 | 4 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
560 | 4 | size_t keylen; |
561 | | |
562 | 4 | if (ctr->cipher_ctr == NULL) { |
563 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); |
564 | 0 | return 0; |
565 | 0 | } |
566 | 4 | ctr->keylen = keylen = EVP_CIPHER_get_key_length(ctr->cipher_ctr); |
567 | 4 | if (ctr->ctx_ecb == NULL) |
568 | 4 | ctr->ctx_ecb = EVP_CIPHER_CTX_new(); |
569 | 4 | if (ctr->ctx_ctr == NULL) |
570 | 4 | ctr->ctx_ctr = EVP_CIPHER_CTX_new(); |
571 | 4 | if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL) { |
572 | 0 | ERR_raise(ERR_LIB_PROV, ERR_R_EVP_LIB); |
573 | 0 | goto err; |
574 | 0 | } |
575 | | |
576 | 4 | if (!EVP_CipherInit_ex(ctr->ctx_ecb, |
577 | 4 | ctr->cipher_ecb, NULL, NULL, NULL, 1) |
578 | 4 | || !EVP_CipherInit_ex(ctr->ctx_ctr, |
579 | 4 | ctr->cipher_ctr, NULL, NULL, NULL, 1)) { |
580 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_INITIALISE_CIPHERS); |
581 | 0 | goto err; |
582 | 0 | } |
583 | | |
584 | 4 | drbg->strength = keylen * 8; |
585 | 4 | drbg->seedlen = keylen + 16; |
586 | | |
587 | 4 | if (ctr->use_df) { |
588 | | /* df initialisation */ |
589 | 4 | static const unsigned char df_key[32] = { |
590 | 4 | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
591 | 4 | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
592 | 4 | 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
593 | 4 | 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f |
594 | 4 | }; |
595 | | |
596 | 4 | if (ctr->ctx_df == NULL) |
597 | 4 | ctr->ctx_df = EVP_CIPHER_CTX_new(); |
598 | 4 | if (ctr->ctx_df == NULL) { |
599 | 0 | ERR_raise(ERR_LIB_PROV, ERR_R_EVP_LIB); |
600 | 0 | goto err; |
601 | 0 | } |
602 | | /* Set key schedule for df_key */ |
603 | 4 | if (!EVP_CipherInit_ex(ctr->ctx_df, |
604 | 4 | ctr->cipher_ecb, NULL, df_key, NULL, 1)) { |
605 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_DERIVATION_FUNCTION_INIT_FAILED); |
606 | 0 | goto err; |
607 | 0 | } |
608 | 4 | } |
609 | 4 | return drbg_ctr_init_lengths(drbg); |
610 | | |
611 | 0 | err: |
612 | 0 | EVP_CIPHER_CTX_free(ctr->ctx_ecb); |
613 | 0 | EVP_CIPHER_CTX_free(ctr->ctx_ctr); |
614 | 0 | ctr->ctx_ecb = ctr->ctx_ctr = NULL; |
615 | 0 | return 0; |
616 | 4 | } |
617 | | |
618 | | static int drbg_ctr_new(PROV_DRBG *drbg) |
619 | 4 | { |
620 | 4 | PROV_DRBG_CTR *ctr; |
621 | | |
622 | 4 | ctr = OPENSSL_secure_zalloc(sizeof(*ctr)); |
623 | 4 | if (ctr == NULL) |
624 | 0 | return 0; |
625 | | |
626 | 4 | ctr->use_df = 1; |
627 | 4 | drbg->data = ctr; |
628 | 4 | OSSL_FIPS_IND_INIT(drbg) |
629 | 4 | return drbg_ctr_init_lengths(drbg); |
630 | 4 | } |
631 | | |
632 | | static void *drbg_ctr_new_wrapper(void *provctx, void *parent, |
633 | | const OSSL_DISPATCH *parent_dispatch) |
634 | 4 | { |
635 | 4 | return ossl_rand_drbg_new(provctx, parent, parent_dispatch, |
636 | 4 | &drbg_ctr_new, &drbg_ctr_free, |
637 | 4 | &drbg_ctr_instantiate, &drbg_ctr_uninstantiate, |
638 | 4 | &drbg_ctr_reseed, &drbg_ctr_generate); |
639 | 4 | } |
640 | | |
641 | | static void drbg_ctr_free(void *vdrbg) |
642 | 4 | { |
643 | 4 | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
644 | 4 | PROV_DRBG_CTR *ctr; |
645 | | |
646 | 4 | if (drbg != NULL && (ctr = (PROV_DRBG_CTR *)drbg->data) != NULL) { |
647 | 4 | EVP_CIPHER_CTX_free(ctr->ctx_ecb); |
648 | 4 | EVP_CIPHER_CTX_free(ctr->ctx_ctr); |
649 | 4 | EVP_CIPHER_CTX_free(ctr->ctx_df); |
650 | 4 | EVP_CIPHER_free(ctr->cipher_ecb); |
651 | 4 | EVP_CIPHER_free(ctr->cipher_ctr); |
652 | | |
653 | 4 | OPENSSL_secure_clear_free(ctr, sizeof(*ctr)); |
654 | 4 | } |
655 | 4 | ossl_rand_drbg_free(drbg); |
656 | 4 | } |
657 | | |
658 | | static int drbg_ctr_get_ctx_params(void *vdrbg, OSSL_PARAM params[]) |
659 | 251k | { |
660 | 251k | PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; |
661 | 251k | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; |
662 | 251k | OSSL_PARAM *p; |
663 | 251k | int ret = 0, complete = 0; |
664 | | |
665 | 251k | if (!ossl_drbg_get_ctx_params_no_lock(drbg, params, &complete)) |
666 | 0 | return 0; |
667 | | |
668 | 251k | if (complete) |
669 | 251k | return 1; |
670 | | |
671 | 8 | if (drbg->lock != NULL && !CRYPTO_THREAD_read_lock(drbg->lock)) |
672 | 0 | return 0; |
673 | | |
674 | 8 | p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_USE_DF); |
675 | 8 | if (p != NULL && !OSSL_PARAM_set_int(p, ctr->use_df)) |
676 | 0 | goto err; |
677 | | |
678 | 8 | p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_CIPHER); |
679 | 8 | if (p != NULL) { |
680 | 0 | if (ctr->cipher_ctr == NULL |
681 | 0 | || !OSSL_PARAM_set_utf8_string(p, |
682 | 0 | EVP_CIPHER_get0_name(ctr->cipher_ctr))) |
683 | 0 | goto err; |
684 | 0 | } |
685 | | |
686 | 8 | ret = ossl_drbg_get_ctx_params(drbg, params); |
687 | 8 | err: |
688 | 8 | if (drbg->lock != NULL) |
689 | 8 | CRYPTO_THREAD_unlock(drbg->lock); |
690 | | |
691 | 8 | return ret; |
692 | 8 | } |
693 | | |
694 | | static const OSSL_PARAM *drbg_ctr_gettable_ctx_params(ossl_unused void *vctx, |
695 | | ossl_unused void *provctx) |
696 | 0 | { |
697 | 0 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
698 | 0 | OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0), |
699 | 0 | OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL), |
700 | 0 | OSSL_PARAM_DRBG_GETTABLE_CTX_COMMON, |
701 | 0 | OSSL_FIPS_IND_GETTABLE_CTX_PARAM() |
702 | 0 | OSSL_PARAM_END |
703 | 0 | }; |
704 | 0 | return known_gettable_ctx_params; |
705 | 0 | } |
706 | | |
707 | | static int drbg_ctr_set_ctx_params_locked(void *vctx, const OSSL_PARAM params[]) |
708 | 4 | { |
709 | 4 | PROV_DRBG *ctx = (PROV_DRBG *)vctx; |
710 | 4 | PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)ctx->data; |
711 | 4 | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
712 | 4 | const OSSL_PARAM *p; |
713 | 4 | char *ecb; |
714 | 4 | const char *propquery = NULL; |
715 | 4 | int i, cipher_init = 0; |
716 | | |
717 | 4 | if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_USE_DF)) != NULL |
718 | 4 | && OSSL_PARAM_get_int(p, &i)) { |
719 | | /* FIPS errors out in the drbg_ctr_init() call later */ |
720 | 4 | ctr->use_df = i != 0; |
721 | 4 | cipher_init = 1; |
722 | 4 | } |
723 | | |
724 | 4 | if ((p = OSSL_PARAM_locate_const(params, |
725 | 4 | OSSL_DRBG_PARAM_PROPERTIES)) != NULL) { |
726 | 0 | if (p->data_type != OSSL_PARAM_UTF8_STRING) |
727 | 0 | return 0; |
728 | 0 | propquery = (const char *)p->data; |
729 | 0 | } |
730 | | |
731 | 4 | if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_CIPHER)) != NULL) { |
732 | 4 | const char *base = (const char *)p->data; |
733 | 4 | size_t ctr_str_len = sizeof("CTR") - 1; |
734 | 4 | size_t ecb_str_len = sizeof("ECB") - 1; |
735 | | |
736 | 4 | if (p->data_type != OSSL_PARAM_UTF8_STRING |
737 | 4 | || p->data_size < ctr_str_len) |
738 | 0 | return 0; |
739 | 4 | if (OPENSSL_strcasecmp("CTR", base + p->data_size - ctr_str_len) != 0) { |
740 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_REQUIRE_CTR_MODE_CIPHER); |
741 | 0 | return 0; |
742 | 0 | } |
743 | 4 | if ((ecb = OPENSSL_strndup(base, p->data_size)) == NULL) |
744 | 0 | return 0; |
745 | 4 | strcpy(ecb + p->data_size - ecb_str_len, "ECB"); |
746 | 4 | EVP_CIPHER_free(ctr->cipher_ecb); |
747 | 4 | EVP_CIPHER_free(ctr->cipher_ctr); |
748 | 4 | ctr->cipher_ctr = EVP_CIPHER_fetch(libctx, base, propquery); |
749 | 4 | ctr->cipher_ecb = EVP_CIPHER_fetch(libctx, ecb, propquery); |
750 | 4 | OPENSSL_free(ecb); |
751 | 4 | if (ctr->cipher_ctr == NULL || ctr->cipher_ecb == NULL) { |
752 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_FIND_CIPHERS); |
753 | 0 | return 0; |
754 | 0 | } |
755 | 4 | cipher_init = 1; |
756 | 4 | } |
757 | | |
758 | 4 | if (cipher_init && !drbg_ctr_init(ctx)) |
759 | 0 | return 0; |
760 | | |
761 | 4 | return ossl_drbg_set_ctx_params(ctx, params); |
762 | 4 | } |
763 | | |
764 | | static int drbg_ctr_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
765 | 0 | { |
766 | 0 | PROV_DRBG *drbg = (PROV_DRBG *)vctx; |
767 | 0 | int ret; |
768 | |
|
769 | 0 | if (drbg->lock != NULL && !CRYPTO_THREAD_write_lock(drbg->lock)) |
770 | 0 | return 0; |
771 | | |
772 | 0 | ret = drbg_ctr_set_ctx_params_locked(vctx, params); |
773 | |
|
774 | 0 | if (drbg->lock != NULL) |
775 | 0 | CRYPTO_THREAD_unlock(drbg->lock); |
776 | |
|
777 | 0 | return ret; |
778 | 0 | } |
779 | | |
780 | | static const OSSL_PARAM *drbg_ctr_settable_ctx_params(ossl_unused void *vctx, |
781 | | ossl_unused void *provctx) |
782 | 4 | { |
783 | 4 | static const OSSL_PARAM known_settable_ctx_params[] = { |
784 | 4 | OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_PROPERTIES, NULL, 0), |
785 | 4 | OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0), |
786 | 4 | OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL), |
787 | 4 | OSSL_PARAM_DRBG_SETTABLE_CTX_COMMON, |
788 | 4 | OSSL_PARAM_END |
789 | 4 | }; |
790 | 4 | return known_settable_ctx_params; |
791 | 4 | } |
792 | | |
793 | | const OSSL_DISPATCH ossl_drbg_ctr_functions[] = { |
794 | | { OSSL_FUNC_RAND_NEWCTX, (void(*)(void))drbg_ctr_new_wrapper }, |
795 | | { OSSL_FUNC_RAND_FREECTX, (void(*)(void))drbg_ctr_free }, |
796 | | { OSSL_FUNC_RAND_INSTANTIATE, |
797 | | (void(*)(void))drbg_ctr_instantiate_wrapper }, |
798 | | { OSSL_FUNC_RAND_UNINSTANTIATE, |
799 | | (void(*)(void))drbg_ctr_uninstantiate_wrapper }, |
800 | | { OSSL_FUNC_RAND_GENERATE, (void(*)(void))drbg_ctr_generate_wrapper }, |
801 | | { OSSL_FUNC_RAND_RESEED, (void(*)(void))drbg_ctr_reseed_wrapper }, |
802 | | { OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))ossl_drbg_enable_locking }, |
803 | | { OSSL_FUNC_RAND_LOCK, (void(*)(void))ossl_drbg_lock }, |
804 | | { OSSL_FUNC_RAND_UNLOCK, (void(*)(void))ossl_drbg_unlock }, |
805 | | { OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS, |
806 | | (void(*)(void))drbg_ctr_settable_ctx_params }, |
807 | | { OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))drbg_ctr_set_ctx_params }, |
808 | | { OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS, |
809 | | (void(*)(void))drbg_ctr_gettable_ctx_params }, |
810 | | { OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))drbg_ctr_get_ctx_params }, |
811 | | { OSSL_FUNC_RAND_VERIFY_ZEROIZATION, |
812 | | (void(*)(void))drbg_ctr_verify_zeroization }, |
813 | | { OSSL_FUNC_RAND_GET_SEED, (void(*)(void))ossl_drbg_get_seed }, |
814 | | { OSSL_FUNC_RAND_CLEAR_SEED, (void(*)(void))ossl_drbg_clear_seed }, |
815 | | OSSL_DISPATCH_END |
816 | | }; |