Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py: 52%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

112 statements  

1# This file is dual licensed under the terms of the Apache License, Version 

2# 2.0, and the BSD License. See the LICENSE file in the root of this repository 

3# for complete details. 

4 

5from __future__ import annotations 

6 

7import abc 

8import random 

9import typing 

10from math import gcd 

11 

12from cryptography.hazmat.bindings._rust import openssl as rust_openssl 

13from cryptography.hazmat.primitives import _serialization, hashes 

14from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding 

15from cryptography.hazmat.primitives.asymmetric import utils as asym_utils 

16 

17 

18class RSAPrivateKey(metaclass=abc.ABCMeta): 

19 @abc.abstractmethod 

20 def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes: 

21 """ 

22 Decrypts the provided ciphertext. 

23 """ 

24 

25 @property 

26 @abc.abstractmethod 

27 def key_size(self) -> int: 

28 """ 

29 The bit length of the public modulus. 

30 """ 

31 

32 @abc.abstractmethod 

33 def public_key(self) -> RSAPublicKey: 

34 """ 

35 The RSAPublicKey associated with this private key. 

36 """ 

37 

38 @abc.abstractmethod 

39 def sign( 

40 self, 

41 data: bytes, 

42 padding: AsymmetricPadding, 

43 algorithm: asym_utils.Prehashed | hashes.HashAlgorithm, 

44 ) -> bytes: 

45 """ 

46 Signs the data. 

47 """ 

48 

49 @abc.abstractmethod 

50 def private_numbers(self) -> RSAPrivateNumbers: 

51 """ 

52 Returns an RSAPrivateNumbers. 

53 """ 

54 

55 @abc.abstractmethod 

56 def private_bytes( 

57 self, 

58 encoding: _serialization.Encoding, 

59 format: _serialization.PrivateFormat, 

60 encryption_algorithm: _serialization.KeySerializationEncryption, 

61 ) -> bytes: 

62 """ 

63 Returns the key serialized as bytes. 

64 """ 

65 

66 @abc.abstractmethod 

67 def __copy__(self) -> RSAPrivateKey: 

68 """ 

69 Returns a copy. 

70 """ 

71 

72 

73RSAPrivateKeyWithSerialization = RSAPrivateKey 

74RSAPrivateKey.register(rust_openssl.rsa.RSAPrivateKey) 

75 

76 

77class RSAPublicKey(metaclass=abc.ABCMeta): 

78 @abc.abstractmethod 

79 def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes: 

80 """ 

81 Encrypts the given plaintext. 

82 """ 

83 

84 @property 

85 @abc.abstractmethod 

86 def key_size(self) -> int: 

87 """ 

88 The bit length of the public modulus. 

89 """ 

90 

91 @abc.abstractmethod 

92 def public_numbers(self) -> RSAPublicNumbers: 

93 """ 

94 Returns an RSAPublicNumbers 

95 """ 

96 

97 @abc.abstractmethod 

98 def public_bytes( 

99 self, 

100 encoding: _serialization.Encoding, 

101 format: _serialization.PublicFormat, 

102 ) -> bytes: 

103 """ 

104 Returns the key serialized as bytes. 

105 """ 

106 

107 @abc.abstractmethod 

108 def verify( 

109 self, 

110 signature: bytes, 

111 data: bytes, 

112 padding: AsymmetricPadding, 

113 algorithm: asym_utils.Prehashed | hashes.HashAlgorithm, 

114 ) -> None: 

115 """ 

116 Verifies the signature of the data. 

117 """ 

118 

119 @abc.abstractmethod 

120 def recover_data_from_signature( 

121 self, 

122 signature: bytes, 

123 padding: AsymmetricPadding, 

124 algorithm: hashes.HashAlgorithm | None, 

125 ) -> bytes: 

126 """ 

127 Recovers the original data from the signature. 

128 """ 

129 

130 @abc.abstractmethod 

131 def __eq__(self, other: object) -> bool: 

132 """ 

133 Checks equality. 

134 """ 

135 

136 @abc.abstractmethod 

137 def __copy__(self) -> RSAPublicKey: 

138 """ 

139 Returns a copy. 

140 """ 

141 

142 

143RSAPublicKeyWithSerialization = RSAPublicKey 

144RSAPublicKey.register(rust_openssl.rsa.RSAPublicKey) 

145 

146RSAPrivateNumbers = rust_openssl.rsa.RSAPrivateNumbers 

147RSAPublicNumbers = rust_openssl.rsa.RSAPublicNumbers 

148 

149 

150def generate_private_key( 

151 public_exponent: int, 

152 key_size: int, 

153 backend: typing.Any = None, 

154) -> RSAPrivateKey: 

155 _verify_rsa_parameters(public_exponent, key_size) 

156 return rust_openssl.rsa.generate_private_key(public_exponent, key_size) 

157 

158 

159def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None: 

160 if public_exponent not in (3, 65537): 

161 raise ValueError( 

162 "public_exponent must be either 3 (for legacy compatibility) or " 

163 "65537. Almost everyone should choose 65537 here!" 

164 ) 

165 

166 if key_size < 1024: 

167 raise ValueError("key_size must be at least 1024-bits.") 

168 

169 

170def _modinv(e: int, m: int) -> int: 

171 """ 

172 Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1 

173 """ 

174 x1, x2 = 1, 0 

175 a, b = e, m 

176 while b > 0: 

177 q, r = divmod(a, b) 

178 xn = x1 - q * x2 

179 a, b, x1, x2 = b, r, x2, xn 

180 return x1 % m 

181 

182 

183def rsa_crt_iqmp(p: int, q: int) -> int: 

184 """ 

185 Compute the CRT (q ** -1) % p value from RSA primes p and q. 

186 """ 

187 if p <= 1 or q <= 1: 

188 raise ValueError("Values can't be <= 1") 

189 return _modinv(q, p) 

190 

191 

192def rsa_crt_dmp1(private_exponent: int, p: int) -> int: 

193 """ 

194 Compute the CRT private_exponent % (p - 1) value from the RSA 

195 private_exponent (d) and p. 

196 """ 

197 if private_exponent <= 1 or p <= 1: 

198 raise ValueError("Values can't be <= 1") 

199 return private_exponent % (p - 1) 

200 

201 

202def rsa_crt_dmq1(private_exponent: int, q: int) -> int: 

203 """ 

204 Compute the CRT private_exponent % (q - 1) value from the RSA 

205 private_exponent (d) and q. 

206 """ 

207 if private_exponent <= 1 or q <= 1: 

208 raise ValueError("Values can't be <= 1") 

209 return private_exponent % (q - 1) 

210 

211 

212def rsa_recover_private_exponent(e: int, p: int, q: int) -> int: 

213 """ 

214 Compute the RSA private_exponent (d) given the public exponent (e) 

215 and the RSA primes p and q. 

216 

217 This uses the Carmichael totient function to generate the 

218 smallest possible working value of the private exponent. 

219 """ 

220 # This lambda_n is the Carmichael totient function. 

221 # The original RSA paper uses the Euler totient function 

222 # here: phi_n = (p - 1) * (q - 1) 

223 # Either version of the private exponent will work, but the 

224 # one generated by the older formulation may be larger 

225 # than necessary. (lambda_n always divides phi_n) 

226 # 

227 # TODO: Replace with lcm(p - 1, q - 1) once the minimum 

228 # supported Python version is >= 3.9. 

229 if e <= 1 or p <= 1 or q <= 1: 

230 raise ValueError("Values can't be <= 1") 

231 lambda_n = (p - 1) * (q - 1) // gcd(p - 1, q - 1) 

232 return _modinv(e, lambda_n) 

233 

234 

235# Controls the number of iterations rsa_recover_prime_factors will perform 

236# to obtain the prime factors. 

237_MAX_RECOVERY_ATTEMPTS = 500 

238 

239 

240def rsa_recover_prime_factors(n: int, e: int, d: int) -> tuple[int, int]: 

241 """ 

242 Compute factors p and q from the private exponent d. We assume that n has 

243 no more than two factors. This function is adapted from code in PyCrypto. 

244 """ 

245 # reject invalid values early 

246 if d <= 1 or e <= 1: 

247 raise ValueError("d, e can't be <= 1") 

248 if 17 != pow(17, e * d, n): 

249 raise ValueError("n, d, e don't match") 

250 # See 8.2.2(i) in Handbook of Applied Cryptography. 

251 ktot = d * e - 1 

252 # The quantity d*e-1 is a multiple of phi(n), even, 

253 # and can be represented as t*2^s. 

254 t = ktot 

255 while t % 2 == 0: 

256 t = t // 2 

257 # Cycle through all multiplicative inverses in Zn. 

258 # The algorithm is non-deterministic, but there is a 50% chance 

259 # any candidate a leads to successful factoring. 

260 # See "Digitalized Signatures and Public Key Functions as Intractable 

261 # as Factorization", M. Rabin, 1979 

262 spotted = False 

263 tries = 0 

264 while not spotted and tries < _MAX_RECOVERY_ATTEMPTS: 

265 a = random.randint(2, n - 1) 

266 tries += 1 

267 k = t 

268 # Cycle through all values a^{t*2^i}=a^k 

269 while k < ktot: 

270 cand = pow(a, k, n) 

271 # Check if a^k is a non-trivial root of unity (mod n) 

272 if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: 

273 # We have found a number such that (cand-1)(cand+1)=0 (mod n). 

274 # Either of the terms divides n. 

275 p = gcd(cand + 1, n) 

276 spotted = True 

277 break 

278 k *= 2 

279 if not spotted: 

280 raise ValueError("Unable to compute factors p and q from exponent d.") 

281 # Found ! 

282 q, r = divmod(n, p) 

283 assert r == 0 

284 p, q = sorted((p, q), reverse=True) 

285 return (p, q)