Coverage Report

Created: 2025-06-13 06:36

/src/json-c/linkhash.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
3
 *
4
 * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
5
 * Michael Clark <michael@metaparadigm.com>
6
 * Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
7
 *
8
 * This library is free software; you can redistribute it and/or modify
9
 * it under the terms of the MIT license. See COPYING for details.
10
 *
11
 */
12
13
#include "config.h"
14
15
#include <assert.h>
16
#include <limits.h>
17
#include <stdarg.h>
18
#include <stddef.h>
19
#include <stdio.h>
20
#include <stdlib.h>
21
#include <string.h>
22
23
#ifdef HAVE_ENDIAN_H
24
#include <endian.h> /* attempt to define endianness */
25
#endif
26
27
#if defined(_MSC_VER) || defined(__MINGW32__)
28
#ifndef WIN32_LEAN_AND_MEAN
29
#define WIN32_LEAN_AND_MEAN
30
#endif
31
#include <windows.h> /* Get InterlockedCompareExchange */
32
#endif
33
34
#include "linkhash.h"
35
#include "random_seed.h"
36
37
/* hash functions */
38
static unsigned long lh_char_hash(const void *k);
39
static unsigned long lh_perllike_str_hash(const void *k);
40
static lh_hash_fn *char_hash_fn = lh_char_hash;
41
42
/* comparison functions */
43
int lh_char_equal(const void *k1, const void *k2);
44
int lh_ptr_equal(const void *k1, const void *k2);
45
46
int json_global_set_string_hash(const int h)
47
0
{
48
0
  switch (h)
49
0
  {
50
0
  case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break;
51
0
  case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break;
52
0
  default: return -1;
53
0
  }
54
0
  return 0;
55
0
}
56
57
static unsigned long lh_ptr_hash(const void *k)
58
0
{
59
  /* CAW: refactored to be 64bit nice */
60
0
  return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
61
0
}
62
63
int lh_ptr_equal(const void *k1, const void *k2)
64
0
{
65
0
  return (k1 == k2);
66
0
}
67
68
/*
69
 * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
70
 * https://burtleburtle.net/bob/c/lookup3.c
71
 * minor modifications to make functions static so no symbols are exported
72
 * minor modifications to compile with -Werror
73
 */
74
75
/*
76
-------------------------------------------------------------------------------
77
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
78
79
These are functions for producing 32-bit hashes for hash table lookup.
80
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
81
are externally useful functions.  Routines to test the hash are included
82
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
83
the public domain.  It has no warranty.
84
85
You probably want to use hashlittle().  hashlittle() and hashbig()
86
hash byte arrays.  hashlittle() is faster than hashbig() on
87
little-endian machines.  Intel and AMD are little-endian machines.
88
On second thought, you probably want hashlittle2(), which is identical to
89
hashlittle() except it returns two 32-bit hashes for the price of one.
90
You could implement hashbig2() if you wanted but I haven't bothered here.
91
92
If you want to find a hash of, say, exactly 7 integers, do
93
  a = i1;  b = i2;  c = i3;
94
  mix(a,b,c);
95
  a += i4; b += i5; c += i6;
96
  mix(a,b,c);
97
  a += i7;
98
  final(a,b,c);
99
then use c as the hash value.  If you have a variable length array of
100
4-byte integers to hash, use hashword().  If you have a byte array (like
101
a character string), use hashlittle().  If you have several byte arrays, or
102
a mix of things, see the comments above hashlittle().
103
104
Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
105
then mix those integers.  This is fast (you can do a lot more thorough
106
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
107
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
108
-------------------------------------------------------------------------------
109
*/
110
111
/*
112
 * My best guess at if you are big-endian or little-endian.  This may
113
 * need adjustment.
114
 */
115
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \
116
    (defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) ||          \
117
     defined(__i686__) || defined(vax) || defined(MIPSEL))
118
1.30M
#define HASH_LITTLE_ENDIAN 1
119
#define HASH_BIG_ENDIAN 0
120
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \
121
    (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
122
#define HASH_LITTLE_ENDIAN 0
123
#define HASH_BIG_ENDIAN 1
124
#else
125
#define HASH_LITTLE_ENDIAN 0
126
#define HASH_BIG_ENDIAN 0
127
#endif
128
129
#define hashsize(n) ((uint32_t)1 << (n))
130
#define hashmask(n) (hashsize(n) - 1)
131
3.49M
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
132
133
/*
134
-------------------------------------------------------------------------------
135
mix -- mix 3 32-bit values reversibly.
136
137
This is reversible, so any information in (a,b,c) before mix() is
138
still in (a,b,c) after mix().
139
140
If four pairs of (a,b,c) inputs are run through mix(), or through
141
mix() in reverse, there are at least 32 bits of the output that
142
are sometimes the same for one pair and different for another pair.
143
This was tested for:
144
* pairs that differed by one bit, by two bits, in any combination
145
  of top bits of (a,b,c), or in any combination of bottom bits of
146
  (a,b,c).
147
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
148
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
149
  is commonly produced by subtraction) look like a single 1-bit
150
  difference.
151
* the base values were pseudorandom, all zero but one bit set, or
152
  all zero plus a counter that starts at zero.
153
154
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
155
satisfy this are
156
    4  6  8 16 19  4
157
    9 15  3 18 27 15
158
   14  9  3  7 17  3
159
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
160
for "differ" defined as + with a one-bit base and a two-bit delta.  I
161
used https://burtleburtle.net/bob/hash/avalanche.html to choose
162
the operations, constants, and arrangements of the variables.
163
164
This does not achieve avalanche.  There are input bits of (a,b,c)
165
that fail to affect some output bits of (a,b,c), especially of a.  The
166
most thoroughly mixed value is c, but it doesn't really even achieve
167
avalanche in c.
168
169
This allows some parallelism.  Read-after-writes are good at doubling
170
the number of bits affected, so the goal of mixing pulls in the opposite
171
direction as the goal of parallelism.  I did what I could.  Rotates
172
seem to cost as much as shifts on every machine I could lay my hands
173
on, and rotates are much kinder to the top and bottom bits, so I used
174
rotates.
175
-------------------------------------------------------------------------------
176
*/
177
/* clang-format off */
178
49.6k
#define mix(a,b,c) \
179
49.6k
{ \
180
49.6k
  a -= c;  a ^= rot(c, 4);  c += b; \
181
49.6k
  b -= a;  b ^= rot(a, 6);  a += c; \
182
49.6k
  c -= b;  c ^= rot(b, 8);  b += a; \
183
49.6k
  a -= c;  a ^= rot(c,16);  c += b; \
184
49.6k
  b -= a;  b ^= rot(a,19);  a += c; \
185
49.6k
  c -= b;  c ^= rot(b, 4);  b += a; \
186
49.6k
}
187
/* clang-format on */
188
189
/*
190
-------------------------------------------------------------------------------
191
final -- final mixing of 3 32-bit values (a,b,c) into c
192
193
Pairs of (a,b,c) values differing in only a few bits will usually
194
produce values of c that look totally different.  This was tested for
195
* pairs that differed by one bit, by two bits, in any combination
196
  of top bits of (a,b,c), or in any combination of bottom bits of
197
  (a,b,c).
198
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
199
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
200
  is commonly produced by subtraction) look like a single 1-bit
201
  difference.
202
* the base values were pseudorandom, all zero but one bit set, or
203
  all zero plus a counter that starts at zero.
204
205
These constants passed:
206
 14 11 25 16 4 14 24
207
 12 14 25 16 4 14 24
208
and these came close:
209
  4  8 15 26 3 22 24
210
 10  8 15 26 3 22 24
211
 11  8 15 26 3 22 24
212
-------------------------------------------------------------------------------
213
*/
214
/* clang-format off */
215
456k
#define final(a,b,c) \
216
456k
{ \
217
456k
  c ^= b; c -= rot(b,14); \
218
456k
  a ^= c; a -= rot(c,11); \
219
456k
  b ^= a; b -= rot(a,25); \
220
456k
  c ^= b; c -= rot(b,16); \
221
456k
  a ^= c; a -= rot(c,4);  \
222
456k
  b ^= a; b -= rot(a,14); \
223
456k
  c ^= b; c -= rot(b,24); \
224
456k
}
225
/* clang-format on */
226
227
/*
228
-------------------------------------------------------------------------------
229
hashlittle() -- hash a variable-length key into a 32-bit value
230
  k       : the key (the unaligned variable-length array of bytes)
231
  length  : the length of the key, counting by bytes
232
  initval : can be any 4-byte value
233
Returns a 32-bit value.  Every bit of the key affects every bit of
234
the return value.  Two keys differing by one or two bits will have
235
totally different hash values.
236
237
The best hash table sizes are powers of 2.  There is no need to do
238
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
239
use a bitmask.  For example, if you need only 10 bits, do
240
  h = (h & hashmask(10));
241
In which case, the hash table should have hashsize(10) elements.
242
243
If you are hashing n strings (uint8_t **)k, do it like this:
244
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
245
246
By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
247
code any way you wish, private, educational, or commercial.  It's free.
248
249
Use for hash table lookup, or anything where one collision in 2^^32 is
250
acceptable.  Do NOT use for cryptographic purposes.
251
-------------------------------------------------------------------------------
252
*/
253
254
/* clang-format off */
255
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval)
256
457k
{
257
457k
  uint32_t a,b,c; /* internal state */
258
457k
  union
259
457k
  {
260
457k
    const void *ptr;
261
457k
    size_t i;
262
457k
  } u; /* needed for Mac Powerbook G4 */
263
264
  /* Set up the internal state */
265
457k
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
266
267
457k
  u.ptr = key;
268
457k
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
269
262k
    const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
270
271
    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
272
298k
    while (length > 12)
273
36.3k
    {
274
36.3k
      a += k[0];
275
36.3k
      b += k[1];
276
36.3k
      c += k[2];
277
36.3k
      mix(a,b,c);
278
36.3k
      length -= 12;
279
36.3k
      k += 3;
280
36.3k
    }
281
282
    /*----------------------------- handle the last (probably partial) block */
283
    /*
284
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
285
     * then masks off the part it's not allowed to read.  Because the
286
     * string is aligned, the masked-off tail is in the same word as the
287
     * rest of the string.  Every machine with memory protection I've seen
288
     * does it on word boundaries, so is OK with this.  But VALGRIND will
289
     * still catch it and complain.  The masking trick does make the hash
290
     * noticeably faster for short strings (like English words).
291
     * AddressSanitizer is similarly picky about overrunning
292
     * the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html)
293
     */
294
#ifdef VALGRIND
295
#define PRECISE_MEMORY_ACCESS 1
296
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */
297
#define PRECISE_MEMORY_ACCESS 1
298
#elif defined(__has_feature)
299
#if __has_feature(address_sanitizer) /* Clang's ASAN */
300
#define PRECISE_MEMORY_ACCESS 1
301
#endif
302
262k
#endif
303
262k
#ifndef PRECISE_MEMORY_ACCESS
304
305
262k
    switch(length)
306
262k
    {
307
22.1k
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
308
4.43k
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
309
6.12k
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
310
38.4k
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
311
59.8k
    case 8 : b+=k[1]; a+=k[0]; break;
312
24.2k
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
313
32.7k
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
314
10.6k
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
315
29.2k
    case 4 : a+=k[0]; break;
316
1.57k
    case 3 : a+=k[0]&0xffffff; break;
317
1.95k
    case 2 : a+=k[0]&0xffff; break;
318
30.3k
    case 1 : a+=k[0]&0xff; break;
319
765
    case 0 : return c; /* zero length strings require no mixing */
320
262k
    }
321
322
#else /* make valgrind happy */
323
324
    const uint8_t  *k8 = (const uint8_t *)k;
325
    switch(length)
326
    {
327
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
328
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
329
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
330
    case 9 : c+=k8[8];                   /* fall through */
331
    case 8 : b+=k[1]; a+=k[0]; break;
332
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
333
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
334
    case 5 : b+=k8[4];                   /* fall through */
335
    case 4 : a+=k[0]; break;
336
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
337
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
338
    case 1 : a+=k8[0]; break;
339
    case 0 : return c;
340
    }
341
342
#endif /* !valgrind */
343
344
262k
  }
345
194k
  else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0))
346
88.5k
  {
347
88.5k
    const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
348
88.5k
    const uint8_t  *k8;
349
350
    /*--------------- all but last block: aligned reads and different mixing */
351
101k
    while (length > 12)
352
13.3k
    {
353
13.3k
      a += k[0] + (((uint32_t)k[1])<<16);
354
13.3k
      b += k[2] + (((uint32_t)k[3])<<16);
355
13.3k
      c += k[4] + (((uint32_t)k[5])<<16);
356
13.3k
      mix(a,b,c);
357
13.3k
      length -= 12;
358
13.3k
      k += 6;
359
13.3k
    }
360
361
    /*----------------------------- handle the last (probably partial) block */
362
88.5k
    k8 = (const uint8_t *)k;
363
88.5k
    switch(length)
364
88.5k
    {
365
0
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
366
0
       b+=k[2]+(((uint32_t)k[3])<<16);
367
0
       a+=k[0]+(((uint32_t)k[1])<<16);
368
0
       break;
369
0
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
370
24
    case 10: c+=k[4];
371
24
       b+=k[2]+(((uint32_t)k[3])<<16);
372
24
       a+=k[0]+(((uint32_t)k[1])<<16);
373
24
       break;
374
26
    case 9 : c+=k8[8];                      /* fall through */
375
26
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
376
26
       a+=k[0]+(((uint32_t)k[1])<<16);
377
26
       break;
378
0
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
379
75.1k
    case 6 : b+=k[2];
380
75.1k
       a+=k[0]+(((uint32_t)k[1])<<16);
381
75.1k
       break;
382
0
    case 5 : b+=k8[4];                      /* fall through */
383
38
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
384
38
       break;
385
0
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
386
0
    case 2 : a+=k[0];
387
0
       break;
388
13.3k
    case 1 : a+=k8[0];
389
13.3k
       break;
390
0
    case 0 : return c;                     /* zero length requires no mixing */
391
88.5k
    }
392
393
88.5k
  }
394
105k
  else
395
105k
  {
396
    /* need to read the key one byte at a time */
397
105k
    const uint8_t *k = (const uint8_t *)key;
398
399
    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
400
105k
    while (length > 12)
401
6
    {
402
6
      a += k[0];
403
6
      a += ((uint32_t)k[1])<<8;
404
6
      a += ((uint32_t)k[2])<<16;
405
6
      a += ((uint32_t)k[3])<<24;
406
6
      b += k[4];
407
6
      b += ((uint32_t)k[5])<<8;
408
6
      b += ((uint32_t)k[6])<<16;
409
6
      b += ((uint32_t)k[7])<<24;
410
6
      c += k[8];
411
6
      c += ((uint32_t)k[9])<<8;
412
6
      c += ((uint32_t)k[10])<<16;
413
6
      c += ((uint32_t)k[11])<<24;
414
6
      mix(a,b,c);
415
6
      length -= 12;
416
6
      k += 12;
417
6
    }
418
419
    /*-------------------------------- last block: affect all 32 bits of (c) */
420
105k
    switch(length) /* all the case statements fall through */
421
105k
    {
422
0
    case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */
423
0
    case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */
424
0
    case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */
425
649
    case 9 : c+=k[8]; /* FALLTHRU */
426
35.0k
    case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */
427
35.0k
    case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */
428
42.0k
    case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */
429
82.6k
    case 5 : b+=k[4]; /* FALLTHRU */
430
105k
    case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */
431
105k
    case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */
432
105k
    case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */
433
105k
    case 1 : a+=k[0];
434
105k
       break;
435
0
    case 0 : return c;
436
105k
    }
437
105k
  }
438
439
456k
  final(a,b,c);
440
456k
  return c;
441
457k
}
442
/* clang-format on */
443
444
/* a simple hash function similar to what perl does for strings.
445
 * for good results, the string should not be excessively large.
446
 */
447
static unsigned long lh_perllike_str_hash(const void *k)
448
0
{
449
0
  const char *rkey = (const char *)k;
450
0
  unsigned hashval = 1;
451
452
0
  while (*rkey)
453
0
    hashval = hashval * 33 + *rkey++;
454
455
0
  return hashval;
456
0
}
457
458
static unsigned long lh_char_hash(const void *k)
459
457k
{
460
#if defined _MSC_VER || defined __MINGW32__
461
#define RANDOM_SEED_TYPE LONG
462
#else
463
457k
#define RANDOM_SEED_TYPE int
464
457k
#endif
465
457k
  static volatile RANDOM_SEED_TYPE random_seed = -1;
466
467
457k
  if (random_seed == -1)
468
1
  {
469
1
    RANDOM_SEED_TYPE seed;
470
    /* we can't use -1 as it is the uninitialized sentinel */
471
1
    while ((seed = json_c_get_random_seed()) == -1) {}
472
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
473
#define USE_SYNC_COMPARE_AND_SWAP 1
474
#endif
475
1
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
476
1
#define USE_SYNC_COMPARE_AND_SWAP 1
477
1
#endif
478
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
479
#define USE_SYNC_COMPARE_AND_SWAP 1
480
#endif
481
1
#if defined USE_SYNC_COMPARE_AND_SWAP
482
1
    (void)__sync_val_compare_and_swap(&random_seed, -1, seed);
483
#elif defined _MSC_VER || defined __MINGW32__
484
    InterlockedCompareExchange(&random_seed, seed, -1);
485
#else
486
    //#warning "racy random seed initialization if used by multiple threads"
487
    random_seed = seed; /* potentially racy */
488
#endif
489
1
  }
490
491
457k
  return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed);
492
457k
}
493
494
int lh_char_equal(const void *k1, const void *k2)
495
356k
{
496
356k
  return (strcmp((const char *)k1, (const char *)k2) == 0);
497
356k
}
498
499
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn,
500
                              lh_equal_fn *equal_fn)
501
71.3k
{
502
71.3k
  int i;
503
71.3k
  struct lh_table *t;
504
505
  /* Allocate space for elements to avoid divisions by zero. */
506
71.3k
  assert(size > 0);
507
71.3k
  t = (struct lh_table *)calloc(1, sizeof(struct lh_table));
508
71.3k
  if (!t)
509
0
    return NULL;
510
511
71.3k
  t->count = 0;
512
71.3k
  t->size = size;
513
71.3k
  t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry));
514
71.3k
  if (!t->table)
515
0
  {
516
0
    free(t);
517
0
    return NULL;
518
0
  }
519
71.3k
  t->free_fn = free_fn;
520
71.3k
  t->hash_fn = hash_fn;
521
71.3k
  t->equal_fn = equal_fn;
522
1.22M
  for (i = 0; i < size; i++)
523
1.15M
    t->table[i].k = LH_EMPTY;
524
71.3k
  return t;
525
71.3k
}
526
527
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn)
528
70.9k
{
529
70.9k
  return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal);
530
70.9k
}
531
532
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn)
533
0
{
534
0
  return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal);
535
0
}
536
537
int lh_table_resize(struct lh_table *t, int new_size)
538
415
{
539
415
  struct lh_table *new_t;
540
415
  struct lh_entry *ent;
541
542
415
  new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn);
543
415
  if (new_t == NULL)
544
0
    return -1;
545
546
6.78k
  for (ent = t->head; ent != NULL; ent = ent->next)
547
6.37k
  {
548
6.37k
    unsigned long h = lh_get_hash(new_t, ent->k);
549
6.37k
    unsigned int opts = 0;
550
6.37k
    if (ent->k_is_constant)
551
0
      opts = JSON_C_OBJECT_ADD_CONSTANT_KEY;
552
6.37k
    if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0)
553
0
    {
554
0
      lh_table_free(new_t);
555
0
      return -1;
556
0
    }
557
6.37k
  }
558
415
  free(t->table);
559
415
  t->table = new_t->table;
560
415
  t->size = new_size;
561
415
  t->head = new_t->head;
562
415
  t->tail = new_t->tail;
563
415
  free(new_t);
564
565
415
  return 0;
566
415
}
567
568
void lh_table_free(struct lh_table *t)
569
70.9k
{
570
70.9k
  struct lh_entry *c;
571
70.9k
  if (t->free_fn)
572
70.9k
  {
573
218k
    for (c = t->head; c != NULL; c = c->next)
574
148k
      t->free_fn(c);
575
70.9k
  }
576
70.9k
  free(t->table);
577
70.9k
  free(t);
578
70.9k
}
579
580
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h,
581
                           const unsigned opts)
582
154k
{
583
154k
  unsigned long n;
584
585
154k
  if (t->count >= t->size * LH_LOAD_FACTOR)
586
415
  {
587
    /* Avoid signed integer overflow with large tables. */
588
415
    int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
589
415
    if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0)
590
0
      return -1;
591
415
  }
592
593
154k
  n = h % t->size;
594
595
184k
  while (1)
596
184k
  {
597
184k
    if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
598
154k
      break;
599
29.5k
    if ((int)++n == t->size)
600
171
      n = 0;
601
29.5k
  }
602
603
154k
  t->table[n].k = k;
604
154k
  t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY);
605
154k
  t->table[n].v = v;
606
154k
  t->count++;
607
608
154k
  if (t->head == NULL)
609
43.1k
  {
610
43.1k
    t->head = t->tail = &t->table[n];
611
43.1k
    t->table[n].next = t->table[n].prev = NULL;
612
43.1k
  }
613
111k
  else
614
111k
  {
615
111k
    t->tail->next = &t->table[n];
616
111k
    t->table[n].prev = t->tail;
617
111k
    t->table[n].next = NULL;
618
111k
    t->tail = &t->table[n];
619
111k
  }
620
621
154k
  return 0;
622
154k
}
623
int lh_table_insert(struct lh_table *t, const void *k, const void *v)
624
0
{
625
0
  return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0);
626
0
}
627
628
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k,
629
                                              const unsigned long h)
630
450k
{
631
450k
  unsigned long n = h % t->size;
632
450k
  int count = 0;
633
634
536k
  while (count < t->size)
635
536k
  {
636
536k
    if (t->table[n].k == LH_EMPTY)
637
180k
      return NULL;
638
356k
    if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k))
639
270k
      return &t->table[n];
640
85.9k
    if ((int)++n == t->size)
641
390
      n = 0;
642
85.9k
    count++;
643
85.9k
  }
644
0
  return NULL;
645
450k
}
646
647
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k)
648
295k
{
649
295k
  return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k));
650
295k
}
651
652
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v)
653
295k
{
654
295k
  struct lh_entry *e = lh_table_lookup_entry(t, k);
655
295k
  if (e != NULL)
656
263k
  {
657
263k
    if (v != NULL)
658
256k
      *v = lh_entry_v(e);
659
263k
    return 1; /* key found */
660
263k
  }
661
31.6k
  if (v != NULL)
662
30.8k
    *v = NULL;
663
31.6k
  return 0; /* key not found */
664
295k
}
665
666
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
667
577
{
668
  /* CAW: fixed to be 64bit nice, still need the crazy negative case... */
669
577
  ptrdiff_t n = (ptrdiff_t)(e - t->table);
670
671
  /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
672
577
  if (n < 0)
673
0
  {
674
0
    return -2;
675
0
  }
676
677
577
  if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
678
0
    return -1;
679
577
  t->count--;
680
577
  if (t->free_fn)
681
577
    t->free_fn(e);
682
577
  t->table[n].v = NULL;
683
577
  t->table[n].k = LH_FREED;
684
577
  if (t->tail == &t->table[n] && t->head == &t->table[n])
685
0
  {
686
0
    t->head = t->tail = NULL;
687
0
  }
688
577
  else if (t->head == &t->table[n])
689
7
  {
690
7
    t->head->next->prev = NULL;
691
7
    t->head = t->head->next;
692
7
  }
693
570
  else if (t->tail == &t->table[n])
694
64
  {
695
64
    t->tail->prev->next = NULL;
696
64
    t->tail = t->tail->prev;
697
64
  }
698
506
  else
699
506
  {
700
506
    t->table[n].prev->next = t->table[n].next;
701
506
    t->table[n].next->prev = t->table[n].prev;
702
506
  }
703
577
  t->table[n].next = t->table[n].prev = NULL;
704
577
  return 0;
705
577
}
706
707
int lh_table_delete(struct lh_table *t, const void *k)
708
577
{
709
577
  struct lh_entry *e = lh_table_lookup_entry(t, k);
710
577
  if (!e)
711
0
    return -1;
712
577
  return lh_table_delete_entry(t, e);
713
577
}
714
715
int lh_table_length(struct lh_table *t)
716
13.6k
{
717
13.6k
  return t->count;
718
13.6k
}