/src/util-linux/lib/md5.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * This code implements the MD5 message-digest algorithm.  | 
3  |  |  * The algorithm is due to Ron Rivest.  This code was  | 
4  |  |  * written by Colin Plumb in 1993, no copyright is claimed.  | 
5  |  |  * This code is in the public domain; do with it what you wish.  | 
6  |  |  *  | 
7  |  |  * Equivalent code is available from RSA Data Security, Inc.  | 
8  |  |  * This code has been tested against that, and is equivalent,  | 
9  |  |  * except that you don't need to include two pages of legalese  | 
10  |  |  * with every copy.  | 
11  |  |  *  | 
12  |  |  * To compute the message digest of a chunk of bytes, declare an  | 
13  |  |  * MD5Context structure, pass it to MD5Init, call MD5Update as  | 
14  |  |  * needed on buffers full of bytes, and then call MD5Final, which  | 
15  |  |  * will fill a supplied 16-byte array with the digest.  | 
16  |  |  */  | 
17  |  | #include <string.h>   /* for memcpy() */  | 
18  |  |  | 
19  |  | #include "md5.h"  | 
20  |  |  | 
21  |  | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__  | 
22  |  | # define byteReverse(buf, len)  /* Nothing */  | 
23  |  | #else  | 
24  |  | static void byteReverse(unsigned char *buf, unsigned longs);  | 
25  |  |  | 
26  |  | #ifndef ASM_MD5  | 
27  |  | /*  | 
28  |  |  * Note: this code is harmless on little-endian machines.  | 
29  |  |  */  | 
30  |  | static void byteReverse(unsigned char *buf, unsigned longs)  | 
31  |  | { | 
32  |  |     uint32_t t;  | 
33  |  |     do { | 
34  |  |   t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |  | 
35  |  |       ((unsigned) buf[1] << 8 | buf[0]);  | 
36  |  |   *(uint32_t *) buf = t;  | 
37  |  |   buf += 4;  | 
38  |  |     } while (--longs);  | 
39  |  | }  | 
40  |  | #endif /* !ASM_MD5 */  | 
41  |  | #endif /* __ORDER_LITTLE_ENDIAN__ */  | 
42  |  |  | 
43  |  | /*  | 
44  |  |  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious  | 
45  |  |  * initialization constants.  | 
46  |  |  */  | 
47  |  | void ul_MD5Init(struct UL_MD5Context *ctx)  | 
48  | 0  | { | 
49  | 0  |     ctx->buf[0] = 0x67452301;  | 
50  | 0  |     ctx->buf[1] = 0xefcdab89;  | 
51  | 0  |     ctx->buf[2] = 0x98badcfe;  | 
52  | 0  |     ctx->buf[3] = 0x10325476;  | 
53  |  | 
  | 
54  | 0  |     ctx->bits[0] = 0;  | 
55  | 0  |     ctx->bits[1] = 0;  | 
56  | 0  | }  | 
57  |  |  | 
58  |  | /*  | 
59  |  |  * Update context to reflect the concatenation of another buffer full  | 
60  |  |  * of bytes.  | 
61  |  |  */  | 
62  |  | void ul_MD5Update(struct UL_MD5Context *ctx, unsigned char const *buf, unsigned len)  | 
63  | 0  | { | 
64  | 0  |     uint32_t t;  | 
65  |  |  | 
66  |  |     /* Update bitcount */  | 
67  |  | 
  | 
68  | 0  |     t = ctx->bits[0];  | 
69  | 0  |     if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)  | 
70  | 0  |   ctx->bits[1]++;   /* Carry from low to high */  | 
71  | 0  |     ctx->bits[1] += len >> 29;  | 
72  |  | 
  | 
73  | 0  |     t = (t >> 3) & 0x3f;  /* Bytes already in shsInfo->data */  | 
74  |  |  | 
75  |  |     /* Handle any leading odd-sized chunks */  | 
76  |  | 
  | 
77  | 0  |     if (t) { | 
78  | 0  |   unsigned char *p = (unsigned char *) ctx->in + t;  | 
79  |  | 
  | 
80  | 0  |   t = 64 - t;  | 
81  | 0  |   if (len < t) { | 
82  | 0  |       memcpy(p, buf, len);  | 
83  | 0  |       return;  | 
84  | 0  |   }  | 
85  | 0  |   memcpy(p, buf, t);  | 
86  | 0  |   byteReverse(ctx->in, 16);  | 
87  | 0  |   ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);  | 
88  | 0  |   buf += t;  | 
89  | 0  |   len -= t;  | 
90  | 0  |     }  | 
91  |  |     /* Process data in 64-byte chunks */  | 
92  |  |  | 
93  | 0  |     while (len >= 64) { | 
94  | 0  |   memcpy(ctx->in, buf, 64);  | 
95  | 0  |   byteReverse(ctx->in, 16);  | 
96  | 0  |   ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);  | 
97  | 0  |   buf += 64;  | 
98  | 0  |   len -= 64;  | 
99  | 0  |     }  | 
100  |  |  | 
101  |  |     /* Handle any remaining bytes of data. */  | 
102  |  | 
  | 
103  | 0  |     memcpy(ctx->in, buf, len);  | 
104  | 0  | }  | 
105  |  |  | 
106  |  | /*  | 
107  |  |  * Final wrapup - pad to 64-byte boundary with the bit pattern  | 
108  |  |  * 1 0* (64-bit count of bits processed, MSB-first)  | 
109  |  |  */  | 
110  |  | void ul_MD5Final(unsigned char digest[UL_MD5LENGTH], struct UL_MD5Context *ctx)  | 
111  | 0  | { | 
112  | 0  |     unsigned count;  | 
113  | 0  |     unsigned char *p;  | 
114  |  |  | 
115  |  |     /* Compute number of bytes mod 64 */  | 
116  | 0  |     count = (ctx->bits[0] >> 3) & 0x3F;  | 
117  |  |  | 
118  |  |     /* Set the first char of padding to 0x80.  This is safe since there is  | 
119  |  |        always at least one byte free */  | 
120  | 0  |     p = ctx->in + count;  | 
121  | 0  |     *p++ = 0x80;  | 
122  |  |  | 
123  |  |     /* Bytes of padding needed to make 64 bytes */  | 
124  | 0  |     count = 64 - 1 - count;  | 
125  |  |  | 
126  |  |     /* Pad out to 56 mod 64 */  | 
127  | 0  |     if (count < 8) { | 
128  |  |   /* Two lots of padding:  Pad the first block to 64 bytes */  | 
129  | 0  |   memset(p, 0, count);  | 
130  | 0  |   byteReverse(ctx->in, 16);  | 
131  | 0  |   ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);  | 
132  |  |  | 
133  |  |   /* Now fill the next block with 56 bytes */  | 
134  | 0  |   memset(ctx->in, 0, 56);  | 
135  | 0  |     } else { | 
136  |  |   /* Pad block to 56 bytes */  | 
137  | 0  |   memset(p, 0, count - 8);  | 
138  | 0  |     }  | 
139  | 0  |     byteReverse(ctx->in, 14);  | 
140  |  |  | 
141  |  |     /* Append length in bits and transform.  | 
142  |  |      * Use memcpy to avoid aliasing problems.  On most systems,  | 
143  |  |      * this will be optimized away to the same code.  | 
144  |  |      */  | 
145  | 0  |     memcpy(&ctx->in[14 * sizeof(uint32_t)], &ctx->bits[0], 4);  | 
146  | 0  |     memcpy(&ctx->in[15 * sizeof(uint32_t)], &ctx->bits[1], 4);  | 
147  |  | 
  | 
148  | 0  |     ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);  | 
149  | 0  |     byteReverse((unsigned char *) ctx->buf, 4);  | 
150  | 0  |     memcpy(digest, ctx->buf, UL_MD5LENGTH);  | 
151  | 0  |     memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */  | 
152  | 0  | }  | 
153  |  |  | 
154  |  | #ifndef ASM_MD5  | 
155  |  |  | 
156  |  | /* The four core functions - F1 is optimized somewhat */  | 
157  |  |  | 
158  |  | /* #define F1(x, y, z) (x & y | ~x & z) */  | 
159  | 0  | #define F1(x, y, z) (z ^ (x & (y ^ z)))  | 
160  | 0  | #define F2(x, y, z) F1(z, x, y)  | 
161  | 0  | #define F3(x, y, z) (x ^ y ^ z)  | 
162  | 0  | #define F4(x, y, z) (y ^ (x | ~z))  | 
163  |  |  | 
164  |  | /* This is the central step in the MD5 algorithm. */  | 
165  |  | #define MD5STEP(f, w, x, y, z, data, s) \  | 
166  | 0  |   ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )  | 
167  |  |  | 
168  |  | /*  | 
169  |  |  * The core of the MD5 algorithm, this alters an existing MD5 hash to  | 
170  |  |  * reflect the addition of 16 longwords of new data.  MD5Update blocks  | 
171  |  |  * the data and converts bytes into longwords for this routine.  | 
172  |  |  */  | 
173  |  | void ul_MD5Transform(uint32_t buf[4], uint32_t const in[16])  | 
174  | 0  | { | 
175  | 0  |     register uint32_t a, b, c, d;  | 
176  |  | 
  | 
177  | 0  |     a = buf[0];  | 
178  | 0  |     b = buf[1];  | 
179  | 0  |     c = buf[2];  | 
180  | 0  |     d = buf[3];  | 
181  |  | 
  | 
182  | 0  |     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);  | 
183  | 0  |     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);  | 
184  | 0  |     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);  | 
185  | 0  |     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);  | 
186  | 0  |     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);  | 
187  | 0  |     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);  | 
188  | 0  |     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);  | 
189  | 0  |     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);  | 
190  | 0  |     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);  | 
191  | 0  |     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);  | 
192  | 0  |     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);  | 
193  | 0  |     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);  | 
194  | 0  |     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);  | 
195  | 0  |     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);  | 
196  | 0  |     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);  | 
197  | 0  |     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);  | 
198  |  | 
  | 
199  | 0  |     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);  | 
200  | 0  |     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);  | 
201  | 0  |     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);  | 
202  | 0  |     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);  | 
203  | 0  |     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);  | 
204  | 0  |     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);  | 
205  | 0  |     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);  | 
206  | 0  |     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);  | 
207  | 0  |     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);  | 
208  | 0  |     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);  | 
209  | 0  |     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);  | 
210  | 0  |     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);  | 
211  | 0  |     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);  | 
212  | 0  |     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);  | 
213  | 0  |     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);  | 
214  | 0  |     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);  | 
215  |  | 
  | 
216  | 0  |     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);  | 
217  | 0  |     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);  | 
218  | 0  |     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);  | 
219  | 0  |     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);  | 
220  | 0  |     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);  | 
221  | 0  |     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);  | 
222  | 0  |     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);  | 
223  | 0  |     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);  | 
224  | 0  |     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);  | 
225  | 0  |     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);  | 
226  | 0  |     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);  | 
227  | 0  |     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);  | 
228  | 0  |     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);  | 
229  | 0  |     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);  | 
230  | 0  |     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);  | 
231  | 0  |     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);  | 
232  |  | 
  | 
233  | 0  |     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);  | 
234  | 0  |     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);  | 
235  | 0  |     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);  | 
236  | 0  |     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);  | 
237  | 0  |     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);  | 
238  | 0  |     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);  | 
239  | 0  |     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);  | 
240  | 0  |     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);  | 
241  | 0  |     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);  | 
242  | 0  |     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);  | 
243  | 0  |     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);  | 
244  | 0  |     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);  | 
245  | 0  |     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);  | 
246  | 0  |     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);  | 
247  | 0  |     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);  | 
248  | 0  |     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);  | 
249  |  | 
  | 
250  | 0  |     buf[0] += a;  | 
251  | 0  |     buf[1] += b;  | 
252  | 0  |     buf[2] += c;  | 
253  | 0  |     buf[3] += d;  | 
254  | 0  | }  | 
255  |  |  | 
256  |  | #endif  | 
257  |  |  |