Coverage Report

Created: 2025-11-07 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/json-c/linkhash.c
Line
Count
Source
1
/*
2
 * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
3
 *
4
 * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
5
 * Michael Clark <michael@metaparadigm.com>
6
 * Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
7
 *
8
 * This library is free software; you can redistribute it and/or modify
9
 * it under the terms of the MIT license. See COPYING for details.
10
 *
11
 */
12
13
#include "config.h"
14
15
#include <assert.h>
16
#include <limits.h>
17
#include <stdarg.h>
18
#include <stddef.h>
19
#include <stdio.h>
20
#include <stdlib.h>
21
#include <string.h>
22
23
#ifdef HAVE_ENDIAN_H
24
#include <endian.h> /* attempt to define endianness */
25
#endif
26
27
#if defined(_MSC_VER) || defined(__MINGW32__)
28
#ifndef WIN32_LEAN_AND_MEAN
29
#define WIN32_LEAN_AND_MEAN
30
#endif
31
#include <windows.h> /* Get InterlockedCompareExchange */
32
#endif
33
34
#include "linkhash.h"
35
#include "random_seed.h"
36
37
/* hash functions */
38
static unsigned long lh_char_hash(const void *k);
39
static unsigned long lh_perllike_str_hash(const void *k);
40
static lh_hash_fn *char_hash_fn = lh_char_hash;
41
42
/* comparison functions */
43
int lh_char_equal(const void *k1, const void *k2);
44
int lh_ptr_equal(const void *k1, const void *k2);
45
46
int json_global_set_string_hash(const int h)
47
0
{
48
0
  switch (h)
49
0
  {
50
0
  case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break;
51
0
  case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break;
52
0
  default: return -1;
53
0
  }
54
0
  return 0;
55
0
}
56
57
static unsigned long lh_ptr_hash(const void *k)
58
0
{
59
  /* CAW: refactored to be 64bit nice */
60
0
  return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
61
0
}
62
63
int lh_ptr_equal(const void *k1, const void *k2)
64
0
{
65
0
  return (k1 == k2);
66
0
}
67
68
/*
69
 * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
70
 * https://burtleburtle.net/bob/c/lookup3.c
71
 * minor modifications to make functions static so no symbols are exported
72
 * minor modifications to compile with -Werror
73
 */
74
75
/*
76
-------------------------------------------------------------------------------
77
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
78
79
These are functions for producing 32-bit hashes for hash table lookup.
80
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
81
are externally useful functions.  Routines to test the hash are included
82
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
83
the public domain.  It has no warranty.
84
85
You probably want to use hashlittle().  hashlittle() and hashbig()
86
hash byte arrays.  hashlittle() is faster than hashbig() on
87
little-endian machines.  Intel and AMD are little-endian machines.
88
On second thought, you probably want hashlittle2(), which is identical to
89
hashlittle() except it returns two 32-bit hashes for the price of one.
90
You could implement hashbig2() if you wanted but I haven't bothered here.
91
92
If you want to find a hash of, say, exactly 7 integers, do
93
  a = i1;  b = i2;  c = i3;
94
  mix(a,b,c);
95
  a += i4; b += i5; c += i6;
96
  mix(a,b,c);
97
  a += i7;
98
  final(a,b,c);
99
then use c as the hash value.  If you have a variable length array of
100
4-byte integers to hash, use hashword().  If you have a byte array (like
101
a character string), use hashlittle().  If you have several byte arrays, or
102
a mix of things, see the comments above hashlittle().
103
104
Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
105
then mix those integers.  This is fast (you can do a lot more thorough
106
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
107
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
108
-------------------------------------------------------------------------------
109
*/
110
111
/*
112
 * My best guess at if you are big-endian or little-endian.  This may
113
 * need adjustment.
114
 */
115
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \
116
    (defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) ||          \
117
     defined(__i686__) || defined(vax) || defined(MIPSEL))
118
1.16M
#define HASH_LITTLE_ENDIAN 1
119
#define HASH_BIG_ENDIAN 0
120
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \
121
    (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
122
#define HASH_LITTLE_ENDIAN 0
123
#define HASH_BIG_ENDIAN 1
124
#else
125
#define HASH_LITTLE_ENDIAN 0
126
#define HASH_BIG_ENDIAN 0
127
#endif
128
129
#define hashsize(n) ((uint32_t)1 << (n))
130
#define hashmask(n) (hashsize(n) - 1)
131
3.11M
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
132
133
/*
134
-------------------------------------------------------------------------------
135
mix -- mix 3 32-bit values reversibly.
136
137
This is reversible, so any information in (a,b,c) before mix() is
138
still in (a,b,c) after mix().
139
140
If four pairs of (a,b,c) inputs are run through mix(), or through
141
mix() in reverse, there are at least 32 bits of the output that
142
are sometimes the same for one pair and different for another pair.
143
This was tested for:
144
* pairs that differed by one bit, by two bits, in any combination
145
  of top bits of (a,b,c), or in any combination of bottom bits of
146
  (a,b,c).
147
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
148
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
149
  is commonly produced by subtraction) look like a single 1-bit
150
  difference.
151
* the base values were pseudorandom, all zero but one bit set, or
152
  all zero plus a counter that starts at zero.
153
154
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
155
satisfy this are
156
    4  6  8 16 19  4
157
    9 15  3 18 27 15
158
   14  9  3  7 17  3
159
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
160
for "differ" defined as + with a one-bit base and a two-bit delta.  I
161
used https://burtleburtle.net/bob/hash/avalanche.html to choose
162
the operations, constants, and arrangements of the variables.
163
164
This does not achieve avalanche.  There are input bits of (a,b,c)
165
that fail to affect some output bits of (a,b,c), especially of a.  The
166
most thoroughly mixed value is c, but it doesn't really even achieve
167
avalanche in c.
168
169
This allows some parallelism.  Read-after-writes are good at doubling
170
the number of bits affected, so the goal of mixing pulls in the opposite
171
direction as the goal of parallelism.  I did what I could.  Rotates
172
seem to cost as much as shifts on every machine I could lay my hands
173
on, and rotates are much kinder to the top and bottom bits, so I used
174
rotates.
175
-------------------------------------------------------------------------------
176
*/
177
/* clang-format off */
178
35.2k
#define mix(a,b,c) \
179
35.2k
{ \
180
35.2k
  a -= c;  a ^= rot(c, 4);  c += b; \
181
35.2k
  b -= a;  b ^= rot(a, 6);  a += c; \
182
35.2k
  c -= b;  c ^= rot(b, 8);  b += a; \
183
35.2k
  a -= c;  a ^= rot(c,16);  c += b; \
184
35.2k
  b -= a;  b ^= rot(a,19);  a += c; \
185
35.2k
  c -= b;  c ^= rot(b, 4);  b += a; \
186
35.2k
}
187
/* clang-format on */
188
189
/*
190
-------------------------------------------------------------------------------
191
final -- final mixing of 3 32-bit values (a,b,c) into c
192
193
Pairs of (a,b,c) values differing in only a few bits will usually
194
produce values of c that look totally different.  This was tested for
195
* pairs that differed by one bit, by two bits, in any combination
196
  of top bits of (a,b,c), or in any combination of bottom bits of
197
  (a,b,c).
198
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
199
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
200
  is commonly produced by subtraction) look like a single 1-bit
201
  difference.
202
* the base values were pseudorandom, all zero but one bit set, or
203
  all zero plus a counter that starts at zero.
204
205
These constants passed:
206
 14 11 25 16 4 14 24
207
 12 14 25 16 4 14 24
208
and these came close:
209
  4  8 15 26 3 22 24
210
 10  8 15 26 3 22 24
211
 11  8 15 26 3 22 24
212
-------------------------------------------------------------------------------
213
*/
214
/* clang-format off */
215
414k
#define final(a,b,c) \
216
414k
{ \
217
414k
  c ^= b; c -= rot(b,14); \
218
414k
  a ^= c; a -= rot(c,11); \
219
414k
  b ^= a; b -= rot(a,25); \
220
414k
  c ^= b; c -= rot(b,16); \
221
414k
  a ^= c; a -= rot(c,4);  \
222
414k
  b ^= a; b -= rot(a,14); \
223
414k
  c ^= b; c -= rot(b,24); \
224
414k
}
225
/* clang-format on */
226
227
/*
228
-------------------------------------------------------------------------------
229
hashlittle() -- hash a variable-length key into a 32-bit value
230
  k       : the key (the unaligned variable-length array of bytes)
231
  length  : the length of the key, counting by bytes
232
  initval : can be any 4-byte value
233
Returns a 32-bit value.  Every bit of the key affects every bit of
234
the return value.  Two keys differing by one or two bits will have
235
totally different hash values.
236
237
The best hash table sizes are powers of 2.  There is no need to do
238
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
239
use a bitmask.  For example, if you need only 10 bits, do
240
  h = (h & hashmask(10));
241
In which case, the hash table should have hashsize(10) elements.
242
243
If you are hashing n strings (uint8_t **)k, do it like this:
244
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
245
246
By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
247
code any way you wish, private, educational, or commercial.  It's free.
248
249
Use for hash table lookup, or anything where one collision in 2^^32 is
250
acceptable.  Do NOT use for cryptographic purposes.
251
-------------------------------------------------------------------------------
252
*/
253
254
/* clang-format off */
255
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval)
256
415k
{
257
415k
  uint32_t a,b,c; /* internal state */
258
415k
  union
259
415k
  {
260
415k
    const void *ptr;
261
415k
    size_t i;
262
415k
  } u; /* needed for Mac Powerbook G4 */
263
264
  /* Set up the internal state */
265
415k
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
266
267
415k
  u.ptr = key;
268
415k
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
269
246k
    const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
270
271
    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
272
269k
    while (length > 12)
273
22.7k
    {
274
22.7k
      a += k[0];
275
22.7k
      b += k[1];
276
22.7k
      c += k[2];
277
22.7k
      mix(a,b,c);
278
22.7k
      length -= 12;
279
22.7k
      k += 3;
280
22.7k
    }
281
282
    /*----------------------------- handle the last (probably partial) block */
283
    /*
284
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
285
     * then masks off the part it's not allowed to read.  Because the
286
     * string is aligned, the masked-off tail is in the same word as the
287
     * rest of the string.  Every machine with memory protection I've seen
288
     * does it on word boundaries, so is OK with this.  But VALGRIND will
289
     * still catch it and complain.  The masking trick does make the hash
290
     * noticeably faster for short strings (like English words).
291
     * AddressSanitizer is similarly picky about overrunning
292
     * the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html)
293
     */
294
#ifdef VALGRIND
295
#define PRECISE_MEMORY_ACCESS 1
296
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */
297
#define PRECISE_MEMORY_ACCESS 1
298
#elif defined(__has_feature)
299
#if __has_feature(address_sanitizer) /* Clang's ASAN */
300
#define PRECISE_MEMORY_ACCESS 1
301
#endif
302
246k
#endif
303
246k
#ifndef PRECISE_MEMORY_ACCESS
304
305
246k
    switch(length)
306
246k
    {
307
698
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
308
1.63k
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
309
4.02k
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
310
35.9k
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
311
87.0k
    case 8 : b+=k[1]; a+=k[0]; break;
312
22.3k
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
313
29.0k
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
314
9.59k
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
315
25.4k
    case 4 : a+=k[0]; break;
316
1.36k
    case 3 : a+=k[0]&0xffffff; break;
317
1.34k
    case 2 : a+=k[0]&0xffff; break;
318
27.3k
    case 1 : a+=k[0]&0xff; break;
319
726
    case 0 : return c; /* zero length strings require no mixing */
320
246k
    }
321
322
#else /* make valgrind happy */
323
324
    const uint8_t  *k8 = (const uint8_t *)k;
325
    switch(length)
326
    {
327
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
328
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
329
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
330
    case 9 : c+=k8[8];                   /* fall through */
331
    case 8 : b+=k[1]; a+=k[0]; break;
332
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
333
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
334
    case 5 : b+=k8[4];                   /* fall through */
335
    case 4 : a+=k[0]; break;
336
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
337
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
338
    case 1 : a+=k8[0]; break;
339
    case 0 : return c;
340
    }
341
342
#endif /* !valgrind */
343
344
246k
  }
345
168k
  else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0))
346
62.7k
  {
347
62.7k
    const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
348
62.7k
    const uint8_t  *k8;
349
350
    /*--------------- all but last block: aligned reads and different mixing */
351
75.2k
    while (length > 12)
352
12.4k
    {
353
12.4k
      a += k[0] + (((uint32_t)k[1])<<16);
354
12.4k
      b += k[2] + (((uint32_t)k[3])<<16);
355
12.4k
      c += k[4] + (((uint32_t)k[5])<<16);
356
12.4k
      mix(a,b,c);
357
12.4k
      length -= 12;
358
12.4k
      k += 6;
359
12.4k
    }
360
361
    /*----------------------------- handle the last (probably partial) block */
362
62.7k
    k8 = (const uint8_t *)k;
363
62.7k
    switch(length)
364
62.7k
    {
365
0
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
366
0
       b+=k[2]+(((uint32_t)k[3])<<16);
367
0
       a+=k[0]+(((uint32_t)k[1])<<16);
368
0
       break;
369
0
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
370
26
    case 10: c+=k[4];
371
26
       b+=k[2]+(((uint32_t)k[3])<<16);
372
26
       a+=k[0]+(((uint32_t)k[1])<<16);
373
26
       break;
374
0
    case 9 : c+=k8[8];                      /* fall through */
375
0
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
376
0
       a+=k[0]+(((uint32_t)k[1])<<16);
377
0
       break;
378
0
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
379
50.2k
    case 6 : b+=k[2];
380
50.2k
       a+=k[0]+(((uint32_t)k[1])<<16);
381
50.2k
       break;
382
4
    case 5 : b+=k8[4];                      /* fall through */
383
4
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
384
4
       break;
385
0
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
386
0
    case 2 : a+=k[0];
387
0
       break;
388
12.4k
    case 1 : a+=k8[0];
389
12.4k
       break;
390
0
    case 0 : return c;                     /* zero length requires no mixing */
391
62.7k
    }
392
393
62.7k
  }
394
106k
  else
395
106k
  {
396
    /* need to read the key one byte at a time */
397
106k
    const uint8_t *k = (const uint8_t *)key;
398
399
    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
400
106k
    while (length > 12)
401
8
    {
402
8
      a += k[0];
403
8
      a += ((uint32_t)k[1])<<8;
404
8
      a += ((uint32_t)k[2])<<16;
405
8
      a += ((uint32_t)k[3])<<24;
406
8
      b += k[4];
407
8
      b += ((uint32_t)k[5])<<8;
408
8
      b += ((uint32_t)k[6])<<16;
409
8
      b += ((uint32_t)k[7])<<24;
410
8
      c += k[8];
411
8
      c += ((uint32_t)k[9])<<8;
412
8
      c += ((uint32_t)k[10])<<16;
413
8
      c += ((uint32_t)k[11])<<24;
414
8
      mix(a,b,c);
415
8
      length -= 12;
416
8
      k += 12;
417
8
    }
418
419
    /*-------------------------------- last block: affect all 32 bits of (c) */
420
106k
    switch(length) /* all the case statements fall through */
421
106k
    {
422
19.3k
    case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */
423
21.5k
    case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */
424
21.5k
    case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */
425
21.5k
    case 9 : c+=k[8]; /* FALLTHRU */
426
21.5k
    case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */
427
21.5k
    case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */
428
47.6k
    case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */
429
85.1k
    case 5 : b+=k[4]; /* FALLTHRU */
430
106k
    case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */
431
106k
    case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */
432
106k
    case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */
433
106k
    case 1 : a+=k[0];
434
106k
       break;
435
0
    case 0 : return c;
436
106k
    }
437
106k
  }
438
439
414k
  final(a,b,c);
440
414k
  return c;
441
415k
}
442
/* clang-format on */
443
444
/* a simple hash function similar to what perl does for strings.
445
 * for good results, the string should not be excessively large.
446
 */
447
static unsigned long lh_perllike_str_hash(const void *k)
448
0
{
449
0
  const char *rkey = (const char *)k;
450
0
  unsigned hashval = 1;
451
452
0
  while (*rkey)
453
0
    hashval = hashval * 33 + *rkey++;
454
455
0
  return hashval;
456
0
}
457
458
static unsigned long lh_char_hash(const void *k)
459
415k
{
460
#if defined _MSC_VER || defined __MINGW32__
461
#define RANDOM_SEED_TYPE LONG
462
#else
463
415k
#define RANDOM_SEED_TYPE int
464
415k
#endif
465
415k
  static volatile RANDOM_SEED_TYPE random_seed = -1;
466
467
415k
  if (random_seed == -1)
468
1
  {
469
1
    RANDOM_SEED_TYPE seed;
470
    /* we can't use -1 as it is the uninitialized sentinel */
471
1
    while ((seed = json_c_get_random_seed()) == -1) {}
472
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
473
#define USE_SYNC_COMPARE_AND_SWAP 1
474
#endif
475
1
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
476
1
#define USE_SYNC_COMPARE_AND_SWAP 1
477
1
#endif
478
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
479
#define USE_SYNC_COMPARE_AND_SWAP 1
480
#endif
481
1
#if defined USE_SYNC_COMPARE_AND_SWAP
482
1
    (void)__sync_val_compare_and_swap(&random_seed, -1, seed);
483
#elif defined _MSC_VER || defined __MINGW32__
484
    InterlockedCompareExchange(&random_seed, seed, -1);
485
#else
486
    //#warning "racy random seed initialization if used by multiple threads"
487
    random_seed = seed; /* potentially racy */
488
#endif
489
1
  }
490
491
415k
  return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed);
492
415k
}
493
494
int lh_char_equal(const void *k1, const void *k2)
495
300k
{
496
300k
  return (strcmp((const char *)k1, (const char *)k2) == 0);
497
300k
}
498
499
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn,
500
                              lh_equal_fn *equal_fn)
501
66.0k
{
502
66.0k
  int i;
503
66.0k
  struct lh_table *t;
504
505
  /* Allocate space for elements to avoid divisions by zero. */
506
66.0k
  assert(size > 0);
507
66.0k
  t = (struct lh_table *)calloc(1, sizeof(struct lh_table));
508
66.0k
  if (!t)
509
0
    return NULL;
510
511
66.0k
  t->count = 0;
512
66.0k
  t->size = size;
513
66.0k
  t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry));
514
66.0k
  if (!t->table)
515
0
  {
516
0
    free(t);
517
0
    return NULL;
518
0
  }
519
66.0k
  t->free_fn = free_fn;
520
66.0k
  t->hash_fn = hash_fn;
521
66.0k
  t->equal_fn = equal_fn;
522
1.12M
  for (i = 0; i < size; i++)
523
1.06M
    t->table[i].k = LH_EMPTY;
524
66.0k
  return t;
525
66.0k
}
526
527
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn)
528
65.8k
{
529
65.8k
  return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal);
530
65.8k
}
531
532
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn)
533
0
{
534
0
  return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal);
535
0
}
536
537
int lh_table_resize(struct lh_table *t, int new_size)
538
202
{
539
202
  struct lh_table *new_t;
540
202
  struct lh_entry *ent;
541
542
202
  new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn);
543
202
  if (new_t == NULL)
544
0
    return -1;
545
546
3.19k
  for (ent = t->head; ent != NULL; ent = ent->next)
547
2.99k
  {
548
2.99k
    unsigned long h = lh_get_hash(new_t, ent->k);
549
2.99k
    unsigned int opts = 0;
550
2.99k
    if (ent->k_is_constant)
551
0
      opts = JSON_C_OBJECT_ADD_CONSTANT_KEY;
552
2.99k
    if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0)
553
0
    {
554
0
      lh_table_free(new_t);
555
0
      return -1;
556
0
    }
557
2.99k
  }
558
202
  free(t->table);
559
202
  t->table = new_t->table;
560
202
  t->size = new_size;
561
202
  t->head = new_t->head;
562
202
  t->tail = new_t->tail;
563
202
  free(new_t);
564
565
202
  return 0;
566
202
}
567
568
void lh_table_free(struct lh_table *t)
569
65.8k
{
570
65.8k
  struct lh_entry *c;
571
65.8k
  if (t->free_fn)
572
65.8k
  {
573
199k
    for (c = t->head; c != NULL; c = c->next)
574
133k
      t->free_fn(c);
575
65.8k
  }
576
65.8k
  free(t->table);
577
65.8k
  free(t);
578
65.8k
}
579
580
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h,
581
                           const unsigned opts)
582
137k
{
583
137k
  unsigned long n;
584
585
137k
  if (t->count >= t->size * LH_LOAD_FACTOR)
586
202
  {
587
    /* Avoid signed integer overflow with large tables. */
588
202
    int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
589
202
    if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0)
590
0
      return -1;
591
202
  }
592
593
137k
  n = h % t->size;
594
595
152k
  while (1)
596
152k
  {
597
152k
    if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
598
137k
      break;
599
15.1k
    if ((int)++n == t->size)
600
26
      n = 0;
601
15.1k
  }
602
603
137k
  t->table[n].k = k;
604
137k
  t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY);
605
137k
  t->table[n].v = v;
606
137k
  t->count++;
607
608
137k
  if (t->head == NULL)
609
39.6k
  {
610
39.6k
    t->head = t->tail = &t->table[n];
611
39.6k
    t->table[n].next = t->table[n].prev = NULL;
612
39.6k
  }
613
97.4k
  else
614
97.4k
  {
615
97.4k
    t->tail->next = &t->table[n];
616
97.4k
    t->table[n].prev = t->tail;
617
97.4k
    t->table[n].next = NULL;
618
97.4k
    t->tail = &t->table[n];
619
97.4k
  }
620
621
137k
  return 0;
622
137k
}
623
int lh_table_insert(struct lh_table *t, const void *k, const void *v)
624
0
{
625
0
  return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0);
626
0
}
627
628
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k,
629
                                              const unsigned long h)
630
412k
{
631
412k
  unsigned long n = h % t->size;
632
412k
  int count = 0;
633
634
463k
  while (count < t->size)
635
463k
  {
636
463k
    if (t->table[n].k == LH_EMPTY)
637
163k
      return NULL;
638
300k
    if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k))
639
249k
      return &t->table[n];
640
51.0k
    if ((int)++n == t->size)
641
46
      n = 0;
642
51.0k
    count++;
643
51.0k
  }
644
0
  return NULL;
645
412k
}
646
647
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k)
648
274k
{
649
274k
  return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k));
650
274k
}
651
652
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v)
653
274k
{
654
274k
  struct lh_entry *e = lh_table_lookup_entry(t, k);
655
274k
  if (e != NULL)
656
244k
  {
657
244k
    if (v != NULL)
658
238k
      *v = lh_entry_v(e);
659
244k
    return 1; /* key found */
660
244k
  }
661
29.2k
  if (v != NULL)
662
28.6k
    *v = NULL;
663
29.2k
  return 0; /* key not found */
664
274k
}
665
666
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
667
455
{
668
  /* CAW: fixed to be 64bit nice, still need the crazy negative case... */
669
455
  ptrdiff_t n = (ptrdiff_t)(e - t->table);
670
671
  /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
672
455
  if (n < 0)
673
0
  {
674
0
    return -2;
675
0
  }
676
677
455
  if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
678
0
    return -1;
679
455
  t->count--;
680
455
  if (t->free_fn)
681
455
    t->free_fn(e);
682
455
  t->table[n].v = NULL;
683
455
  t->table[n].k = LH_FREED;
684
455
  if (t->tail == &t->table[n] && t->head == &t->table[n])
685
0
  {
686
0
    t->head = t->tail = NULL;
687
0
  }
688
455
  else if (t->head == &t->table[n])
689
5
  {
690
5
    t->head->next->prev = NULL;
691
5
    t->head = t->head->next;
692
5
  }
693
450
  else if (t->tail == &t->table[n])
694
59
  {
695
59
    t->tail->prev->next = NULL;
696
59
    t->tail = t->tail->prev;
697
59
  }
698
391
  else
699
391
  {
700
391
    t->table[n].prev->next = t->table[n].next;
701
391
    t->table[n].next->prev = t->table[n].prev;
702
391
  }
703
455
  t->table[n].next = t->table[n].prev = NULL;
704
455
  return 0;
705
455
}
706
707
int lh_table_delete(struct lh_table *t, const void *k)
708
455
{
709
455
  struct lh_entry *e = lh_table_lookup_entry(t, k);
710
455
  if (!e)
711
0
    return -1;
712
455
  return lh_table_delete_entry(t, e);
713
455
}
714
715
int lh_table_length(struct lh_table *t)
716
12.6k
{
717
12.6k
  return t->count;
718
12.6k
}