/src/openssl/crypto/sha/sha256.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * SHA256 low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <openssl/opensslconf.h> |
17 | | |
18 | | #include <stdlib.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/crypto.h> |
22 | | #include <openssl/sha.h> |
23 | | #include <openssl/opensslv.h> |
24 | | #include "internal/endian.h" |
25 | | #include "crypto/sha.h" |
26 | | |
27 | | int SHA224_Init(SHA256_CTX *c) |
28 | 44 | { |
29 | 44 | memset(c, 0, sizeof(*c)); |
30 | 44 | c->h[0] = 0xc1059ed8UL; |
31 | 44 | c->h[1] = 0x367cd507UL; |
32 | 44 | c->h[2] = 0x3070dd17UL; |
33 | 44 | c->h[3] = 0xf70e5939UL; |
34 | 44 | c->h[4] = 0xffc00b31UL; |
35 | 44 | c->h[5] = 0x68581511UL; |
36 | 44 | c->h[6] = 0x64f98fa7UL; |
37 | 44 | c->h[7] = 0xbefa4fa4UL; |
38 | 44 | c->md_len = SHA224_DIGEST_LENGTH; |
39 | 44 | return 1; |
40 | 44 | } |
41 | | |
42 | | int SHA256_Init(SHA256_CTX *c) |
43 | 29.2k | { |
44 | 29.2k | memset(c, 0, sizeof(*c)); |
45 | 29.2k | c->h[0] = 0x6a09e667UL; |
46 | 29.2k | c->h[1] = 0xbb67ae85UL; |
47 | 29.2k | c->h[2] = 0x3c6ef372UL; |
48 | 29.2k | c->h[3] = 0xa54ff53aUL; |
49 | 29.2k | c->h[4] = 0x510e527fUL; |
50 | 29.2k | c->h[5] = 0x9b05688cUL; |
51 | 29.2k | c->h[6] = 0x1f83d9abUL; |
52 | 29.2k | c->h[7] = 0x5be0cd19UL; |
53 | 29.2k | c->md_len = SHA256_DIGEST_LENGTH; |
54 | 29.2k | return 1; |
55 | 29.2k | } |
56 | | |
57 | | int ossl_sha256_192_init(SHA256_CTX *c) |
58 | 2 | { |
59 | 2 | SHA256_Init(c); |
60 | 2 | c->md_len = SHA256_192_DIGEST_LENGTH; |
61 | 2 | return 1; |
62 | 2 | } |
63 | | |
64 | | int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) |
65 | 44 | { |
66 | 44 | return SHA256_Update(c, data, len); |
67 | 44 | } |
68 | | |
69 | | int SHA224_Final(unsigned char *md, SHA256_CTX *c) |
70 | 22 | { |
71 | 22 | return SHA256_Final(md, c); |
72 | 22 | } |
73 | | |
74 | | #define DATA_ORDER_IS_BIG_ENDIAN |
75 | | |
76 | 191M | #define HASH_LONG SHA_LONG |
77 | | #define HASH_CTX SHA256_CTX |
78 | 392M | #define HASH_CBLOCK SHA_CBLOCK |
79 | | |
80 | | /* |
81 | | * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." |
82 | | * default: case below covers for it. It's not clear however if it's |
83 | | * permitted to truncate to amount of bytes not divisible by 4. I bet not, |
84 | | * but if it is, then default: case shall be extended. For reference. |
85 | | * Idea behind separate cases for pre-defined lengths is to let the |
86 | | * compiler decide if it's appropriate to unroll small loops. |
87 | | */ |
88 | 14.4k | #define HASH_MAKE_STRING(c,s) do { \ |
89 | 14.4k | unsigned long ll; \ |
90 | 14.4k | unsigned int nn; \ |
91 | 14.4k | switch ((c)->md_len) \ |
92 | 14.4k | { case SHA256_192_DIGEST_LENGTH: \ |
93 | 7 | for (nn=0;nn<SHA256_192_DIGEST_LENGTH/4;nn++) \ |
94 | 6 | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
95 | 1 | break; \ |
96 | 22 | case SHA224_DIGEST_LENGTH: \ |
97 | 176 | for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \ |
98 | 154 | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
99 | 22 | break; \ |
100 | 14.3k | case SHA256_DIGEST_LENGTH: \ |
101 | 129k | for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \ |
102 | 115k | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
103 | 14.3k | break; \ |
104 | 0 | default: \ |
105 | 0 | if ((c)->md_len > SHA256_DIGEST_LENGTH) \ |
106 | 0 | return 0; \ |
107 | 0 | for (nn=0;nn<(c)->md_len/4;nn++) \ |
108 | 0 | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
109 | 0 | break; \ |
110 | 14.4k | } \ |
111 | 14.4k | } while (0) |
112 | | |
113 | | #define HASH_UPDATE SHA256_Update |
114 | | #define HASH_TRANSFORM SHA256_Transform |
115 | | #define HASH_FINAL SHA256_Final |
116 | 3.03M | #define HASH_BLOCK_DATA_ORDER sha256_block_data_order |
117 | | #ifndef SHA256_ASM |
118 | | static |
119 | | #else |
120 | | # ifdef INCLUDE_C_SHA256 |
121 | | void sha256_block_data_order_c(SHA256_CTX *ctx, const void *in, size_t num); |
122 | | # endif /* INCLUDE_C_SHA256 */ |
123 | | #endif /* SHA256_ASM */ |
124 | | void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num); |
125 | | |
126 | | #include "crypto/md32_common.h" |
127 | | |
128 | | #if !defined(SHA256_ASM) || defined(INCLUDE_C_SHA256) |
129 | | static const SHA_LONG K256[64] = { |
130 | | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
131 | | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
132 | | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
133 | | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
134 | | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
135 | | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
136 | | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
137 | | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
138 | | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
139 | | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
140 | | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
141 | | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
142 | | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
143 | | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
144 | | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
145 | | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
146 | | }; |
147 | | |
148 | | # ifndef PEDANTIC |
149 | | # if defined(__GNUC__) && __GNUC__>=2 && \ |
150 | | !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) |
151 | | # if defined(__riscv_zknh) |
152 | | # define Sigma0(x) ({ MD32_REG_T ret; \ |
153 | | asm ("sha256sum0 %0, %1" \ |
154 | | : "=r"(ret) \ |
155 | | : "r"(x)); ret; }) |
156 | | # define Sigma1(x) ({ MD32_REG_T ret; \ |
157 | | asm ("sha256sum1 %0, %1" \ |
158 | | : "=r"(ret) \ |
159 | | : "r"(x)); ret; }) |
160 | | # define sigma0(x) ({ MD32_REG_T ret; \ |
161 | | asm ("sha256sig0 %0, %1" \ |
162 | | : "=r"(ret) \ |
163 | | : "r"(x)); ret; }) |
164 | | # define sigma1(x) ({ MD32_REG_T ret; \ |
165 | | asm ("sha256sig1 %0, %1" \ |
166 | | : "=r"(ret) \ |
167 | | : "r"(x)); ret; }) |
168 | | # endif |
169 | | # if defined(__riscv_zbt) || defined(__riscv_zpn) |
170 | | # define Ch(x,y,z) ({ MD32_REG_T ret; \ |
171 | | asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\ |
172 | | : "=r"(ret) \ |
173 | | : "r"(x), "r"(y), "r"(z)); ret; }) |
174 | | # define Maj(x,y,z) ({ MD32_REG_T ret; \ |
175 | | asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\ |
176 | | : "=r"(ret) \ |
177 | | : "r"(x^z), "r"(y), "r"(x)); ret; }) |
178 | | # endif |
179 | | # endif |
180 | | # endif |
181 | | |
182 | | /* |
183 | | * FIPS specification refers to right rotations, while our ROTATE macro |
184 | | * is left one. This is why you might notice that rotation coefficients |
185 | | * differ from those observed in FIPS document by 32-N... |
186 | | */ |
187 | | # ifndef Sigma0 |
188 | 807M | # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) |
189 | | # endif |
190 | | # ifndef Sigma1 |
191 | 807M | # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) |
192 | | # endif |
193 | | # ifndef sigma0 |
194 | 605M | # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) |
195 | | # endif |
196 | | # ifndef sigma1 |
197 | 605M | # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) |
198 | | # endif |
199 | | # ifndef Ch |
200 | 807M | # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
201 | | # endif |
202 | | # ifndef Maj |
203 | 807M | # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
204 | | # endif |
205 | | |
206 | | # ifdef OPENSSL_SMALL_FOOTPRINT |
207 | | |
208 | | static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, |
209 | | size_t num) |
210 | | { |
211 | | unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2; |
212 | | SHA_LONG X[16], l; |
213 | | int i; |
214 | | const unsigned char *data = in; |
215 | | |
216 | | while (num--) { |
217 | | |
218 | | a = ctx->h[0]; |
219 | | b = ctx->h[1]; |
220 | | c = ctx->h[2]; |
221 | | d = ctx->h[3]; |
222 | | e = ctx->h[4]; |
223 | | f = ctx->h[5]; |
224 | | g = ctx->h[6]; |
225 | | h = ctx->h[7]; |
226 | | |
227 | | for (i = 0; i < 16; i++) { |
228 | | (void)HOST_c2l(data, l); |
229 | | T1 = X[i] = l; |
230 | | T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; |
231 | | T2 = Sigma0(a) + Maj(a, b, c); |
232 | | h = g; |
233 | | g = f; |
234 | | f = e; |
235 | | e = d + T1; |
236 | | d = c; |
237 | | c = b; |
238 | | b = a; |
239 | | a = T1 + T2; |
240 | | } |
241 | | |
242 | | for (; i < 64; i++) { |
243 | | s0 = X[(i + 1) & 0x0f]; |
244 | | s0 = sigma0(s0); |
245 | | s1 = X[(i + 14) & 0x0f]; |
246 | | s1 = sigma1(s1); |
247 | | |
248 | | T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf]; |
249 | | T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; |
250 | | T2 = Sigma0(a) + Maj(a, b, c); |
251 | | h = g; |
252 | | g = f; |
253 | | f = e; |
254 | | e = d + T1; |
255 | | d = c; |
256 | | c = b; |
257 | | b = a; |
258 | | a = T1 + T2; |
259 | | } |
260 | | |
261 | | ctx->h[0] += a; |
262 | | ctx->h[1] += b; |
263 | | ctx->h[2] += c; |
264 | | ctx->h[3] += d; |
265 | | ctx->h[4] += e; |
266 | | ctx->h[5] += f; |
267 | | ctx->h[6] += g; |
268 | | ctx->h[7] += h; |
269 | | |
270 | | } |
271 | | } |
272 | | |
273 | | # else |
274 | | |
275 | 807M | # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ |
276 | 807M | T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ |
277 | 807M | h = Sigma0(a) + Maj(a,b,c); \ |
278 | 807M | d += T1; h += T1; } while (0) |
279 | | |
280 | 605M | # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ |
281 | 605M | s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ |
282 | 605M | s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ |
283 | 605M | T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ |
284 | 605M | ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) |
285 | | |
286 | | #ifdef INCLUDE_C_SHA256 |
287 | | void sha256_block_data_order_c(SHA256_CTX *ctx, const void *in, size_t num) |
288 | | #else |
289 | | static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, |
290 | | size_t num) |
291 | | #endif |
292 | 3.03M | { |
293 | 3.03M | unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1; |
294 | 3.03M | SHA_LONG X[16]; |
295 | 3.03M | int i; |
296 | 3.03M | const unsigned char *data = in; |
297 | 3.03M | DECLARE_IS_ENDIAN; |
298 | | |
299 | 15.6M | while (num--) { |
300 | | |
301 | 12.6M | a = ctx->h[0]; |
302 | 12.6M | b = ctx->h[1]; |
303 | 12.6M | c = ctx->h[2]; |
304 | 12.6M | d = ctx->h[3]; |
305 | 12.6M | e = ctx->h[4]; |
306 | 12.6M | f = ctx->h[5]; |
307 | 12.6M | g = ctx->h[6]; |
308 | 12.6M | h = ctx->h[7]; |
309 | | |
310 | 12.6M | if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4 |
311 | 12.6M | && ((size_t)in % 4) == 0) { |
312 | 0 | const SHA_LONG *W = (const SHA_LONG *)data; |
313 | |
|
314 | 0 | T1 = X[0] = W[0]; |
315 | 0 | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
316 | 0 | T1 = X[1] = W[1]; |
317 | 0 | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
318 | 0 | T1 = X[2] = W[2]; |
319 | 0 | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
320 | 0 | T1 = X[3] = W[3]; |
321 | 0 | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
322 | 0 | T1 = X[4] = W[4]; |
323 | 0 | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
324 | 0 | T1 = X[5] = W[5]; |
325 | 0 | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
326 | 0 | T1 = X[6] = W[6]; |
327 | 0 | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
328 | 0 | T1 = X[7] = W[7]; |
329 | 0 | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
330 | 0 | T1 = X[8] = W[8]; |
331 | 0 | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
332 | 0 | T1 = X[9] = W[9]; |
333 | 0 | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
334 | 0 | T1 = X[10] = W[10]; |
335 | 0 | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
336 | 0 | T1 = X[11] = W[11]; |
337 | 0 | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
338 | 0 | T1 = X[12] = W[12]; |
339 | 0 | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
340 | 0 | T1 = X[13] = W[13]; |
341 | 0 | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
342 | 0 | T1 = X[14] = W[14]; |
343 | 0 | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
344 | 0 | T1 = X[15] = W[15]; |
345 | 0 | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
346 | |
|
347 | 0 | data += SHA256_CBLOCK; |
348 | 12.6M | } else { |
349 | 12.6M | SHA_LONG l; |
350 | | |
351 | 12.6M | (void)HOST_c2l(data, l); |
352 | 12.6M | T1 = X[0] = l; |
353 | 12.6M | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
354 | 12.6M | (void)HOST_c2l(data, l); |
355 | 12.6M | T1 = X[1] = l; |
356 | 12.6M | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
357 | 12.6M | (void)HOST_c2l(data, l); |
358 | 12.6M | T1 = X[2] = l; |
359 | 12.6M | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
360 | 12.6M | (void)HOST_c2l(data, l); |
361 | 12.6M | T1 = X[3] = l; |
362 | 12.6M | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
363 | 12.6M | (void)HOST_c2l(data, l); |
364 | 12.6M | T1 = X[4] = l; |
365 | 12.6M | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
366 | 12.6M | (void)HOST_c2l(data, l); |
367 | 12.6M | T1 = X[5] = l; |
368 | 12.6M | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
369 | 12.6M | (void)HOST_c2l(data, l); |
370 | 12.6M | T1 = X[6] = l; |
371 | 12.6M | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
372 | 12.6M | (void)HOST_c2l(data, l); |
373 | 12.6M | T1 = X[7] = l; |
374 | 12.6M | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
375 | 12.6M | (void)HOST_c2l(data, l); |
376 | 12.6M | T1 = X[8] = l; |
377 | 12.6M | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
378 | 12.6M | (void)HOST_c2l(data, l); |
379 | 12.6M | T1 = X[9] = l; |
380 | 12.6M | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
381 | 12.6M | (void)HOST_c2l(data, l); |
382 | 12.6M | T1 = X[10] = l; |
383 | 12.6M | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
384 | 12.6M | (void)HOST_c2l(data, l); |
385 | 12.6M | T1 = X[11] = l; |
386 | 12.6M | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
387 | 12.6M | (void)HOST_c2l(data, l); |
388 | 12.6M | T1 = X[12] = l; |
389 | 12.6M | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
390 | 12.6M | (void)HOST_c2l(data, l); |
391 | 12.6M | T1 = X[13] = l; |
392 | 12.6M | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
393 | 12.6M | (void)HOST_c2l(data, l); |
394 | 12.6M | T1 = X[14] = l; |
395 | 12.6M | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
396 | 12.6M | (void)HOST_c2l(data, l); |
397 | 12.6M | T1 = X[15] = l; |
398 | 12.6M | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
399 | 12.6M | } |
400 | | |
401 | 88.3M | for (i = 16; i < 64; i += 8) { |
402 | 75.6M | ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); |
403 | 75.6M | ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); |
404 | 75.6M | ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); |
405 | 75.6M | ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); |
406 | 75.6M | ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); |
407 | 75.6M | ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); |
408 | 75.6M | ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); |
409 | 75.6M | ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); |
410 | 75.6M | } |
411 | | |
412 | 12.6M | ctx->h[0] += a; |
413 | 12.6M | ctx->h[1] += b; |
414 | 12.6M | ctx->h[2] += c; |
415 | 12.6M | ctx->h[3] += d; |
416 | 12.6M | ctx->h[4] += e; |
417 | 12.6M | ctx->h[5] += f; |
418 | 12.6M | ctx->h[6] += g; |
419 | 12.6M | ctx->h[7] += h; |
420 | | |
421 | 12.6M | } |
422 | 3.03M | } |
423 | | |
424 | | # endif |
425 | | #endif /* SHA256_ASM */ |