/src/openssl/providers/implementations/kdfs/tls1_prf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
12 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
13 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
14 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
15 | | * |
16 | | * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: |
17 | | * |
18 | | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
19 | | * P_SHA-1(S2, label + seed) |
20 | | * |
21 | | * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are |
22 | | * two halves of the secret (with the possibility of one shared byte, in the |
23 | | * case where the length of the original secret is odd). S1 is taken from the |
24 | | * first half of the secret, S2 from the second half. |
25 | | * |
26 | | * For TLS v1.2 the TLS PRF algorithm is given by: |
27 | | * |
28 | | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
29 | | * |
30 | | * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as |
31 | | * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, |
32 | | * unless defined otherwise by the cipher suite. |
33 | | * |
34 | | * P_<hash> is an expansion function that uses a single hash function to expand |
35 | | * a secret and seed into an arbitrary quantity of output: |
36 | | * |
37 | | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
38 | | * HMAC_<hash>(secret, A(2) + seed) + |
39 | | * HMAC_<hash>(secret, A(3) + seed) + ... |
40 | | * |
41 | | * where + indicates concatenation. P_<hash> can be iterated as many times as |
42 | | * is necessary to produce the required quantity of data. |
43 | | * |
44 | | * A(i) is defined as: |
45 | | * A(0) = seed |
46 | | * A(i) = HMAC_<hash>(secret, A(i-1)) |
47 | | */ |
48 | | |
49 | | /* |
50 | | * Low level APIs (such as DH) are deprecated for public use, but still ok for |
51 | | * internal use. |
52 | | */ |
53 | | #include "internal/deprecated.h" |
54 | | |
55 | | #include <stdio.h> |
56 | | #include <stdarg.h> |
57 | | #include <string.h> |
58 | | #include <openssl/evp.h> |
59 | | #include <openssl/kdf.h> |
60 | | #include <openssl/core_names.h> |
61 | | #include <openssl/params.h> |
62 | | #include <openssl/proverr.h> |
63 | | #include "internal/cryptlib.h" |
64 | | #include "internal/numbers.h" |
65 | | #include "crypto/evp.h" |
66 | | #include "prov/provider_ctx.h" |
67 | | #include "prov/providercommon.h" |
68 | | #include "prov/implementations.h" |
69 | | #include "prov/provider_util.h" |
70 | | #include "prov/securitycheck.h" |
71 | | #include "internal/e_os.h" |
72 | | #include "internal/safe_math.h" |
73 | | |
74 | | OSSL_SAFE_MATH_UNSIGNED(size_t, size_t) |
75 | | |
76 | | static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new; |
77 | | static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup; |
78 | | static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free; |
79 | | static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset; |
80 | | static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive; |
81 | | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params; |
82 | | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params; |
83 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params; |
84 | | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params; |
85 | | |
86 | | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
87 | | const unsigned char *sec, size_t slen, |
88 | | const unsigned char *seed, size_t seed_len, |
89 | | unsigned char *out, size_t olen); |
90 | | |
91 | 0 | #define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74" |
92 | 0 | #define TLS_MD_MASTER_SECRET_CONST_SIZE 13 |
93 | | |
94 | | /* TLS KDF kdf context structure */ |
95 | | typedef struct { |
96 | | void *provctx; |
97 | | |
98 | | /* MAC context for the main digest */ |
99 | | EVP_MAC_CTX *P_hash; |
100 | | /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */ |
101 | | EVP_MAC_CTX *P_sha1; |
102 | | |
103 | | /* Secret value to use for PRF */ |
104 | | unsigned char *sec; |
105 | | size_t seclen; |
106 | | /* Concatenated seed data */ |
107 | | unsigned char *seed; |
108 | | size_t seedlen; |
109 | | } TLS1_PRF; |
110 | | |
111 | | static void *kdf_tls1_prf_new(void *provctx) |
112 | 0 | { |
113 | 0 | TLS1_PRF *ctx; |
114 | |
|
115 | 0 | if (!ossl_prov_is_running()) |
116 | 0 | return NULL; |
117 | | |
118 | 0 | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) |
119 | 0 | ctx->provctx = provctx; |
120 | 0 | return ctx; |
121 | 0 | } |
122 | | |
123 | | static void kdf_tls1_prf_free(void *vctx) |
124 | 0 | { |
125 | 0 | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
126 | |
|
127 | 0 | if (ctx != NULL) { |
128 | 0 | kdf_tls1_prf_reset(ctx); |
129 | 0 | OPENSSL_free(ctx); |
130 | 0 | } |
131 | 0 | } |
132 | | |
133 | | static void kdf_tls1_prf_reset(void *vctx) |
134 | 0 | { |
135 | 0 | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
136 | 0 | void *provctx = ctx->provctx; |
137 | |
|
138 | 0 | EVP_MAC_CTX_free(ctx->P_hash); |
139 | 0 | EVP_MAC_CTX_free(ctx->P_sha1); |
140 | 0 | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
141 | 0 | OPENSSL_clear_free(ctx->seed, ctx->seedlen); |
142 | 0 | memset(ctx, 0, sizeof(*ctx)); |
143 | 0 | ctx->provctx = provctx; |
144 | 0 | } |
145 | | |
146 | | static void *kdf_tls1_prf_dup(void *vctx) |
147 | 0 | { |
148 | 0 | const TLS1_PRF *src = (const TLS1_PRF *)vctx; |
149 | 0 | TLS1_PRF *dest; |
150 | |
|
151 | 0 | dest = kdf_tls1_prf_new(src->provctx); |
152 | 0 | if (dest != NULL) { |
153 | 0 | if (src->P_hash != NULL |
154 | 0 | && (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL) |
155 | 0 | goto err; |
156 | 0 | if (src->P_sha1 != NULL |
157 | 0 | && (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL) |
158 | 0 | goto err; |
159 | 0 | if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen)) |
160 | 0 | goto err; |
161 | 0 | if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed, |
162 | 0 | &dest->seedlen)) |
163 | 0 | goto err; |
164 | 0 | } |
165 | 0 | return dest; |
166 | | |
167 | 0 | err: |
168 | 0 | kdf_tls1_prf_free(dest); |
169 | 0 | return NULL; |
170 | 0 | } |
171 | | |
172 | | static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen, |
173 | | const OSSL_PARAM params[]) |
174 | 0 | { |
175 | 0 | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
176 | 0 | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
177 | |
|
178 | 0 | if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params)) |
179 | 0 | return 0; |
180 | | |
181 | 0 | if (ctx->P_hash == NULL) { |
182 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
183 | 0 | return 0; |
184 | 0 | } |
185 | 0 | if (ctx->sec == NULL) { |
186 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); |
187 | 0 | return 0; |
188 | 0 | } |
189 | 0 | if (ctx->seedlen == 0) { |
190 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED); |
191 | 0 | return 0; |
192 | 0 | } |
193 | 0 | if (keylen == 0) { |
194 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); |
195 | 0 | return 0; |
196 | 0 | } |
197 | | |
198 | | /* |
199 | | * The seed buffer is prepended with a label. |
200 | | * If EMS mode is enforced then the label "master secret" is not allowed, |
201 | | * We do the check this way since the PRF is used for other purposes, as well |
202 | | * as "extended master secret". |
203 | | */ |
204 | 0 | if (ossl_tls1_prf_ems_check_enabled(libctx)) { |
205 | 0 | if (ctx->seedlen >= TLS_MD_MASTER_SECRET_CONST_SIZE |
206 | 0 | && memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST, |
207 | 0 | TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) { |
208 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED); |
209 | 0 | return 0; |
210 | 0 | } |
211 | 0 | } |
212 | | |
213 | 0 | return tls1_prf_alg(ctx->P_hash, ctx->P_sha1, |
214 | 0 | ctx->sec, ctx->seclen, |
215 | 0 | ctx->seed, ctx->seedlen, |
216 | 0 | key, keylen); |
217 | 0 | } |
218 | | |
219 | | static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
220 | 0 | { |
221 | 0 | const OSSL_PARAM *p; |
222 | 0 | TLS1_PRF *ctx = vctx; |
223 | 0 | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
224 | |
|
225 | 0 | if (params == NULL) |
226 | 0 | return 1; |
227 | | |
228 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) { |
229 | 0 | if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) { |
230 | 0 | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
231 | 0 | OSSL_MAC_NAME_HMAC, |
232 | 0 | NULL, SN_md5, libctx) |
233 | 0 | || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params, |
234 | 0 | OSSL_MAC_NAME_HMAC, |
235 | 0 | NULL, SN_sha1, libctx)) |
236 | 0 | return 0; |
237 | 0 | } else { |
238 | 0 | EVP_MAC_CTX_free(ctx->P_sha1); |
239 | 0 | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
240 | 0 | OSSL_MAC_NAME_HMAC, |
241 | 0 | NULL, NULL, libctx)) |
242 | 0 | return 0; |
243 | 0 | } |
244 | 0 | } |
245 | | |
246 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) { |
247 | 0 | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
248 | 0 | ctx->sec = NULL; |
249 | 0 | if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen)) |
250 | 0 | return 0; |
251 | 0 | } |
252 | | /* The seed fields concatenate, so process them all */ |
253 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) { |
254 | 0 | for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, |
255 | 0 | OSSL_KDF_PARAM_SEED)) { |
256 | 0 | if (p->data_size != 0 && p->data != NULL) { |
257 | 0 | const void *val = NULL; |
258 | 0 | size_t sz = 0; |
259 | 0 | unsigned char *seed; |
260 | 0 | size_t seedlen; |
261 | 0 | int err = 0; |
262 | |
|
263 | 0 | if (!OSSL_PARAM_get_octet_string_ptr(p, &val, &sz)) |
264 | 0 | return 0; |
265 | | |
266 | 0 | seedlen = safe_add_size_t(ctx->seedlen, sz, &err); |
267 | 0 | if (err) |
268 | 0 | return 0; |
269 | | |
270 | 0 | seed = OPENSSL_clear_realloc(ctx->seed, ctx->seedlen, seedlen); |
271 | 0 | if (!seed) |
272 | 0 | return 0; |
273 | | |
274 | 0 | ctx->seed = seed; |
275 | 0 | if (ossl_assert(sz != 0)) |
276 | 0 | memcpy(ctx->seed + ctx->seedlen, val, sz); |
277 | 0 | ctx->seedlen = seedlen; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | } |
281 | 0 | return 1; |
282 | 0 | } |
283 | | |
284 | | static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params( |
285 | | ossl_unused void *ctx, ossl_unused void *provctx) |
286 | 0 | { |
287 | 0 | static const OSSL_PARAM known_settable_ctx_params[] = { |
288 | 0 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
289 | 0 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), |
290 | 0 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), |
291 | 0 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0), |
292 | 0 | OSSL_PARAM_END |
293 | 0 | }; |
294 | 0 | return known_settable_ctx_params; |
295 | 0 | } |
296 | | |
297 | | static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
298 | 0 | { |
299 | 0 | OSSL_PARAM *p; |
300 | |
|
301 | 0 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
302 | 0 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
303 | 0 | return -2; |
304 | 0 | } |
305 | | |
306 | | static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params( |
307 | | ossl_unused void *ctx, ossl_unused void *provctx) |
308 | 0 | { |
309 | 0 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
310 | 0 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
311 | 0 | OSSL_PARAM_END |
312 | 0 | }; |
313 | 0 | return known_gettable_ctx_params; |
314 | 0 | } |
315 | | |
316 | | const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = { |
317 | | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new }, |
318 | | { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_tls1_prf_dup }, |
319 | | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free }, |
320 | | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset }, |
321 | | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive }, |
322 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
323 | | (void(*)(void))kdf_tls1_prf_settable_ctx_params }, |
324 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
325 | | (void(*)(void))kdf_tls1_prf_set_ctx_params }, |
326 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
327 | | (void(*)(void))kdf_tls1_prf_gettable_ctx_params }, |
328 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
329 | | (void(*)(void))kdf_tls1_prf_get_ctx_params }, |
330 | | OSSL_DISPATCH_END |
331 | | }; |
332 | | |
333 | | /* |
334 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
335 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
336 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
337 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
338 | | * |
339 | | * P_<hash> is an expansion function that uses a single hash function to expand |
340 | | * a secret and seed into an arbitrary quantity of output: |
341 | | * |
342 | | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
343 | | * HMAC_<hash>(secret, A(2) + seed) + |
344 | | * HMAC_<hash>(secret, A(3) + seed) + ... |
345 | | * |
346 | | * where + indicates concatenation. P_<hash> can be iterated as many times as |
347 | | * is necessary to produce the required quantity of data. |
348 | | * |
349 | | * A(i) is defined as: |
350 | | * A(0) = seed |
351 | | * A(i) = HMAC_<hash>(secret, A(i-1)) |
352 | | */ |
353 | | static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init, |
354 | | const unsigned char *sec, size_t sec_len, |
355 | | const unsigned char *seed, size_t seed_len, |
356 | | unsigned char *out, size_t olen) |
357 | 0 | { |
358 | 0 | size_t chunk; |
359 | 0 | EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL; |
360 | 0 | unsigned char Ai[EVP_MAX_MD_SIZE]; |
361 | 0 | size_t Ai_len; |
362 | 0 | int ret = 0; |
363 | |
|
364 | 0 | if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL)) |
365 | 0 | goto err; |
366 | 0 | chunk = EVP_MAC_CTX_get_mac_size(ctx_init); |
367 | 0 | if (chunk == 0) |
368 | 0 | goto err; |
369 | | /* A(0) = seed */ |
370 | 0 | ctx_Ai = EVP_MAC_CTX_dup(ctx_init); |
371 | 0 | if (ctx_Ai == NULL) |
372 | 0 | goto err; |
373 | 0 | if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) |
374 | 0 | goto err; |
375 | | |
376 | 0 | for (;;) { |
377 | | /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */ |
378 | 0 | if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) |
379 | 0 | goto err; |
380 | 0 | EVP_MAC_CTX_free(ctx_Ai); |
381 | 0 | ctx_Ai = NULL; |
382 | | |
383 | | /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */ |
384 | 0 | ctx = EVP_MAC_CTX_dup(ctx_init); |
385 | 0 | if (ctx == NULL) |
386 | 0 | goto err; |
387 | 0 | if (!EVP_MAC_update(ctx, Ai, Ai_len)) |
388 | 0 | goto err; |
389 | | /* save state for calculating next A(i) value */ |
390 | 0 | if (olen > chunk) { |
391 | 0 | ctx_Ai = EVP_MAC_CTX_dup(ctx); |
392 | 0 | if (ctx_Ai == NULL) |
393 | 0 | goto err; |
394 | 0 | } |
395 | 0 | if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) |
396 | 0 | goto err; |
397 | 0 | if (olen <= chunk) { |
398 | | /* last chunk - use Ai as temp bounce buffer */ |
399 | 0 | if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) |
400 | 0 | goto err; |
401 | 0 | memcpy(out, Ai, olen); |
402 | 0 | break; |
403 | 0 | } |
404 | 0 | if (!EVP_MAC_final(ctx, out, NULL, olen)) |
405 | 0 | goto err; |
406 | 0 | EVP_MAC_CTX_free(ctx); |
407 | 0 | ctx = NULL; |
408 | 0 | out += chunk; |
409 | 0 | olen -= chunk; |
410 | 0 | } |
411 | 0 | ret = 1; |
412 | 0 | err: |
413 | 0 | EVP_MAC_CTX_free(ctx); |
414 | 0 | EVP_MAC_CTX_free(ctx_Ai); |
415 | 0 | OPENSSL_cleanse(Ai, sizeof(Ai)); |
416 | 0 | return ret; |
417 | 0 | } |
418 | | |
419 | | /* |
420 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
421 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
422 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
423 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
424 | | * |
425 | | * For TLS v1.0 and TLS v1.1: |
426 | | * |
427 | | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
428 | | * P_SHA-1(S2, label + seed) |
429 | | * |
430 | | * S1 is taken from the first half of the secret, S2 from the second half. |
431 | | * |
432 | | * L_S = length in bytes of secret; |
433 | | * L_S1 = L_S2 = ceil(L_S / 2); |
434 | | * |
435 | | * For TLS v1.2: |
436 | | * |
437 | | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
438 | | */ |
439 | | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
440 | | const unsigned char *sec, size_t slen, |
441 | | const unsigned char *seed, size_t seed_len, |
442 | | unsigned char *out, size_t olen) |
443 | 0 | { |
444 | 0 | if (sha1ctx != NULL) { |
445 | | /* TLS v1.0 and TLS v1.1 */ |
446 | 0 | size_t i; |
447 | 0 | unsigned char *tmp; |
448 | | /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ |
449 | 0 | size_t L_S1 = (slen + 1) / 2; |
450 | 0 | size_t L_S2 = L_S1; |
451 | |
|
452 | 0 | if (!tls1_prf_P_hash(mdctx, sec, L_S1, |
453 | 0 | seed, seed_len, out, olen)) |
454 | 0 | return 0; |
455 | | |
456 | 0 | if ((tmp = OPENSSL_malloc(olen)) == NULL) |
457 | 0 | return 0; |
458 | | |
459 | 0 | if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2, |
460 | 0 | seed, seed_len, tmp, olen)) { |
461 | 0 | OPENSSL_clear_free(tmp, olen); |
462 | 0 | return 0; |
463 | 0 | } |
464 | 0 | for (i = 0; i < olen; i++) |
465 | 0 | out[i] ^= tmp[i]; |
466 | 0 | OPENSSL_clear_free(tmp, olen); |
467 | 0 | return 1; |
468 | 0 | } |
469 | | |
470 | | /* TLS v1.2 */ |
471 | 0 | if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen)) |
472 | 0 | return 0; |
473 | | |
474 | 0 | return 1; |
475 | 0 | } |