Coverage Report

Created: 2024-05-21 06:33

/src/util-linux/lib/md5.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * This code implements the MD5 message-digest algorithm.
3
 * The algorithm is due to Ron Rivest.  This code was
4
 * written by Colin Plumb in 1993, no copyright is claimed.
5
 * This code is in the public domain; do with it what you wish.
6
 *
7
 * Equivalent code is available from RSA Data Security, Inc.
8
 * This code has been tested against that, and is equivalent,
9
 * except that you don't need to include two pages of legalese
10
 * with every copy.
11
 *
12
 * To compute the message digest of a chunk of bytes, declare an
13
 * MD5Context structure, pass it to MD5Init, call MD5Update as
14
 * needed on buffers full of bytes, and then call MD5Final, which
15
 * will fill a supplied 16-byte array with the digest.
16
 */
17
#include <string.h>   /* for memcpy() */
18
19
#include "md5.h"
20
21
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
22
# define byteReverse(buf, len)  /* Nothing */
23
#else
24
static void byteReverse(unsigned char *buf, unsigned longs);
25
26
#ifndef ASM_MD5
27
/*
28
 * Note: this code is harmless on little-endian machines.
29
 */
30
static void byteReverse(unsigned char *buf, unsigned longs)
31
{
32
    uint32_t t;
33
    do {
34
  t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
35
      ((unsigned) buf[1] << 8 | buf[0]);
36
  *(uint32_t *) buf = t;
37
  buf += 4;
38
    } while (--longs);
39
}
40
#endif /* !ASM_MD5 */
41
#endif /* __ORDER_LITTLE_ENDIAN__ */
42
43
/*
44
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
45
 * initialization constants.
46
 */
47
void ul_MD5Init(struct UL_MD5Context *ctx)
48
134
{
49
134
    ctx->buf[0] = 0x67452301;
50
134
    ctx->buf[1] = 0xefcdab89;
51
134
    ctx->buf[2] = 0x98badcfe;
52
134
    ctx->buf[3] = 0x10325476;
53
54
134
    ctx->bits[0] = 0;
55
134
    ctx->bits[1] = 0;
56
134
}
57
58
/*
59
 * Update context to reflect the concatenation of another buffer full
60
 * of bytes.
61
 */
62
void ul_MD5Update(struct UL_MD5Context *ctx, unsigned char const *buf, unsigned len)
63
268
{
64
268
    uint32_t t;
65
66
    /* Update bitcount */
67
68
268
    t = ctx->bits[0];
69
268
    if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
70
0
  ctx->bits[1]++;   /* Carry from low to high */
71
268
    ctx->bits[1] += len >> 29;
72
73
268
    t = (t >> 3) & 0x3f;  /* Bytes already in shsInfo->data */
74
75
    /* Handle any leading odd-sized chunks */
76
77
268
    if (t) {
78
134
  unsigned char *p = (unsigned char *) ctx->in + t;
79
80
134
  t = 64 - t;
81
134
  if (len < t) {
82
134
      memcpy(p, buf, len);
83
134
      return;
84
134
  }
85
0
  memcpy(p, buf, t);
86
0
  byteReverse(ctx->in, 16);
87
0
  ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
88
0
  buf += t;
89
0
  len -= t;
90
0
    }
91
    /* Process data in 64-byte chunks */
92
93
134
    while (len >= 64) {
94
0
  memcpy(ctx->in, buf, 64);
95
0
  byteReverse(ctx->in, 16);
96
0
  ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
97
0
  buf += 64;
98
0
  len -= 64;
99
0
    }
100
101
    /* Handle any remaining bytes of data. */
102
103
134
    memcpy(ctx->in, buf, len);
104
134
}
105
106
/*
107
 * Final wrapup - pad to 64-byte boundary with the bit pattern
108
 * 1 0* (64-bit count of bits processed, MSB-first)
109
 */
110
void ul_MD5Final(unsigned char digest[UL_MD5LENGTH], struct UL_MD5Context *ctx)
111
134
{
112
134
    unsigned count;
113
134
    unsigned char *p;
114
115
    /* Compute number of bytes mod 64 */
116
134
    count = (ctx->bits[0] >> 3) & 0x3F;
117
118
    /* Set the first char of padding to 0x80.  This is safe since there is
119
       always at least one byte free */
120
134
    p = ctx->in + count;
121
134
    *p++ = 0x80;
122
123
    /* Bytes of padding needed to make 64 bytes */
124
134
    count = 64 - 1 - count;
125
126
    /* Pad out to 56 mod 64 */
127
134
    if (count < 8) {
128
  /* Two lots of padding:  Pad the first block to 64 bytes */
129
0
  memset(p, 0, count);
130
0
  byteReverse(ctx->in, 16);
131
0
  ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
132
133
  /* Now fill the next block with 56 bytes */
134
0
  memset(ctx->in, 0, 56);
135
134
    } else {
136
  /* Pad block to 56 bytes */
137
134
  memset(p, 0, count - 8);
138
134
    }
139
134
    byteReverse(ctx->in, 14);
140
141
    /* Append length in bits and transform.
142
     * Use memcpy to avoid aliasing problems.  On most systems,
143
     * this will be optimized away to the same code.
144
     */
145
134
    memcpy(&ctx->in[14 * sizeof(uint32_t)], &ctx->bits[0], 4);
146
134
    memcpy(&ctx->in[15 * sizeof(uint32_t)], &ctx->bits[1], 4);
147
148
134
    ul_MD5Transform(ctx->buf, (uint32_t *) ctx->in);
149
134
    byteReverse((unsigned char *) ctx->buf, 4);
150
134
    memcpy(digest, ctx->buf, UL_MD5LENGTH);
151
134
    memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
152
134
}
153
154
#ifndef ASM_MD5
155
156
/* The four core functions - F1 is optimized somewhat */
157
158
/* #define F1(x, y, z) (x & y | ~x & z) */
159
4.28k
#define F1(x, y, z) (z ^ (x & (y ^ z)))
160
2.14k
#define F2(x, y, z) F1(z, x, y)
161
2.14k
#define F3(x, y, z) (x ^ y ^ z)
162
2.14k
#define F4(x, y, z) (y ^ (x | ~z))
163
164
/* This is the central step in the MD5 algorithm. */
165
#define MD5STEP(f, w, x, y, z, data, s) \
166
8.57k
  ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
167
168
/*
169
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
170
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
171
 * the data and converts bytes into longwords for this routine.
172
 */
173
void ul_MD5Transform(uint32_t buf[4], uint32_t const in[16])
174
134
{
175
134
    register uint32_t a, b, c, d;
176
177
134
    a = buf[0];
178
134
    b = buf[1];
179
134
    c = buf[2];
180
134
    d = buf[3];
181
182
134
    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
183
134
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
184
134
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
185
134
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
186
134
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
187
134
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
188
134
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
189
134
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
190
134
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
191
134
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
192
134
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
193
134
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
194
134
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
195
134
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
196
134
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
197
134
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
198
199
134
    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
200
134
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
201
134
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
202
134
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
203
134
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
204
134
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
205
134
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
206
134
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
207
134
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
208
134
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
209
134
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
210
134
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
211
134
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
212
134
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
213
134
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
214
134
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
215
216
134
    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
217
134
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
218
134
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
219
134
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
220
134
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
221
134
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
222
134
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
223
134
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
224
134
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
225
134
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
226
134
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
227
134
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
228
134
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
229
134
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
230
134
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
231
134
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
232
233
134
    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
234
134
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
235
134
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
236
134
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
237
134
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
238
134
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
239
134
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
240
134
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
241
134
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
242
134
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
243
134
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
244
134
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
245
134
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
246
134
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
247
134
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
248
134
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
249
250
134
    buf[0] += a;
251
134
    buf[1] += b;
252
134
    buf[2] += c;
253
134
    buf[3] += d;
254
134
}
255
256
#endif
257