/src/cryptsetup/lib/luks2/luks2_luks1_convert.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // SPDX-License-Identifier: GPL-2.0-or-later  | 
2  |  | /*  | 
3  |  |  * LUKS - Linux Unified Key Setup v2, LUKS1 conversion code  | 
4  |  |  *  | 
5  |  |  * Copyright (C) 2015-2025 Red Hat, Inc. All rights reserved.  | 
6  |  |  * Copyright (C) 2015-2025 Ondrej Kozina  | 
7  |  |  * Copyright (C) 2015-2025 Milan Broz  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include "luks2_internal.h"  | 
11  |  | #include "../luks1/luks.h"  | 
12  |  | #include "../luks1/af.h"  | 
13  |  |  | 
14  |  | /* This differs from LUKS_check_cipher() that it does not check dm-crypt fallback. */  | 
15  |  | int LUKS2_check_cipher(struct crypt_device *cd,  | 
16  |  |           size_t keylength,  | 
17  |  |           const char *cipher,  | 
18  |  |           const char *cipher_mode)  | 
19  | 0  | { | 
20  | 0  |   int r;  | 
21  | 0  |   struct crypt_storage *s;  | 
22  | 0  |   char buf[SECTOR_SIZE], *empty_key;  | 
23  |  | 
  | 
24  | 0  |   log_dbg(cd, "Checking if cipher %s-%s is usable (storage wrapper).", cipher, cipher_mode);  | 
25  |  | 
  | 
26  | 0  |   empty_key = crypt_safe_alloc(keylength);  | 
27  | 0  |   if (!empty_key)  | 
28  | 0  |     return -ENOMEM;  | 
29  |  |  | 
30  |  |   /* No need to get KEY quality random but it must avoid known weak keys. */  | 
31  | 0  |   r = crypt_random_get(cd, empty_key, keylength, CRYPT_RND_NORMAL);  | 
32  | 0  |   if (r < 0)  | 
33  | 0  |     goto out;  | 
34  |  |  | 
35  | 0  |   r = crypt_storage_init(&s, SECTOR_SIZE, cipher, cipher_mode, empty_key, keylength, false);  | 
36  | 0  |   if (r < 0)  | 
37  | 0  |     goto out;  | 
38  |  |  | 
39  | 0  |   memset(buf, 0, sizeof(buf));  | 
40  | 0  |   r = crypt_storage_decrypt(s, 0, sizeof(buf), buf);  | 
41  | 0  |   crypt_storage_destroy(s);  | 
42  | 0  | out:  | 
43  | 0  |   crypt_safe_free(empty_key);  | 
44  | 0  |   crypt_safe_memzero(buf, sizeof(buf));  | 
45  | 0  |   return r;  | 
46  | 0  | }  | 
47  |  |  | 
48  |  | static int json_luks1_keyslot(const struct luks_phdr *hdr_v1, int keyslot, struct json_object **keyslot_object)  | 
49  | 0  | { | 
50  | 0  |   char *base64_str, cipher[LUKS_CIPHERNAME_L+LUKS_CIPHERMODE_L];  | 
51  | 0  |   size_t base64_len;  | 
52  | 0  |   struct json_object *keyslot_obj, *field, *jobj_kdf, *jobj_af, *jobj_area;  | 
53  | 0  |   uint64_t offset, area_size, length;  | 
54  | 0  |   int r;  | 
55  |  | 
  | 
56  | 0  |   keyslot_obj = json_object_new_object();  | 
57  | 0  |   if (!keyslot_obj) { | 
58  | 0  |     r = -ENOMEM;  | 
59  | 0  |     goto err;  | 
60  | 0  |   }  | 
61  |  |  | 
62  | 0  |   json_object_object_add(keyslot_obj, "type", json_object_new_string("luks2")); | 
63  | 0  |   json_object_object_add(keyslot_obj, "key_size", json_object_new_int64(hdr_v1->keyBytes));  | 
64  |  |  | 
65  |  |   /* KDF */  | 
66  | 0  |   jobj_kdf = json_object_new_object();  | 
67  | 0  |   if (!jobj_kdf) { | 
68  | 0  |     r = -ENOMEM;  | 
69  | 0  |     goto err;  | 
70  | 0  |   }  | 
71  |  |  | 
72  | 0  |   json_object_object_add(jobj_kdf, "type", json_object_new_string(CRYPT_KDF_PBKDF2));  | 
73  | 0  |   json_object_object_add(jobj_kdf, "hash", json_object_new_string(hdr_v1->hashSpec));  | 
74  | 0  |   json_object_object_add(jobj_kdf, "iterations", json_object_new_int64(hdr_v1->keyblock[keyslot].passwordIterations));  | 
75  |  |   /* salt field */  | 
76  | 0  |   r = crypt_base64_encode(&base64_str, &base64_len, hdr_v1->keyblock[keyslot].passwordSalt, LUKS_SALTSIZE);  | 
77  | 0  |   if (r < 0) { | 
78  | 0  |     json_object_put(keyslot_obj);  | 
79  | 0  |     json_object_put(jobj_kdf);  | 
80  | 0  |     return r;  | 
81  | 0  |   }  | 
82  | 0  |   field = json_object_new_string_len(base64_str, base64_len);  | 
83  | 0  |   free(base64_str);  | 
84  | 0  |   json_object_object_add(jobj_kdf, "salt", field);  | 
85  | 0  |   json_object_object_add(keyslot_obj, "kdf", jobj_kdf);  | 
86  |  |  | 
87  |  |   /* AF */  | 
88  | 0  |   jobj_af = json_object_new_object();  | 
89  | 0  |   if (!jobj_af) { | 
90  | 0  |     r = -ENOMEM;  | 
91  | 0  |     goto err;  | 
92  | 0  |   }  | 
93  |  |  | 
94  | 0  |   json_object_object_add(jobj_af, "type", json_object_new_string("luks1")); | 
95  | 0  |   json_object_object_add(jobj_af, "hash", json_object_new_string(hdr_v1->hashSpec));  | 
96  |  |   /* stripes field ignored, fixed to LUKS_STRIPES (4000) */  | 
97  | 0  |   json_object_object_add(jobj_af, "stripes", json_object_new_int(LUKS_STRIPES));  | 
98  | 0  |   json_object_object_add(keyslot_obj, "af", jobj_af);  | 
99  |  |  | 
100  |  |   /* Area */  | 
101  | 0  |   jobj_area = json_object_new_object();  | 
102  | 0  |   if (!jobj_area) { | 
103  | 0  |     r = -ENOMEM;  | 
104  | 0  |     goto err;  | 
105  | 0  |   }  | 
106  |  |  | 
107  | 0  |   json_object_object_add(jobj_area, "type", json_object_new_string("raw")); | 
108  |  |  | 
109  |  |   /* encryption algorithm field */  | 
110  | 0  |   if (*hdr_v1->cipherMode != '\0') { | 
111  | 0  |     if (snprintf(cipher, sizeof(cipher), "%s-%s", hdr_v1->cipherName, hdr_v1->cipherMode) < 0) { | 
112  | 0  |       json_object_put(keyslot_obj);  | 
113  | 0  |       json_object_put(jobj_area);  | 
114  | 0  |       return -EINVAL;  | 
115  | 0  |     }  | 
116  | 0  |     json_object_object_add(jobj_area, "encryption", json_object_new_string(cipher));  | 
117  | 0  |   } else  | 
118  | 0  |     json_object_object_add(jobj_area, "encryption", json_object_new_string(hdr_v1->cipherName));  | 
119  |  |  | 
120  |  |   /* area */  | 
121  | 0  |   if (LUKS_keyslot_area(hdr_v1, keyslot, &offset, &length)) { | 
122  | 0  |     json_object_put(keyslot_obj);  | 
123  | 0  |     json_object_put(jobj_area);  | 
124  | 0  |     return -EINVAL;  | 
125  | 0  |   }  | 
126  | 0  |   area_size = size_round_up(length, 4096);  | 
127  | 0  |   json_object_object_add(jobj_area, "key_size", json_object_new_int(hdr_v1->keyBytes));  | 
128  | 0  |   json_object_object_add(jobj_area, "offset", crypt_jobj_new_uint64(offset));  | 
129  | 0  |   json_object_object_add(jobj_area, "size", crypt_jobj_new_uint64(area_size));  | 
130  | 0  |   json_object_object_add(keyslot_obj, "area", jobj_area);  | 
131  |  | 
  | 
132  | 0  |   *keyslot_object = keyslot_obj;  | 
133  | 0  |   return 0;  | 
134  | 0  | err:  | 
135  | 0  |   json_object_put(keyslot_obj);  | 
136  | 0  |   return r;  | 
137  | 0  | }  | 
138  |  |  | 
139  |  | static int json_luks1_keyslots(const struct luks_phdr *hdr_v1, struct json_object **keyslots_object)  | 
140  | 0  | { | 
141  | 0  |   int keyslot, r;  | 
142  | 0  |   struct json_object *keyslot_obj, *field;  | 
143  |  | 
  | 
144  | 0  |   keyslot_obj = json_object_new_object();  | 
145  | 0  |   if (!keyslot_obj)  | 
146  | 0  |     return -ENOMEM;  | 
147  |  |  | 
148  | 0  |   for (keyslot = 0; keyslot < LUKS_NUMKEYS; keyslot++) { | 
149  | 0  |     if (hdr_v1->keyblock[keyslot].active != LUKS_KEY_ENABLED)  | 
150  | 0  |       continue;  | 
151  | 0  |     r = json_luks1_keyslot(hdr_v1, keyslot, &field);  | 
152  | 0  |     if (r) { | 
153  | 0  |       json_object_put(keyslot_obj);  | 
154  | 0  |       return r;  | 
155  | 0  |     }  | 
156  | 0  |     r = json_object_object_add_by_uint(keyslot_obj, keyslot, field);  | 
157  | 0  |     if (r) { | 
158  | 0  |       json_object_put(field);  | 
159  | 0  |       json_object_put(keyslot_obj);  | 
160  | 0  |       return r;  | 
161  | 0  |     }  | 
162  | 0  |   }  | 
163  |  |  | 
164  | 0  |   *keyslots_object = keyslot_obj;  | 
165  | 0  |   return 0;  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | static int json_luks1_segment(const struct luks_phdr *hdr_v1, struct json_object **segment_object)  | 
169  | 0  | { | 
170  | 0  |   const char *c;  | 
171  | 0  |   char cipher[LUKS_CIPHERNAME_L+LUKS_CIPHERMODE_L];  | 
172  | 0  |   struct json_object *segment_obj, *field;  | 
173  | 0  |   uint64_t number;  | 
174  |  | 
  | 
175  | 0  |   segment_obj = json_object_new_object();  | 
176  | 0  |   if (!segment_obj)  | 
177  | 0  |     return -ENOMEM;  | 
178  |  |  | 
179  |  |   /* type field */  | 
180  | 0  |   field = json_object_new_string("crypt"); | 
181  | 0  |   if (!field) { | 
182  | 0  |     json_object_put(segment_obj);  | 
183  | 0  |     return -ENOMEM;  | 
184  | 0  |   }  | 
185  | 0  |   json_object_object_add(segment_obj, "type", field);  | 
186  |  |  | 
187  |  |   /* offset field */  | 
188  | 0  |   number = (uint64_t)hdr_v1->payloadOffset * SECTOR_SIZE;  | 
189  |  | 
  | 
190  | 0  |   field = crypt_jobj_new_uint64(number);  | 
191  | 0  |   if (!field) { | 
192  | 0  |     json_object_put(segment_obj);  | 
193  | 0  |     return -ENOMEM;  | 
194  | 0  |   }  | 
195  | 0  |   json_object_object_add(segment_obj, "offset", field);  | 
196  |  |  | 
197  |  |   /* iv_tweak field */  | 
198  | 0  |   field = json_object_new_string("0"); | 
199  | 0  |   if (!field) { | 
200  | 0  |     json_object_put(segment_obj);  | 
201  | 0  |     return -ENOMEM;  | 
202  | 0  |   }  | 
203  | 0  |   json_object_object_add(segment_obj, "iv_tweak", field);  | 
204  |  |  | 
205  |  |   /* length field */  | 
206  | 0  |   field = json_object_new_string("dynamic"); | 
207  | 0  |   if (!field) { | 
208  | 0  |     json_object_put(segment_obj);  | 
209  | 0  |     return -ENOMEM;  | 
210  | 0  |   }  | 
211  | 0  |   json_object_object_add(segment_obj, "size", field);  | 
212  |  |  | 
213  |  |   /* cipher field */  | 
214  | 0  |   if (*hdr_v1->cipherMode != '\0') { | 
215  | 0  |     if (snprintf(cipher, sizeof(cipher), "%s-%s", hdr_v1->cipherName, hdr_v1->cipherMode) < 0) { | 
216  | 0  |       json_object_put(segment_obj);  | 
217  | 0  |       return -EINVAL;  | 
218  | 0  |     }  | 
219  | 0  |     c = cipher;  | 
220  | 0  |   } else  | 
221  | 0  |     c = hdr_v1->cipherName;  | 
222  |  |  | 
223  | 0  |   field = json_object_new_string(c);  | 
224  | 0  |   if (!field) { | 
225  | 0  |     json_object_put(segment_obj);  | 
226  | 0  |     return -ENOMEM;  | 
227  | 0  |   }  | 
228  | 0  |   json_object_object_add(segment_obj, "encryption", field);  | 
229  |  |  | 
230  |  |   /* block field */  | 
231  | 0  |   field = json_object_new_int(SECTOR_SIZE);  | 
232  | 0  |   if (!field) { | 
233  | 0  |     json_object_put(segment_obj);  | 
234  | 0  |     return -ENOMEM;  | 
235  | 0  |   }  | 
236  | 0  |   json_object_object_add(segment_obj, "sector_size", field);  | 
237  |  | 
  | 
238  | 0  |   *segment_object = segment_obj;  | 
239  | 0  |   return 0;  | 
240  | 0  | }  | 
241  |  |  | 
242  |  | static int json_luks1_segments(const struct luks_phdr *hdr_v1, struct json_object **segments_object)  | 
243  | 0  | { | 
244  | 0  |   int r;  | 
245  | 0  |   struct json_object *segments_obj, *field;  | 
246  |  | 
  | 
247  | 0  |   segments_obj = json_object_new_object();  | 
248  | 0  |   if (!segments_obj)  | 
249  | 0  |     return -ENOMEM;  | 
250  |  |  | 
251  | 0  |   r = json_luks1_segment(hdr_v1, &field);  | 
252  | 0  |   if (r) { | 
253  | 0  |     json_object_put(segments_obj);  | 
254  | 0  |     return r;  | 
255  | 0  |   }  | 
256  | 0  |   r = json_object_object_add_by_uint(segments_obj, 0, field);  | 
257  | 0  |   if (r) { | 
258  | 0  |     json_object_put(field);  | 
259  | 0  |     json_object_put(segments_obj);  | 
260  | 0  |     return r;  | 
261  | 0  |   }  | 
262  |  |  | 
263  | 0  |   *segments_object = segments_obj;  | 
264  | 0  |   return 0;  | 
265  | 0  | }  | 
266  |  |  | 
267  |  | static int json_luks1_digest(const struct luks_phdr *hdr_v1, struct json_object **digest_object)  | 
268  | 0  | { | 
269  | 0  |   char keyslot_str[16], *base64_str;  | 
270  | 0  |   int r, ks;  | 
271  | 0  |   size_t base64_len;  | 
272  | 0  |   struct json_object *digest_obj, *array, *field;  | 
273  |  | 
  | 
274  | 0  |   digest_obj = json_object_new_object();  | 
275  | 0  |   if (!digest_obj)  | 
276  | 0  |     return -ENOMEM;  | 
277  |  |  | 
278  |  |   /* type field */  | 
279  | 0  |   field = json_object_new_string("pbkdf2"); | 
280  | 0  |   if (!field) { | 
281  | 0  |     json_object_put(digest_obj);  | 
282  | 0  |     return -ENOMEM;  | 
283  | 0  |   }  | 
284  | 0  |   json_object_object_add(digest_obj, "type", field);  | 
285  |  |  | 
286  |  |   /* keyslots array */  | 
287  | 0  |   array = json_object_new_array();  | 
288  | 0  |   if (!array) { | 
289  | 0  |     json_object_put(digest_obj);  | 
290  | 0  |     return -ENOMEM;  | 
291  | 0  |   }  | 
292  | 0  |   json_object_object_add(digest_obj, "keyslots", json_object_get(array));  | 
293  |  | 
  | 
294  | 0  |   for (ks = 0; ks < LUKS_NUMKEYS; ks++) { | 
295  | 0  |     if (hdr_v1->keyblock[ks].active != LUKS_KEY_ENABLED)  | 
296  | 0  |       continue;  | 
297  | 0  |     if (snprintf(keyslot_str, sizeof(keyslot_str), "%d", ks) < 0) { | 
298  | 0  |       json_object_put(field);  | 
299  | 0  |       json_object_put(array);  | 
300  | 0  |       json_object_put(digest_obj);  | 
301  | 0  |       return -EINVAL;  | 
302  | 0  |     }  | 
303  |  |  | 
304  | 0  |     field = json_object_new_string(keyslot_str);  | 
305  | 0  |     if (!field || json_object_array_add(array, field) < 0) { | 
306  | 0  |       json_object_put(field);  | 
307  | 0  |       json_object_put(array);  | 
308  | 0  |       json_object_put(digest_obj);  | 
309  | 0  |       return -ENOMEM;  | 
310  | 0  |     }  | 
311  | 0  |   }  | 
312  |  |  | 
313  | 0  |   json_object_put(array);  | 
314  |  |  | 
315  |  |   /* segments array */  | 
316  | 0  |   array = json_object_new_array();  | 
317  | 0  |   if (!array) { | 
318  | 0  |     json_object_put(digest_obj);  | 
319  | 0  |     return -ENOMEM;  | 
320  | 0  |   }  | 
321  | 0  |   json_object_object_add(digest_obj, "segments", json_object_get(array));  | 
322  |  | 
  | 
323  | 0  |   field = json_object_new_string("0"); | 
324  | 0  |   if (!field || json_object_array_add(array, field) < 0) { | 
325  | 0  |     json_object_put(field);  | 
326  | 0  |     json_object_put(array);  | 
327  | 0  |     json_object_put(digest_obj);  | 
328  | 0  |     return -ENOMEM;  | 
329  | 0  |   }  | 
330  |  |  | 
331  | 0  |   json_object_put(array);  | 
332  |  |  | 
333  |  |   /* hash field */  | 
334  | 0  |   field = json_object_new_string(hdr_v1->hashSpec);  | 
335  | 0  |   if (!field) { | 
336  | 0  |     json_object_put(digest_obj);  | 
337  | 0  |     return -ENOMEM;  | 
338  | 0  |   }  | 
339  | 0  |   json_object_object_add(digest_obj, "hash", field);  | 
340  |  |  | 
341  |  |   /* salt field */  | 
342  | 0  |   r = crypt_base64_encode(&base64_str, &base64_len, hdr_v1->mkDigestSalt, LUKS_SALTSIZE);  | 
343  | 0  |   if (r < 0) { | 
344  | 0  |     json_object_put(digest_obj);  | 
345  | 0  |     return r;  | 
346  | 0  |   }  | 
347  |  |  | 
348  | 0  |   field = json_object_new_string_len(base64_str, base64_len);  | 
349  | 0  |   free(base64_str);  | 
350  | 0  |   if (!field) { | 
351  | 0  |     json_object_put(digest_obj);  | 
352  | 0  |     return -ENOMEM;  | 
353  | 0  |   }  | 
354  | 0  |   json_object_object_add(digest_obj, "salt", field);  | 
355  |  |  | 
356  |  |   /* digest field */  | 
357  | 0  |   r = crypt_base64_encode(&base64_str, &base64_len, hdr_v1->mkDigest, LUKS_DIGESTSIZE);  | 
358  | 0  |   if (r < 0) { | 
359  | 0  |     json_object_put(digest_obj);  | 
360  | 0  |     return r;  | 
361  | 0  |   }  | 
362  |  |  | 
363  | 0  |   field = json_object_new_string_len(base64_str, base64_len);  | 
364  | 0  |   free(base64_str);  | 
365  | 0  |   if (!field) { | 
366  | 0  |     json_object_put(digest_obj);  | 
367  | 0  |     return -ENOMEM;  | 
368  | 0  |   }  | 
369  | 0  |   json_object_object_add(digest_obj, "digest", field);  | 
370  |  |  | 
371  |  |   /* iterations field */  | 
372  | 0  |   field = json_object_new_int64(hdr_v1->mkDigestIterations);  | 
373  | 0  |   if (!field) { | 
374  | 0  |     json_object_put(digest_obj);  | 
375  | 0  |     return -ENOMEM;  | 
376  | 0  |   }  | 
377  | 0  |   json_object_object_add(digest_obj, "iterations", field);  | 
378  |  | 
  | 
379  | 0  |   *digest_object = digest_obj;  | 
380  | 0  |   return 0;  | 
381  | 0  | }  | 
382  |  |  | 
383  |  | static int json_luks1_digests(const struct luks_phdr *hdr_v1, struct json_object **digests_object)  | 
384  | 0  | { | 
385  | 0  |   int r;  | 
386  | 0  |   struct json_object *digests_obj, *field;  | 
387  |  | 
  | 
388  | 0  |   digests_obj = json_object_new_object();  | 
389  | 0  |   if (!digests_obj)  | 
390  | 0  |     return -ENOMEM;  | 
391  |  |  | 
392  | 0  |   r = json_luks1_digest(hdr_v1, &field);  | 
393  | 0  |   if (r) { | 
394  | 0  |     json_object_put(digests_obj);  | 
395  | 0  |     return r;  | 
396  | 0  |   }  | 
397  | 0  |   json_object_object_add(digests_obj, "0", field);  | 
398  |  | 
  | 
399  | 0  |   *digests_object = digests_obj;  | 
400  | 0  |   return 0;  | 
401  | 0  | }  | 
402  |  |  | 
403  |  | static int json_luks1_object(struct luks_phdr *hdr_v1, struct json_object **luks1_object, uint64_t keyslots_size)  | 
404  | 0  | { | 
405  | 0  |   int r;  | 
406  | 0  |   struct json_object *luks1_obj, *field;  | 
407  | 0  |   uint64_t json_size;  | 
408  |  | 
  | 
409  | 0  |   luks1_obj = json_object_new_object();  | 
410  | 0  |   if (!luks1_obj)  | 
411  | 0  |     return -ENOMEM;  | 
412  |  |  | 
413  |  |   /* keyslots field */  | 
414  | 0  |   r = json_luks1_keyslots(hdr_v1, &field);  | 
415  | 0  |   if (r) { | 
416  | 0  |     json_object_put(luks1_obj);  | 
417  | 0  |     return r;  | 
418  | 0  |   }  | 
419  | 0  |   json_object_object_add(luks1_obj, "keyslots", field);  | 
420  |  |  | 
421  |  |   /* tokens field */  | 
422  | 0  |   field = json_object_new_object();  | 
423  | 0  |   if (!field) { | 
424  | 0  |     json_object_put(luks1_obj);  | 
425  | 0  |     return -ENOMEM;  | 
426  | 0  |   }  | 
427  | 0  |   json_object_object_add(luks1_obj, "tokens", field);  | 
428  |  |  | 
429  |  |   /* segments field */  | 
430  | 0  |   r = json_luks1_segments(hdr_v1, &field);  | 
431  | 0  |   if (r) { | 
432  | 0  |     json_object_put(luks1_obj);  | 
433  | 0  |     return r;  | 
434  | 0  |   }  | 
435  | 0  |   json_object_object_add(luks1_obj, "segments", field);  | 
436  |  |  | 
437  |  |   /* digests field */  | 
438  | 0  |   r = json_luks1_digests(hdr_v1, &field);  | 
439  | 0  |   if (r) { | 
440  | 0  |     json_object_put(luks1_obj);  | 
441  | 0  |     return r;  | 
442  | 0  |   }  | 
443  | 0  |   json_object_object_add(luks1_obj, "digests", field);  | 
444  |  |  | 
445  |  |   /* config field */  | 
446  |  |   /* anything else? */  | 
447  | 0  |   field = json_object_new_object();  | 
448  | 0  |   if (!field) { | 
449  | 0  |     json_object_put(luks1_obj);  | 
450  | 0  |     return -ENOMEM;  | 
451  | 0  |   }  | 
452  | 0  |   json_object_object_add(luks1_obj, "config", field);  | 
453  |  | 
  | 
454  | 0  |   json_size = LUKS2_HDR_16K_LEN - LUKS2_HDR_BIN_LEN;  | 
455  | 0  |   json_object_object_add(field, "json_size", crypt_jobj_new_uint64(json_size));  | 
456  | 0  |   keyslots_size -= (keyslots_size % 4096);  | 
457  | 0  |   json_object_object_add(field, "keyslots_size", crypt_jobj_new_uint64(keyslots_size));  | 
458  |  | 
  | 
459  | 0  |   *luks1_object = luks1_obj;  | 
460  | 0  |   return 0;  | 
461  | 0  | }  | 
462  |  |  | 
463  |  | static void move_keyslot_offset(json_object *jobj, int offset_add)  | 
464  | 0  | { | 
465  | 0  |   json_object *jobj1, *jobj2, *jobj_area;  | 
466  | 0  |   uint64_t offset = 0;  | 
467  |  | 
  | 
468  | 0  |   json_object_object_get_ex(jobj, "keyslots", &jobj1);  | 
469  | 0  |   json_object_object_foreach(jobj1, key, val) { | 
470  | 0  |     UNUSED(key);  | 
471  | 0  |     json_object_object_get_ex(val, "area", &jobj_area);  | 
472  | 0  |     json_object_object_get_ex(jobj_area, "offset", &jobj2);  | 
473  | 0  |     offset = crypt_jobj_get_uint64(jobj2) + offset_add;  | 
474  | 0  |     json_object_object_add(jobj_area, "offset", crypt_jobj_new_uint64(offset));  | 
475  | 0  |   }  | 
476  | 0  | }  | 
477  |  |  | 
478  |  | static int move_keyslot_areas(struct crypt_device *cd, off_t offset_from,  | 
479  |  |             off_t offset_to, size_t buf_size)  | 
480  | 0  | { | 
481  | 0  |   int devfd, r = -EIO;  | 
482  | 0  |   struct device *device = crypt_metadata_device(cd);  | 
483  | 0  |   void *buf = NULL;  | 
484  |  | 
  | 
485  | 0  |   log_dbg(cd, "Moving keyslot areas of size %zu from %jd to %jd.",  | 
486  | 0  |     buf_size, (intmax_t)offset_from, (intmax_t)offset_to);  | 
487  |  | 
  | 
488  | 0  |   if (posix_memalign(&buf, crypt_getpagesize(), buf_size))  | 
489  | 0  |     return -ENOMEM;  | 
490  |  |  | 
491  | 0  |   devfd = device_open(cd, device, O_RDWR);  | 
492  | 0  |   if (devfd < 0) { | 
493  | 0  |     free(buf);  | 
494  | 0  |     return -EIO;  | 
495  | 0  |   }  | 
496  |  |  | 
497  |  |   /* This can safely fail (for block devices). It only allocates space if it is possible. */  | 
498  | 0  |   if (posix_fallocate(devfd, offset_to, buf_size))  | 
499  | 0  |     log_dbg(cd, "Preallocation (fallocate) of new keyslot area not available.");  | 
500  |  |  | 
501  |  |   /* Try to read *new* area to check that area is there (trimmed backup). */  | 
502  | 0  |   if (read_lseek_blockwise(devfd, device_block_size(cd, device),  | 
503  | 0  |          device_alignment(device), buf, buf_size,  | 
504  | 0  |          offset_to)!= (ssize_t)buf_size)  | 
505  | 0  |     goto out;  | 
506  |  |  | 
507  | 0  |   if (read_lseek_blockwise(devfd, device_block_size(cd, device),  | 
508  | 0  |          device_alignment(device), buf, buf_size,  | 
509  | 0  |          offset_from)!= (ssize_t)buf_size)  | 
510  | 0  |     goto out;  | 
511  |  |  | 
512  | 0  |   if (write_lseek_blockwise(devfd, device_block_size(cd, device),  | 
513  | 0  |           device_alignment(device), buf, buf_size,  | 
514  | 0  |           offset_to) != (ssize_t)buf_size)  | 
515  | 0  |     goto out;  | 
516  |  |  | 
517  | 0  |   r = 0;  | 
518  | 0  | out:  | 
519  | 0  |   device_sync(cd, device);  | 
520  | 0  |   crypt_safe_memzero(buf, buf_size);  | 
521  | 0  |   free(buf);  | 
522  |  | 
  | 
523  | 0  |   return r;  | 
524  | 0  | }  | 
525  |  |  | 
526  |  | static int luks_header_in_use(struct crypt_device *cd)  | 
527  | 0  | { | 
528  | 0  |   int r;  | 
529  |  | 
  | 
530  | 0  |   r = lookup_dm_dev_by_uuid(cd, crypt_get_uuid(cd), crypt_get_type(cd));  | 
531  | 0  |   if (r < 0)  | 
532  | 0  |     log_err(cd, _("Cannot check status of device with uuid: %s."), crypt_get_uuid(cd)); | 
533  |  | 
  | 
534  | 0  |   return r;  | 
535  | 0  | }  | 
536  |  |  | 
537  |  | /* Check if there is a luksmeta area (foreign metadata created by the luksmeta package) */  | 
538  |  | static int luksmeta_header_present(struct crypt_device *cd, off_t luks1_size)  | 
539  | 0  | { | 
540  | 0  |   int devfd, r = 0;  | 
541  | 0  |   static const uint8_t LM_MAGIC[] = { 'L', 'U', 'K', 'S', 'M', 'E', 'T', 'A' }; | 
542  | 0  |   struct device *device = crypt_metadata_device(cd);  | 
543  | 0  |   void *buf = NULL;  | 
544  |  | 
  | 
545  | 0  |   if (posix_memalign(&buf, crypt_getpagesize(), sizeof(LM_MAGIC)))  | 
546  | 0  |     return -ENOMEM;  | 
547  |  |  | 
548  | 0  |   devfd = device_open(cd, device, O_RDONLY);  | 
549  | 0  |   if (devfd < 0) { | 
550  | 0  |     free(buf);  | 
551  | 0  |     return -EIO;  | 
552  | 0  |   }  | 
553  |  |  | 
554  |  |   /* Note: we must not detect failure as problem here, header can be trimmed. */  | 
555  | 0  |   if (read_lseek_blockwise(devfd, device_block_size(cd, device), device_alignment(device),  | 
556  | 0  |     buf, sizeof(LM_MAGIC), luks1_size) == (ssize_t)sizeof(LM_MAGIC) &&  | 
557  | 0  |     !memcmp(LM_MAGIC, buf, sizeof(LM_MAGIC))) { | 
558  | 0  |       log_err(cd, _("Unable to convert header with LUKSMETA additional metadata.")); | 
559  | 0  |       r = -EBUSY;  | 
560  | 0  |   }  | 
561  |  | 
  | 
562  | 0  |   free(buf);  | 
563  | 0  |   return r;  | 
564  | 0  | }  | 
565  |  |  | 
566  |  | /* Convert LUKS1 -> LUKS2 */  | 
567  |  | int LUKS2_luks1_to_luks2(struct crypt_device *cd, struct luks_phdr *hdr1, struct luks2_hdr *hdr2)  | 
568  | 0  | { | 
569  | 0  |   int r;  | 
570  | 0  |   json_object *jobj = NULL;  | 
571  | 0  |   size_t buf_size, buf_offset, luks1_size, luks1_shift = 2 * LUKS2_HDR_16K_LEN - LUKS_ALIGN_KEYSLOTS;  | 
572  | 0  |   uint64_t required_size, max_size = crypt_get_data_offset(cd) * SECTOR_SIZE;  | 
573  | 0  |   char cipher_spec[MAX_CAPI_LEN];  | 
574  |  |  | 
575  |  |   /* for detached headers max size == device size */  | 
576  | 0  |   if (!max_size && (r = device_size(crypt_metadata_device(cd), &max_size)))  | 
577  | 0  |     return r;  | 
578  |  |  | 
579  | 0  |   luks1_size = LUKS_device_sectors(hdr1) << SECTOR_SHIFT;  | 
580  | 0  |   luks1_size = size_round_up(luks1_size, LUKS_ALIGN_KEYSLOTS);  | 
581  | 0  |   if (!luks1_size)  | 
582  | 0  |     return -EINVAL;  | 
583  |  |  | 
584  | 0  |   if (LUKS_keyslots_offset(hdr1) != (LUKS_ALIGN_KEYSLOTS / SECTOR_SIZE)) { | 
585  | 0  |     log_dbg(cd, "Unsupported keyslots material offset: %zu.", LUKS_keyslots_offset(hdr1));  | 
586  | 0  |     return -EINVAL;  | 
587  | 0  |   }  | 
588  |  |  | 
589  | 0  |   if (LUKS2_check_cipher(cd, hdr1->keyBytes, hdr1->cipherName, hdr1->cipherMode)) { | 
590  | 0  |     log_err(cd, _("Unable to use cipher specification %s-%s for LUKS2."), | 
591  | 0  |       hdr1->cipherName, hdr1->cipherMode);  | 
592  | 0  |     return -EINVAL;  | 
593  | 0  |   }  | 
594  |  |  | 
595  | 0  |   r = snprintf(cipher_spec, sizeof(cipher_spec), "%s-%s", hdr1->cipherName, hdr1->cipherMode);  | 
596  | 0  |   if (r < 0 || (size_t)r >= sizeof(cipher_spec))  | 
597  | 0  |     return -EINVAL;  | 
598  | 0  |   if (LUKS2_keyslot_cipher_incompatible(cd, cipher_spec)) { | 
599  | 0  |     log_err(cd, _("Unable to use cipher specification %s-%s for LUKS2 keyslot."), | 
600  | 0  |       hdr1->cipherName, hdr1->cipherMode);  | 
601  | 0  |     return -EINVAL;  | 
602  | 0  |   }  | 
603  |  |  | 
604  | 0  |   if (luksmeta_header_present(cd, luks1_size))  | 
605  | 0  |     return -EINVAL;  | 
606  |  |  | 
607  | 0  |   log_dbg(cd, "Max size: %" PRIu64 ", LUKS1 (full) header size %zu , required shift: %zu",  | 
608  | 0  |     max_size, luks1_size, luks1_shift);  | 
609  |  | 
  | 
610  | 0  |   required_size = luks1_size + luks1_shift;  | 
611  |  | 
  | 
612  | 0  |   if ((max_size < required_size) &&  | 
613  | 0  |       device_fallocate(crypt_metadata_device(cd), required_size)) { | 
614  | 0  |     log_err(cd, _("Unable to move keyslot area. Not enough space.")); | 
615  | 0  |     return -EINVAL;  | 
616  | 0  |   }  | 
617  |  |  | 
618  | 0  |   if (max_size < required_size)  | 
619  | 0  |     max_size = required_size;  | 
620  |  |  | 
621  |  |   /* fix coverity false positive integer underflow */  | 
622  | 0  |   if (max_size < 2 * LUKS2_HDR_16K_LEN)  | 
623  | 0  |     return -EINVAL;  | 
624  |  |  | 
625  | 0  |   r = json_luks1_object(hdr1, &jobj, max_size - 2 * LUKS2_HDR_16K_LEN);  | 
626  | 0  |   if (r < 0)  | 
627  | 0  |     return r;  | 
628  |  |  | 
629  | 0  |   move_keyslot_offset(jobj, luks1_shift);  | 
630  |  |  | 
631  |  |   /* Create and fill LUKS2 hdr */  | 
632  | 0  |   memset(hdr2, 0, sizeof(*hdr2));  | 
633  | 0  |   hdr2->hdr_size = LUKS2_HDR_16K_LEN;  | 
634  | 0  |   hdr2->seqid = 1;  | 
635  | 0  |   hdr2->version = 2;  | 
636  | 0  |   strncpy(hdr2->checksum_alg, "sha256", LUKS2_CHECKSUM_ALG_L);  | 
637  | 0  |   crypt_random_get(cd, (char*)hdr2->salt1, sizeof(hdr2->salt1), CRYPT_RND_SALT);  | 
638  | 0  |   crypt_random_get(cd, (char*)hdr2->salt2, sizeof(hdr2->salt2), CRYPT_RND_SALT);  | 
639  | 0  |   strncpy(hdr2->uuid, crypt_get_uuid(cd), LUKS2_UUID_L-1); /* UUID should be max 36 chars */  | 
640  | 0  |   hdr2->jobj = jobj;  | 
641  |  |  | 
642  |  |   /*  | 
643  |  |    * It duplicates check in LUKS2_hdr_write() but we don't want to move  | 
644  |  |    * keyslot areas in case it would fail later  | 
645  |  |    */  | 
646  | 0  |   if (max_size < LUKS2_hdr_and_areas_size(hdr2)) { | 
647  | 0  |     r = -EINVAL;  | 
648  | 0  |     goto out;  | 
649  | 0  |   }  | 
650  |  |  | 
651  |  |   /* check future LUKS2 metadata before moving keyslots area */  | 
652  | 0  |   if (LUKS2_hdr_validate(cd, hdr2->jobj, hdr2->hdr_size - LUKS2_HDR_BIN_LEN)) { | 
653  | 0  |     log_err(cd, _("Cannot convert to LUKS2 format - invalid metadata.")); | 
654  | 0  |     r = -EINVAL;  | 
655  | 0  |     goto out;  | 
656  | 0  |   }  | 
657  |  |  | 
658  | 0  |   if ((r = luks_header_in_use(cd))) { | 
659  | 0  |     if (r > 0)  | 
660  | 0  |       r = -EBUSY;  | 
661  | 0  |     goto out;  | 
662  | 0  |   }  | 
663  |  |  | 
664  |  |   /* move keyslots 4k -> 32k offset */  | 
665  | 0  |   buf_offset = 2 * LUKS2_HDR_16K_LEN;  | 
666  | 0  |   buf_size   = luks1_size - LUKS_ALIGN_KEYSLOTS;  | 
667  |  |  | 
668  |  |   /* check future LUKS2 keyslots area is at least as large as LUKS1 keyslots area */  | 
669  | 0  |   if (buf_size > LUKS2_keyslots_size(hdr2)) { | 
670  | 0  |     log_err(cd, _("Unable to move keyslot area. LUKS2 keyslots area too small.")); | 
671  | 0  |     r = -EINVAL;  | 
672  | 0  |     goto out;  | 
673  | 0  |   }  | 
674  |  |  | 
675  | 0  |   if ((r = move_keyslot_areas(cd, 8 * SECTOR_SIZE, buf_offset, buf_size)) < 0) { | 
676  | 0  |     log_err(cd, _("Unable to move keyslot area.")); | 
677  | 0  |     goto out;  | 
678  | 0  |   }  | 
679  |  |  | 
680  |  |   /* Write new LUKS2 JSON */  | 
681  | 0  |   r = LUKS2_hdr_write(cd, hdr2);  | 
682  | 0  | out:  | 
683  | 0  |   LUKS2_hdr_free(cd, hdr2);  | 
684  |  | 
  | 
685  | 0  |   return r;  | 
686  | 0  | }  | 
687  |  |  | 
688  |  | static int keyslot_LUKS1_compatible(struct crypt_device *cd, struct luks2_hdr *hdr,  | 
689  |  |             int keyslot, uint32_t key_size, const char *hash)  | 
690  | 0  | { | 
691  | 0  |   json_object *jobj_keyslot, *jobj, *jobj_kdf, *jobj_af;  | 
692  | 0  |   uint64_t l2_offset, l2_length;  | 
693  | 0  |   size_t ks_key_size;  | 
694  | 0  |   const char *ks_cipher, *data_cipher;  | 
695  |  | 
  | 
696  | 0  |   jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot);  | 
697  | 0  |   if (!jobj_keyslot)  | 
698  | 0  |     return 1;  | 
699  |  |  | 
700  |  |   /* Keyslot type */  | 
701  | 0  |   if (!json_object_object_get_ex(jobj_keyslot, "type", &jobj))  | 
702  | 0  |     return 0;  | 
703  | 0  |   if (strcmp(json_object_get_string(jobj), "luks2")) { | 
704  | 0  |     log_dbg(cd, "Keyslot %d type %s is not compatible.",  | 
705  | 0  |       keyslot, json_object_get_string(jobj));  | 
706  | 0  |     return 0;  | 
707  | 0  |   }  | 
708  |  |  | 
709  |  |   /* Keyslot uses PBKDF2, this implies memory and parallel is not used. */  | 
710  | 0  |   jobj = NULL;  | 
711  | 0  |   if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf) ||  | 
712  | 0  |       !json_object_object_get_ex(jobj_kdf, "type", &jobj))  | 
713  | 0  |     return 0;  | 
714  | 0  |   if (strcmp(json_object_get_string(jobj), CRYPT_KDF_PBKDF2)) { | 
715  | 0  |     log_dbg(cd, "Keyslot %d does not use PBKDF2.", keyslot);  | 
716  | 0  |     return 0;  | 
717  | 0  |   }  | 
718  |  |  | 
719  |  |   /* Keyslot KDF hash is the same as the digest hash. */  | 
720  | 0  |   jobj = NULL;  | 
721  | 0  |   if (!json_object_object_get_ex(jobj_kdf, "hash", &jobj))  | 
722  | 0  |     return 0;  | 
723  | 0  |   if (strcmp(json_object_get_string(jobj), hash)) { | 
724  | 0  |     log_dbg(cd, "Keyslot %d PBKDF uses different hash %s than digest hash %s.",  | 
725  | 0  |       keyslot, json_object_get_string(jobj), hash);  | 
726  | 0  |     return 0;  | 
727  | 0  |   }  | 
728  |  |  | 
729  |  |   /* Keyslot AF use compatible striptes. */  | 
730  | 0  |   jobj = NULL;  | 
731  | 0  |   if (!json_object_object_get_ex(jobj_keyslot, "af", &jobj_af) ||  | 
732  | 0  |       !json_object_object_get_ex(jobj_af, "stripes", &jobj))  | 
733  | 0  |     return 0;  | 
734  | 0  |   if (json_object_get_int(jobj) != LUKS_STRIPES) { | 
735  | 0  |     log_dbg(cd, "Keyslot %d AF uses incompatible stripes count.", keyslot);  | 
736  | 0  |     return 0;  | 
737  | 0  |   }  | 
738  |  |  | 
739  |  |   /* Keyslot AF hash is the same as the digest hash. */  | 
740  | 0  |   jobj = NULL;  | 
741  | 0  |   if (!json_object_object_get_ex(jobj_af, "hash", &jobj))  | 
742  | 0  |     return 0;  | 
743  | 0  |   if (strcmp(json_object_get_string(jobj), hash)) { | 
744  | 0  |     log_dbg(cd, "Keyslot %d AF uses different hash %s than digest hash %s.",  | 
745  | 0  |       keyslot, json_object_get_string(jobj), hash);  | 
746  | 0  |     return 0;  | 
747  | 0  |   }  | 
748  |  |  | 
749  | 0  |   ks_cipher = LUKS2_get_keyslot_cipher(hdr, keyslot, &ks_key_size);  | 
750  | 0  |   data_cipher = LUKS2_get_cipher(hdr, CRYPT_DEFAULT_SEGMENT);  | 
751  | 0  |   if (!ks_cipher || !data_cipher || key_size != ks_key_size || strcmp(ks_cipher, data_cipher)) { | 
752  | 0  |     log_dbg(cd, "Cipher in keyslot %d is different from volume key encryption.", keyslot);  | 
753  | 0  |     return 0;  | 
754  | 0  |   }  | 
755  |  |  | 
756  | 0  |   if (LUKS2_keyslot_area(hdr, keyslot, &l2_offset, &l2_length))  | 
757  | 0  |     return 0;  | 
758  |  |  | 
759  | 0  |   if (l2_length != (size_round_up(AF_split_sectors(key_size, LUKS_STRIPES) * SECTOR_SIZE, 4096))) { | 
760  | 0  |     log_dbg(cd, "Area length in LUKS2 keyslot (%d) is not compatible with LUKS1", keyslot);  | 
761  | 0  |     return 0;  | 
762  | 0  |   }  | 
763  |  |  | 
764  | 0  |   return 1;  | 
765  | 0  | }  | 
766  |  |  | 
767  |  | /* Convert LUKS2 -> LUKS1 */  | 
768  |  | int LUKS2_luks2_to_luks1(struct crypt_device *cd, struct luks2_hdr *hdr2, struct luks_phdr *hdr1)  | 
769  | 0  | { | 
770  | 0  |   size_t buf_size, buf_offset;  | 
771  | 0  |   char cipher[LUKS_CIPHERNAME_L], cipher_mode[LUKS_CIPHERMODE_L];  | 
772  | 0  |   char *digest, *digest_salt;  | 
773  | 0  |   const char *hash;  | 
774  | 0  |   size_t len;  | 
775  | 0  |   json_object *jobj_keyslot, *jobj_digest, *jobj_segment, *jobj_kdf, *jobj_area, *jobj1, *jobj2;  | 
776  | 0  |   uint32_t key_size;  | 
777  | 0  |   int i, r, last_active = 0;  | 
778  | 0  |   uint64_t offset, area_length;  | 
779  | 0  |   char *buf, luksMagic[] = LUKS_MAGIC;  | 
780  | 0  |   crypt_keyslot_info ki;  | 
781  |  | 
  | 
782  | 0  |   jobj_digest  = LUKS2_get_digest_jobj(hdr2, 0);  | 
783  | 0  |   if (!jobj_digest)  | 
784  | 0  |     return -EINVAL;  | 
785  |  |  | 
786  | 0  |   jobj_segment = LUKS2_get_segment_jobj(hdr2, CRYPT_DEFAULT_SEGMENT);  | 
787  | 0  |   if (!jobj_segment)  | 
788  | 0  |     return -EINVAL;  | 
789  |  |  | 
790  | 0  |   if (json_segment_get_sector_size(jobj_segment) != SECTOR_SIZE) { | 
791  | 0  |     log_err(cd, _("Cannot convert to LUKS1 format - default segment encryption sector size is not 512 bytes.")); | 
792  | 0  |     return -EINVAL;  | 
793  | 0  |   }  | 
794  |  |  | 
795  | 0  |   json_object_object_get_ex(hdr2->jobj, "digests", &jobj1);  | 
796  | 0  |   if (!json_object_object_get_ex(jobj_digest, "type", &jobj2) ||  | 
797  | 0  |       strcmp(json_object_get_string(jobj2), "pbkdf2") ||  | 
798  | 0  |       json_object_object_length(jobj1) != 1) { | 
799  | 0  |     log_err(cd, _("Cannot convert to LUKS1 format - key slot digests are not LUKS1 compatible.")); | 
800  | 0  |     return -EINVAL;  | 
801  | 0  |   }  | 
802  | 0  |   if (!json_object_object_get_ex(jobj_digest, "hash", &jobj2))  | 
803  | 0  |     return -EINVAL;  | 
804  | 0  |   hash = json_object_get_string(jobj2);  | 
805  | 0  |   if (crypt_hash_size(hash) < 0)  | 
806  | 0  |     return -EINVAL;  | 
807  |  |  | 
808  | 0  |   r = crypt_parse_name_and_mode(LUKS2_get_cipher(hdr2, CRYPT_DEFAULT_SEGMENT), cipher, NULL, cipher_mode);  | 
809  | 0  |   if (r < 0)  | 
810  | 0  |     return r;  | 
811  |  |  | 
812  | 0  |   if (crypt_cipher_wrapped_key(cipher, cipher_mode)) { | 
813  | 0  |     log_err(cd, _("Cannot convert to LUKS1 format - device uses wrapped key cipher %s."), cipher); | 
814  | 0  |     return -EINVAL;  | 
815  | 0  |   }  | 
816  |  |  | 
817  | 0  |   if (json_segments_count(LUKS2_get_segments_jobj(hdr2)) != 1) { | 
818  | 0  |     log_err(cd, _("Cannot convert to LUKS1 format - device uses more segments.")); | 
819  | 0  |     return -EINVAL;  | 
820  | 0  |   }  | 
821  |  |  | 
822  | 0  |   r = LUKS2_tokens_count(hdr2);  | 
823  | 0  |   if (r < 0)  | 
824  | 0  |     return r;  | 
825  | 0  |   if (r > 0) { | 
826  | 0  |     log_err(cd, _("Cannot convert to LUKS1 format - LUKS2 header contains %u token(s)."), r); | 
827  | 0  |     return -EINVAL;  | 
828  | 0  |   }  | 
829  |  |  | 
830  | 0  |   r = LUKS2_get_volume_key_size(hdr2, 0);  | 
831  | 0  |   if (r < 0) { | 
832  | 0  |     log_err(cd, _("Cannot convert to LUKS1 format - there are no active keyslots."), r); | 
833  | 0  |     return -EINVAL;  | 
834  | 0  |   }  | 
835  | 0  |   key_size = r;  | 
836  |  | 
  | 
837  | 0  |   for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) { | 
838  | 0  |     ki = LUKS2_keyslot_info(hdr2, i);  | 
839  |  | 
  | 
840  | 0  |     if (ki == CRYPT_SLOT_INACTIVE)  | 
841  | 0  |       continue;  | 
842  |  |  | 
843  | 0  |     if (ki == CRYPT_SLOT_INVALID) { | 
844  | 0  |       log_err(cd, _("Cannot convert to LUKS1 format - keyslot %u is in invalid state."), i); | 
845  | 0  |       return -EINVAL;  | 
846  | 0  |     }  | 
847  |  |  | 
848  | 0  |     if (ki == CRYPT_SLOT_UNBOUND) { | 
849  | 0  |       log_err(cd, _("Cannot convert to LUKS1 format - keyslot %u is unbound."), i); | 
850  | 0  |       return -EINVAL;  | 
851  | 0  |     }  | 
852  |  |  | 
853  | 0  |     if (i >= LUKS_NUMKEYS) { | 
854  | 0  |       log_err(cd, _("Cannot convert to LUKS1 format - slot %u (over maximum slots) is still active."), i); | 
855  | 0  |       return -EINVAL;  | 
856  | 0  |     }  | 
857  |  |  | 
858  | 0  |     if (!keyslot_LUKS1_compatible(cd, hdr2, i, key_size, hash)) { | 
859  | 0  |       log_err(cd, _("Cannot convert to LUKS1 format - keyslot %u is not LUKS1 compatible."), i); | 
860  | 0  |       return -EINVAL;  | 
861  | 0  |     }  | 
862  | 0  |   }  | 
863  |  |  | 
864  | 0  |   memset(hdr1, 0, sizeof(*hdr1));  | 
865  |  | 
  | 
866  | 0  |   for (i = 0; i < LUKS_NUMKEYS; i++) { | 
867  | 0  |     hdr1->keyblock[i].active = LUKS_KEY_DISABLED;  | 
868  | 0  |     hdr1->keyblock[i].stripes = LUKS_STRIPES;  | 
869  |  | 
  | 
870  | 0  |     jobj_keyslot = LUKS2_get_keyslot_jobj(hdr2, i);  | 
871  |  | 
  | 
872  | 0  |     if (jobj_keyslot) { | 
873  | 0  |       if (!json_object_object_get_ex(jobj_keyslot, "area", &jobj_area))  | 
874  | 0  |         return -EINVAL;  | 
875  | 0  |       if (!json_object_object_get_ex(jobj_area, "offset", &jobj1))  | 
876  | 0  |         return -EINVAL;  | 
877  | 0  |       offset = crypt_jobj_get_uint64(jobj1);  | 
878  | 0  |     } else { | 
879  | 0  |       if (LUKS2_find_area_gap(cd, hdr2, key_size, &offset, &area_length))  | 
880  | 0  |         return -EINVAL;  | 
881  |  |       /*  | 
882  |  |        * We have to create placeholder luks2 keyslots in place of all  | 
883  |  |        * inactive keyslots. Otherwise we would allocate all  | 
884  |  |        * inactive luks1 keyslots over same binary keyslot area.  | 
885  |  |        */  | 
886  | 0  |       if (placeholder_keyslot_alloc(cd, i, offset, area_length))  | 
887  | 0  |         return -EINVAL;  | 
888  | 0  |     }  | 
889  |  |  | 
890  | 0  |     offset /= SECTOR_SIZE;  | 
891  | 0  |     if (offset > UINT32_MAX)  | 
892  | 0  |       return -EINVAL;  | 
893  |  |  | 
894  | 0  |     hdr1->keyblock[i].keyMaterialOffset = offset;  | 
895  | 0  |     hdr1->keyblock[i].keyMaterialOffset -=  | 
896  | 0  |         ((2 * LUKS2_HDR_16K_LEN - LUKS_ALIGN_KEYSLOTS) / SECTOR_SIZE);  | 
897  |  | 
  | 
898  | 0  |     if (!jobj_keyslot)  | 
899  | 0  |       continue;  | 
900  |  |  | 
901  | 0  |     hdr1->keyblock[i].active = LUKS_KEY_ENABLED;  | 
902  | 0  |     last_active = i;  | 
903  |  | 
  | 
904  | 0  |     if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf))  | 
905  | 0  |       continue;  | 
906  |  |  | 
907  | 0  |     if (!json_object_object_get_ex(jobj_kdf, "iterations", &jobj1))  | 
908  | 0  |       continue;  | 
909  | 0  |     hdr1->keyblock[i].passwordIterations = crypt_jobj_get_uint32(jobj1);  | 
910  |  | 
  | 
911  | 0  |     if (!json_object_object_get_ex(jobj_kdf, "salt", &jobj1))  | 
912  | 0  |       continue;  | 
913  |  |  | 
914  | 0  |     if (crypt_base64_decode(&buf, &len, json_object_get_string(jobj1),  | 
915  | 0  |           json_object_get_string_len(jobj1)))  | 
916  | 0  |       continue;  | 
917  | 0  |     if (len > 0 && len != LUKS_SALTSIZE) { | 
918  | 0  |       free(buf);  | 
919  | 0  |       continue;  | 
920  | 0  |     }  | 
921  | 0  |     memcpy(hdr1->keyblock[i].passwordSalt, buf, LUKS_SALTSIZE);  | 
922  | 0  |     free(buf);  | 
923  | 0  |   }  | 
924  |  |  | 
925  | 0  |   if (!jobj_keyslot) { | 
926  | 0  |     jobj_keyslot = LUKS2_get_keyslot_jobj(hdr2, last_active);  | 
927  | 0  |     if (!jobj_keyslot)  | 
928  | 0  |       return -EINVAL;  | 
929  | 0  |   }  | 
930  |  |  | 
931  | 0  |   if (!json_object_object_get_ex(jobj_keyslot, "area", &jobj_area))  | 
932  | 0  |     return -EINVAL;  | 
933  | 0  |   if (!json_object_object_get_ex(jobj_area, "encryption", &jobj1))  | 
934  | 0  |     return -EINVAL;  | 
935  | 0  |   r = crypt_parse_name_and_mode(json_object_get_string(jobj1), cipher, NULL, cipher_mode);  | 
936  | 0  |   if (r < 0)  | 
937  | 0  |     return r;  | 
938  |  |  | 
939  | 0  |   strncpy(hdr1->cipherName, cipher, LUKS_CIPHERNAME_L - 1);  | 
940  | 0  |   hdr1->cipherName[LUKS_CIPHERNAME_L-1] = '\0';  | 
941  | 0  |   strncpy(hdr1->cipherMode, cipher_mode, LUKS_CIPHERMODE_L - 1);  | 
942  | 0  |   hdr1->cipherMode[LUKS_CIPHERMODE_L-1] = '\0';  | 
943  |  | 
  | 
944  | 0  |   if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf))  | 
945  | 0  |     return -EINVAL;  | 
946  | 0  |   if (!json_object_object_get_ex(jobj_kdf, "hash", &jobj1))  | 
947  | 0  |     return -EINVAL;  | 
948  | 0  |   strncpy(hdr1->hashSpec, json_object_get_string(jobj1), sizeof(hdr1->hashSpec) - 1);  | 
949  |  | 
  | 
950  | 0  |   hdr1->keyBytes = key_size;  | 
951  |  | 
  | 
952  | 0  |   if (!json_object_object_get_ex(jobj_digest, "iterations", &jobj1))  | 
953  | 0  |     return -EINVAL;  | 
954  | 0  |   hdr1->mkDigestIterations = crypt_jobj_get_uint32(jobj1);  | 
955  |  | 
  | 
956  | 0  |   if (!json_object_object_get_ex(jobj_digest, "digest", &jobj1))  | 
957  | 0  |     return -EINVAL;  | 
958  | 0  |   r = crypt_base64_decode(&digest, &len, json_object_get_string(jobj1),  | 
959  | 0  |         json_object_get_string_len(jobj1));  | 
960  | 0  |   if (r < 0)  | 
961  | 0  |     return r;  | 
962  |  |   /* We can store full digest here, not only sha1 length */  | 
963  | 0  |   if (len < LUKS_DIGESTSIZE) { | 
964  | 0  |     free(digest);  | 
965  | 0  |     return -EINVAL;  | 
966  | 0  |   }  | 
967  | 0  |   memcpy(hdr1->mkDigest, digest, LUKS_DIGESTSIZE);  | 
968  | 0  |   free(digest);  | 
969  |  | 
  | 
970  | 0  |   if (!json_object_object_get_ex(jobj_digest, "salt", &jobj1))  | 
971  | 0  |     return -EINVAL;  | 
972  | 0  |   r = crypt_base64_decode(&digest_salt, &len, json_object_get_string(jobj1),  | 
973  | 0  |         json_object_get_string_len(jobj1));  | 
974  | 0  |   if (r < 0)  | 
975  | 0  |     return r;  | 
976  | 0  |   if (len != LUKS_SALTSIZE) { | 
977  | 0  |     free(digest_salt);  | 
978  | 0  |     return -EINVAL;  | 
979  | 0  |   }  | 
980  | 0  |   memcpy(hdr1->mkDigestSalt, digest_salt, LUKS_SALTSIZE);  | 
981  | 0  |   free(digest_salt);  | 
982  |  | 
  | 
983  | 0  |   if (!json_object_object_get_ex(jobj_segment, "offset", &jobj1))  | 
984  | 0  |     return -EINVAL;  | 
985  | 0  |   offset = crypt_jobj_get_uint64(jobj1) / SECTOR_SIZE;  | 
986  | 0  |   if (offset > UINT32_MAX)  | 
987  | 0  |     return -EINVAL;  | 
988  | 0  |   hdr1->payloadOffset = offset;  | 
989  |  | 
  | 
990  | 0  |   strncpy(hdr1->uuid, hdr2->uuid, UUID_STRING_L); /* max 36 chars */  | 
991  | 0  |   hdr1->uuid[UUID_STRING_L-1] = '\0';  | 
992  |  | 
  | 
993  | 0  |   memcpy(hdr1->magic, luksMagic, LUKS_MAGIC_L);  | 
994  |  | 
  | 
995  | 0  |   hdr1->version = 1;  | 
996  |  | 
  | 
997  | 0  |   r = luks_header_in_use(cd);  | 
998  | 0  |   if (r)  | 
999  | 0  |     return r > 0 ? -EBUSY : r;  | 
1000  |  |  | 
1001  |  |   /* move keyslots 32k -> 4k offset */  | 
1002  | 0  |   buf_offset = 2 * LUKS2_HDR_16K_LEN;  | 
1003  | 0  |   buf_size   = LUKS2_keyslots_size(hdr2);  | 
1004  | 0  |   r = move_keyslot_areas(cd, buf_offset, 8 * SECTOR_SIZE, buf_size);  | 
1005  | 0  |   if (r < 0) { | 
1006  | 0  |     log_err(cd, _("Unable to move keyslot area.")); | 
1007  | 0  |     return r;  | 
1008  | 0  |   }  | 
1009  |  |  | 
1010  | 0  |   crypt_wipe_device(cd, crypt_metadata_device(cd), CRYPT_WIPE_ZERO, 0,  | 
1011  | 0  |         8 * SECTOR_SIZE, 8 * SECTOR_SIZE, NULL, NULL);  | 
1012  |  |  | 
1013  |  |   /* Write new LUKS1 hdr */  | 
1014  | 0  |   return LUKS_write_phdr(hdr1, cd);  | 
1015  | 0  | }  |