/src/cryptsetup/lib/verity/rs_encode_char.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // SPDX-License-Identifier: LGPL-2.1-or-later  | 
2  |  | /*  | 
3  |  |  * Reed-Solomon encoder, based on libfec  | 
4  |  |  *  | 
5  |  |  * Copyright (C) 2002, Phil Karn, KA9Q  | 
6  |  |  * libcryptsetup modifications  | 
7  |  |  *   Copyright (C) 2017-2025 Red Hat, Inc. All rights reserved.  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <string.h>  | 
11  |  | #include <stdlib.h>  | 
12  |  |  | 
13  |  | #include "rs.h"  | 
14  |  |  | 
15  |  | /* Initialize a Reed-Solomon codec  | 
16  |  |  * symsize = symbol size, bits  | 
17  |  |  * gfpoly = Field generator polynomial coefficients  | 
18  |  |  * fcr = first root of RS code generator polynomial, index form  | 
19  |  |  * prim = primitive element to generate polynomial roots  | 
20  |  |  * nroots = RS code generator polynomial degree (number of roots)  | 
21  |  |  * pad = padding bytes at front of shortened block  | 
22  |  |  */  | 
23  |  | struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad)  | 
24  | 0  | { | 
25  | 0  |   struct rs *rs;  | 
26  | 0  |   int i, j, sr, root, iprim;  | 
27  |  |  | 
28  |  |   /* Check parameter ranges */  | 
29  | 0  |   if (symsize < 0 || symsize > 8 * (int)sizeof(data_t))  | 
30  | 0  |     return NULL;  | 
31  | 0  |   if (fcr < 0 || fcr >= (1<<symsize))  | 
32  | 0  |     return NULL;  | 
33  | 0  |   if (prim <= 0 || prim >= (1<<symsize))  | 
34  | 0  |     return NULL;  | 
35  | 0  |   if (nroots < 0 || nroots >= (1<<symsize))  | 
36  | 0  |     return NULL; /* Can't have more roots than symbol values! */  | 
37  |  |  | 
38  | 0  |   if (pad < 0 || pad >= ((1<<symsize) - 1 - nroots))  | 
39  | 0  |     return NULL; /* Too much padding */  | 
40  |  |  | 
41  | 0  |   rs = calloc(1, sizeof(struct rs));  | 
42  | 0  |   if (rs == NULL)  | 
43  | 0  |     return NULL;  | 
44  |  |  | 
45  | 0  |   rs->mm = symsize;  | 
46  | 0  |   rs->nn = (1<<symsize) - 1;  | 
47  | 0  |   rs->pad = pad;  | 
48  |  | 
  | 
49  | 0  |   rs->alpha_to = malloc(sizeof(data_t) * (rs->nn + 1));  | 
50  | 0  |   if (rs->alpha_to == NULL) { | 
51  | 0  |     free(rs);  | 
52  | 0  |     return NULL;  | 
53  | 0  |   }  | 
54  | 0  |   rs->index_of = malloc(sizeof(data_t) * (rs->nn + 1));  | 
55  | 0  |   if (rs->index_of == NULL) { | 
56  | 0  |     free(rs->alpha_to);  | 
57  | 0  |     free(rs);  | 
58  | 0  |     return NULL;  | 
59  | 0  |   }  | 
60  | 0  |   memset(rs->index_of, 0, sizeof(data_t) * (rs->nn + 1));  | 
61  |  |  | 
62  |  |   /* Generate Galois field lookup tables */  | 
63  | 0  |   rs->index_of[0] = A0; /* log(zero) = -inf */  | 
64  | 0  |   rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */  | 
65  | 0  |   sr = 1;  | 
66  | 0  |   for (i = 0; i < rs->nn; i++) { | 
67  | 0  |     rs->index_of[sr] = i;  | 
68  | 0  |     rs->alpha_to[i] = sr;  | 
69  | 0  |     sr <<= 1;  | 
70  | 0  |     if(sr & (1<<symsize))  | 
71  | 0  |       sr ^= gfpoly;  | 
72  | 0  |     sr &= rs->nn;  | 
73  | 0  |   }  | 
74  | 0  |   if (sr != 1) { | 
75  |  |     /* field generator polynomial is not primitive! */  | 
76  | 0  |     free(rs->alpha_to);  | 
77  | 0  |     free(rs->index_of);  | 
78  | 0  |     free(rs);  | 
79  | 0  |     return NULL;  | 
80  | 0  |   }  | 
81  |  |  | 
82  |  |   /* Form RS code generator polynomial from its roots */  | 
83  | 0  |   rs->genpoly = malloc(sizeof(data_t) * (nroots + 1));  | 
84  | 0  |   if (rs->genpoly == NULL) { | 
85  | 0  |     free(rs->alpha_to);  | 
86  | 0  |     free(rs->index_of);  | 
87  | 0  |     free(rs);  | 
88  | 0  |     return NULL;  | 
89  | 0  |   }  | 
90  |  |  | 
91  | 0  |   rs->fcr = fcr;  | 
92  | 0  |   rs->prim = prim;  | 
93  | 0  |   rs->nroots = nroots;  | 
94  |  |  | 
95  |  |   /* Find prim-th root of 1, used in decoding */  | 
96  | 0  |   for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)  | 
97  | 0  |     ;  | 
98  | 0  |   rs->iprim = iprim / prim;  | 
99  |  | 
  | 
100  | 0  |   rs->genpoly[0] = 1;  | 
101  | 0  |   for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { | 
102  | 0  |     rs->genpoly[i + 1] = 1;  | 
103  |  |  | 
104  |  |     /* Multiply rs->genpoly[] by  @**(root + x) */  | 
105  | 0  |     for (j = i; j > 0; j--){ | 
106  | 0  |       if (rs->genpoly[j] != 0)  | 
107  | 0  |         rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)];  | 
108  | 0  |       else  | 
109  | 0  |         rs->genpoly[j] = rs->genpoly[j - 1];  | 
110  | 0  |     }  | 
111  |  |     /* rs->genpoly[0] can never be zero */  | 
112  | 0  |     rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)];  | 
113  | 0  |   }  | 
114  |  |   /* convert rs->genpoly[] to index form for quicker encoding */  | 
115  | 0  |   for (i = 0; i <= nroots; i++)  | 
116  | 0  |     rs->genpoly[i] = rs->index_of[rs->genpoly[i]];  | 
117  |  | 
  | 
118  | 0  |   return rs;  | 
119  | 0  | }  | 
120  |  |  | 
121  |  | void free_rs_char(struct rs *rs)  | 
122  | 0  | { | 
123  | 0  |   if (!rs)  | 
124  | 0  |     return;  | 
125  |  |  | 
126  | 0  |   free(rs->alpha_to);  | 
127  | 0  |   free(rs->index_of);  | 
128  | 0  |   free(rs->genpoly);  | 
129  | 0  |   free(rs);  | 
130  | 0  | }  | 
131  |  |  | 
132  |  | void encode_rs_char(struct rs *rs, data_t *data, data_t *parity)  | 
133  | 0  | { | 
134  | 0  |   int i, j;  | 
135  | 0  |   data_t feedback;  | 
136  |  | 
  | 
137  | 0  |   memset(parity, 0, rs->nroots * sizeof(data_t));  | 
138  |  | 
  | 
139  | 0  |   for (i = 0; i < rs->nn - rs->nroots - rs->pad; i++) { | 
140  | 0  |     feedback = rs->index_of[data[i] ^ parity[0]];  | 
141  | 0  |     if (feedback != A0) { | 
142  |  |       /* feedback term is non-zero */  | 
143  |  | #ifdef UNNORMALIZED  | 
144  |  |       /* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must  | 
145  |  |        * always be for the polynomials constructed by init_rs() */  | 
146  |  |       feedback = modnn(rs, rs->nn - rs->genpoly[rs->nroots] + feedback);  | 
147  |  | #endif  | 
148  | 0  |       for (j = 1; j < rs->nroots; j++)  | 
149  | 0  |         parity[j] ^= rs->alpha_to[modnn(rs, feedback + rs->genpoly[rs->nroots - j])];  | 
150  | 0  |     }  | 
151  |  |  | 
152  |  |     /* Shift */  | 
153  | 0  |     memmove(&parity[0], &parity[1], sizeof(data_t) * (rs->nroots - 1));  | 
154  |  | 
  | 
155  | 0  |     if (feedback != A0)  | 
156  | 0  |       parity[rs->nroots - 1] = rs->alpha_to[modnn(rs, feedback + rs->genpoly[0])];  | 
157  | 0  |     else  | 
158  | 0  |       parity[rs->nroots - 1] = 0;  | 
159  | 0  |   }  | 
160  | 0  | }  |