Coverage Report

Created: 2025-06-13 06:36

/src/cryptsetup/lib/verity/rs_encode_char.c
Line
Count
Source (jump to first uncovered line)
1
// SPDX-License-Identifier: LGPL-2.1-or-later
2
/*
3
 * Reed-Solomon encoder, based on libfec
4
 *
5
 * Copyright (C) 2002, Phil Karn, KA9Q
6
 * libcryptsetup modifications
7
 *   Copyright (C) 2017-2025 Red Hat, Inc. All rights reserved.
8
 */
9
10
#include <string.h>
11
#include <stdlib.h>
12
13
#include "rs.h"
14
15
/* Initialize a Reed-Solomon codec
16
 * symsize = symbol size, bits
17
 * gfpoly = Field generator polynomial coefficients
18
 * fcr = first root of RS code generator polynomial, index form
19
 * prim = primitive element to generate polynomial roots
20
 * nroots = RS code generator polynomial degree (number of roots)
21
 * pad = padding bytes at front of shortened block
22
 */
23
struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad)
24
0
{
25
0
  struct rs *rs;
26
0
  int i, j, sr, root, iprim;
27
28
  /* Check parameter ranges */
29
0
  if (symsize < 0 || symsize > 8 * (int)sizeof(data_t))
30
0
    return NULL;
31
0
  if (fcr < 0 || fcr >= (1<<symsize))
32
0
    return NULL;
33
0
  if (prim <= 0 || prim >= (1<<symsize))
34
0
    return NULL;
35
0
  if (nroots < 0 || nroots >= (1<<symsize))
36
0
    return NULL; /* Can't have more roots than symbol values! */
37
38
0
  if (pad < 0 || pad >= ((1<<symsize) - 1 - nroots))
39
0
    return NULL; /* Too much padding */
40
41
0
  rs = calloc(1, sizeof(struct rs));
42
0
  if (rs == NULL)
43
0
    return NULL;
44
45
0
  rs->mm = symsize;
46
0
  rs->nn = (1<<symsize) - 1;
47
0
  rs->pad = pad;
48
49
0
  rs->alpha_to = malloc(sizeof(data_t) * (rs->nn + 1));
50
0
  if (rs->alpha_to == NULL) {
51
0
    free(rs);
52
0
    return NULL;
53
0
  }
54
0
  rs->index_of = malloc(sizeof(data_t) * (rs->nn + 1));
55
0
  if (rs->index_of == NULL) {
56
0
    free(rs->alpha_to);
57
0
    free(rs);
58
0
    return NULL;
59
0
  }
60
0
  memset(rs->index_of, 0, sizeof(data_t) * (rs->nn + 1));
61
62
  /* Generate Galois field lookup tables */
63
0
  rs->index_of[0] = A0; /* log(zero) = -inf */
64
0
  rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
65
0
  sr = 1;
66
0
  for (i = 0; i < rs->nn; i++) {
67
0
    rs->index_of[sr] = i;
68
0
    rs->alpha_to[i] = sr;
69
0
    sr <<= 1;
70
0
    if(sr & (1<<symsize))
71
0
      sr ^= gfpoly;
72
0
    sr &= rs->nn;
73
0
  }
74
0
  if (sr != 1) {
75
    /* field generator polynomial is not primitive! */
76
0
    free(rs->alpha_to);
77
0
    free(rs->index_of);
78
0
    free(rs);
79
0
    return NULL;
80
0
  }
81
82
  /* Form RS code generator polynomial from its roots */
83
0
  rs->genpoly = malloc(sizeof(data_t) * (nroots + 1));
84
0
  if (rs->genpoly == NULL) {
85
0
    free(rs->alpha_to);
86
0
    free(rs->index_of);
87
0
    free(rs);
88
0
    return NULL;
89
0
  }
90
91
0
  rs->fcr = fcr;
92
0
  rs->prim = prim;
93
0
  rs->nroots = nroots;
94
95
  /* Find prim-th root of 1, used in decoding */
96
0
  for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)
97
0
    ;
98
0
  rs->iprim = iprim / prim;
99
100
0
  rs->genpoly[0] = 1;
101
0
  for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
102
0
    rs->genpoly[i + 1] = 1;
103
104
    /* Multiply rs->genpoly[] by  @**(root + x) */
105
0
    for (j = i; j > 0; j--){
106
0
      if (rs->genpoly[j] != 0)
107
0
        rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)];
108
0
      else
109
0
        rs->genpoly[j] = rs->genpoly[j - 1];
110
0
    }
111
    /* rs->genpoly[0] can never be zero */
112
0
    rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)];
113
0
  }
114
  /* convert rs->genpoly[] to index form for quicker encoding */
115
0
  for (i = 0; i <= nroots; i++)
116
0
    rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
117
118
0
  return rs;
119
0
}
120
121
void free_rs_char(struct rs *rs)
122
0
{
123
0
  if (!rs)
124
0
    return;
125
126
0
  free(rs->alpha_to);
127
0
  free(rs->index_of);
128
0
  free(rs->genpoly);
129
0
  free(rs);
130
0
}
131
132
void encode_rs_char(struct rs *rs, data_t *data, data_t *parity)
133
0
{
134
0
  int i, j;
135
0
  data_t feedback;
136
137
0
  memset(parity, 0, rs->nroots * sizeof(data_t));
138
139
0
  for (i = 0; i < rs->nn - rs->nroots - rs->pad; i++) {
140
0
    feedback = rs->index_of[data[i] ^ parity[0]];
141
0
    if (feedback != A0) {
142
      /* feedback term is non-zero */
143
#ifdef UNNORMALIZED
144
      /* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
145
       * always be for the polynomials constructed by init_rs() */
146
      feedback = modnn(rs, rs->nn - rs->genpoly[rs->nroots] + feedback);
147
#endif
148
0
      for (j = 1; j < rs->nroots; j++)
149
0
        parity[j] ^= rs->alpha_to[modnn(rs, feedback + rs->genpoly[rs->nroots - j])];
150
0
    }
151
152
    /* Shift */
153
0
    memmove(&parity[0], &parity[1], sizeof(data_t) * (rs->nroots - 1));
154
155
0
    if (feedback != A0)
156
0
      parity[rs->nroots - 1] = rs->alpha_to[modnn(rs, feedback + rs->genpoly[0])];
157
0
    else
158
0
      parity[rs->nroots - 1] = 0;
159
0
  }
160
0
}