/src/openssl/crypto/bn/bn_asm.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <assert.h>  | 
11  |  | #include <openssl/crypto.h>  | 
12  |  | #include "internal/cryptlib.h"  | 
13  |  | #include "bn_local.h"  | 
14  |  |  | 
15  |  | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)  | 
16  |  |  | 
17  |  | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,  | 
18  |  |                           BN_ULONG w)  | 
19  |  | { | 
20  |  |     BN_ULONG c1 = 0;  | 
21  |  |  | 
22  |  |     assert(num >= 0);  | 
23  |  |     if (num <= 0)  | 
24  |  |         return c1;  | 
25  |  |  | 
26  |  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
27  |  |     while (num & ~3) { | 
28  |  |         mul_add(rp[0], ap[0], w, c1);  | 
29  |  |         mul_add(rp[1], ap[1], w, c1);  | 
30  |  |         mul_add(rp[2], ap[2], w, c1);  | 
31  |  |         mul_add(rp[3], ap[3], w, c1);  | 
32  |  |         ap += 4;  | 
33  |  |         rp += 4;  | 
34  |  |         num -= 4;  | 
35  |  |     }  | 
36  |  | # endif  | 
37  |  |     while (num) { | 
38  |  |         mul_add(rp[0], ap[0], w, c1);  | 
39  |  |         ap++;  | 
40  |  |         rp++;  | 
41  |  |         num--;  | 
42  |  |     }  | 
43  |  |  | 
44  |  |     return c1;  | 
45  |  | }  | 
46  |  |  | 
47  |  | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)  | 
48  |  | { | 
49  |  |     BN_ULONG c1 = 0;  | 
50  |  |  | 
51  |  |     assert(num >= 0);  | 
52  |  |     if (num <= 0)  | 
53  |  |         return c1;  | 
54  |  |  | 
55  |  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
56  |  |     while (num & ~3) { | 
57  |  |         mul(rp[0], ap[0], w, c1);  | 
58  |  |         mul(rp[1], ap[1], w, c1);  | 
59  |  |         mul(rp[2], ap[2], w, c1);  | 
60  |  |         mul(rp[3], ap[3], w, c1);  | 
61  |  |         ap += 4;  | 
62  |  |         rp += 4;  | 
63  |  |         num -= 4;  | 
64  |  |     }  | 
65  |  | # endif  | 
66  |  |     while (num) { | 
67  |  |         mul(rp[0], ap[0], w, c1);  | 
68  |  |         ap++;  | 
69  |  |         rp++;  | 
70  |  |         num--;  | 
71  |  |     }  | 
72  |  |     return c1;  | 
73  |  | }  | 
74  |  |  | 
75  |  | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)  | 
76  |  | { | 
77  |  |     assert(n >= 0);  | 
78  |  |     if (n <= 0)  | 
79  |  |         return;  | 
80  |  |  | 
81  |  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
82  |  |     while (n & ~3) { | 
83  |  |         sqr(r[0], r[1], a[0]);  | 
84  |  |         sqr(r[2], r[3], a[1]);  | 
85  |  |         sqr(r[4], r[5], a[2]);  | 
86  |  |         sqr(r[6], r[7], a[3]);  | 
87  |  |         a += 4;  | 
88  |  |         r += 8;  | 
89  |  |         n -= 4;  | 
90  |  |     }  | 
91  |  | # endif  | 
92  |  |     while (n) { | 
93  |  |         sqr(r[0], r[1], a[0]);  | 
94  |  |         a++;  | 
95  |  |         r += 2;  | 
96  |  |         n--;  | 
97  |  |     }  | 
98  |  | }  | 
99  |  |  | 
100  |  | #else                           /* !(defined(BN_LLONG) ||  | 
101  |  |                                  * defined(BN_UMULT_HIGH)) */  | 
102  |  |  | 
103  |  | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,  | 
104  |  |                           BN_ULONG w)  | 
105  | 0  | { | 
106  | 0  |     BN_ULONG c = 0;  | 
107  | 0  |     BN_ULONG bl, bh;  | 
108  |  | 
  | 
109  | 0  |     assert(num >= 0);  | 
110  | 0  |     if (num <= 0)  | 
111  | 0  |         return (BN_ULONG)0;  | 
112  |  |  | 
113  | 0  |     bl = LBITS(w);  | 
114  | 0  |     bh = HBITS(w);  | 
115  |  | 
  | 
116  | 0  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
117  | 0  |     while (num & ~3) { | 
118  | 0  |         mul_add(rp[0], ap[0], bl, bh, c);  | 
119  | 0  |         mul_add(rp[1], ap[1], bl, bh, c);  | 
120  | 0  |         mul_add(rp[2], ap[2], bl, bh, c);  | 
121  | 0  |         mul_add(rp[3], ap[3], bl, bh, c);  | 
122  | 0  |         ap += 4;  | 
123  | 0  |         rp += 4;  | 
124  | 0  |         num -= 4;  | 
125  | 0  |     }  | 
126  | 0  | # endif  | 
127  | 0  |     while (num) { | 
128  | 0  |         mul_add(rp[0], ap[0], bl, bh, c);  | 
129  | 0  |         ap++;  | 
130  | 0  |         rp++;  | 
131  | 0  |         num--;  | 
132  | 0  |     }  | 
133  | 0  |     return c;  | 
134  | 0  | }  | 
135  |  |  | 
136  |  | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)  | 
137  | 0  | { | 
138  | 0  |     BN_ULONG carry = 0;  | 
139  | 0  |     BN_ULONG bl, bh;  | 
140  |  | 
  | 
141  | 0  |     assert(num >= 0);  | 
142  | 0  |     if (num <= 0)  | 
143  | 0  |         return (BN_ULONG)0;  | 
144  |  |  | 
145  | 0  |     bl = LBITS(w);  | 
146  | 0  |     bh = HBITS(w);  | 
147  |  | 
  | 
148  | 0  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
149  | 0  |     while (num & ~3) { | 
150  | 0  |         mul(rp[0], ap[0], bl, bh, carry);  | 
151  | 0  |         mul(rp[1], ap[1], bl, bh, carry);  | 
152  | 0  |         mul(rp[2], ap[2], bl, bh, carry);  | 
153  | 0  |         mul(rp[3], ap[3], bl, bh, carry);  | 
154  | 0  |         ap += 4;  | 
155  | 0  |         rp += 4;  | 
156  | 0  |         num -= 4;  | 
157  | 0  |     }  | 
158  | 0  | # endif  | 
159  | 0  |     while (num) { | 
160  | 0  |         mul(rp[0], ap[0], bl, bh, carry);  | 
161  | 0  |         ap++;  | 
162  | 0  |         rp++;  | 
163  | 0  |         num--;  | 
164  | 0  |     }  | 
165  | 0  |     return carry;  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)  | 
169  | 0  | { | 
170  | 0  |     assert(n >= 0);  | 
171  | 0  |     if (n <= 0)  | 
172  | 0  |         return;  | 
173  |  |  | 
174  | 0  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
175  | 0  |     while (n & ~3) { | 
176  | 0  |         sqr64(r[0], r[1], a[0]);  | 
177  | 0  |         sqr64(r[2], r[3], a[1]);  | 
178  | 0  |         sqr64(r[4], r[5], a[2]);  | 
179  | 0  |         sqr64(r[6], r[7], a[3]);  | 
180  | 0  |         a += 4;  | 
181  | 0  |         r += 8;  | 
182  | 0  |         n -= 4;  | 
183  | 0  |     }  | 
184  | 0  | # endif  | 
185  | 0  |     while (n) { | 
186  | 0  |         sqr64(r[0], r[1], a[0]);  | 
187  | 0  |         a++;  | 
188  | 0  |         r += 2;  | 
189  | 0  |         n--;  | 
190  | 0  |     }  | 
191  | 0  | }  | 
192  |  |  | 
193  |  | #endif                          /* !(defined(BN_LLONG) ||  | 
194  |  |                                  * defined(BN_UMULT_HIGH)) */  | 
195  |  |  | 
196  |  | #if defined(BN_LLONG) && defined(BN_DIV2W)  | 
197  |  |  | 
198  |  | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)  | 
199  |  | { | 
200  |  |     return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d));  | 
201  |  | }  | 
202  |  |  | 
203  |  | #else  | 
204  |  |  | 
205  |  | /* Divide h,l by d and return the result. */  | 
206  |  | /* I need to test this some more :-( */  | 
207  |  | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)  | 
208  | 0  | { | 
209  | 0  |     BN_ULONG dh, dl, q, ret = 0, th, tl, t;  | 
210  | 0  |     int i, count = 2;  | 
211  |  | 
  | 
212  | 0  |     if (d == 0)  | 
213  | 0  |         return BN_MASK2;  | 
214  |  |  | 
215  | 0  |     i = BN_num_bits_word(d);  | 
216  | 0  |     assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));  | 
217  |  | 
  | 
218  | 0  |     i = BN_BITS2 - i;  | 
219  | 0  |     if (h >= d)  | 
220  | 0  |         h -= d;  | 
221  |  | 
  | 
222  | 0  |     if (i) { | 
223  | 0  |         d <<= i;  | 
224  | 0  |         h = (h << i) | (l >> (BN_BITS2 - i));  | 
225  | 0  |         l <<= i;  | 
226  | 0  |     }  | 
227  | 0  |     dh = (d & BN_MASK2h) >> BN_BITS4;  | 
228  | 0  |     dl = (d & BN_MASK2l);  | 
229  | 0  |     for (;;) { | 
230  | 0  |         if ((h >> BN_BITS4) == dh)  | 
231  | 0  |             q = BN_MASK2l;  | 
232  | 0  |         else  | 
233  | 0  |             q = h / dh;  | 
234  |  | 
  | 
235  | 0  |         th = q * dh;  | 
236  | 0  |         tl = dl * q;  | 
237  | 0  |         for (;;) { | 
238  | 0  |             t = h - th;  | 
239  | 0  |             if ((t & BN_MASK2h) ||  | 
240  | 0  |                 ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))  | 
241  | 0  |                 break;  | 
242  | 0  |             q--;  | 
243  | 0  |             th -= dh;  | 
244  | 0  |             tl -= dl;  | 
245  | 0  |         }  | 
246  | 0  |         t = (tl >> BN_BITS4);  | 
247  | 0  |         tl = (tl << BN_BITS4) & BN_MASK2h;  | 
248  | 0  |         th += t;  | 
249  |  | 
  | 
250  | 0  |         if (l < tl)  | 
251  | 0  |             th++;  | 
252  | 0  |         l -= tl;  | 
253  | 0  |         if (h < th) { | 
254  | 0  |             h += d;  | 
255  | 0  |             q--;  | 
256  | 0  |         }  | 
257  | 0  |         h -= th;  | 
258  |  | 
  | 
259  | 0  |         if (--count == 0)  | 
260  | 0  |             break;  | 
261  |  |  | 
262  | 0  |         ret = q << BN_BITS4;  | 
263  | 0  |         h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;  | 
264  | 0  |         l = (l & BN_MASK2l) << BN_BITS4;  | 
265  | 0  |     }  | 
266  | 0  |     ret |= q;  | 
267  | 0  |     return ret;  | 
268  | 0  | }  | 
269  |  | #endif                          /* !defined(BN_LLONG) && defined(BN_DIV2W) */  | 
270  |  |  | 
271  |  | #ifdef BN_LLONG  | 
272  |  | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,  | 
273  |  |                       int n)  | 
274  |  | { | 
275  |  |     BN_ULLONG ll = 0;  | 
276  |  |  | 
277  |  |     assert(n >= 0);  | 
278  |  |     if (n <= 0)  | 
279  |  |         return (BN_ULONG)0;  | 
280  |  |  | 
281  |  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
282  |  |     while (n & ~3) { | 
283  |  |         ll += (BN_ULLONG) a[0] + b[0];  | 
284  |  |         r[0] = (BN_ULONG)ll & BN_MASK2;  | 
285  |  |         ll >>= BN_BITS2;  | 
286  |  |         ll += (BN_ULLONG) a[1] + b[1];  | 
287  |  |         r[1] = (BN_ULONG)ll & BN_MASK2;  | 
288  |  |         ll >>= BN_BITS2;  | 
289  |  |         ll += (BN_ULLONG) a[2] + b[2];  | 
290  |  |         r[2] = (BN_ULONG)ll & BN_MASK2;  | 
291  |  |         ll >>= BN_BITS2;  | 
292  |  |         ll += (BN_ULLONG) a[3] + b[3];  | 
293  |  |         r[3] = (BN_ULONG)ll & BN_MASK2;  | 
294  |  |         ll >>= BN_BITS2;  | 
295  |  |         a += 4;  | 
296  |  |         b += 4;  | 
297  |  |         r += 4;  | 
298  |  |         n -= 4;  | 
299  |  |     }  | 
300  |  | # endif  | 
301  |  |     while (n) { | 
302  |  |         ll += (BN_ULLONG) a[0] + b[0];  | 
303  |  |         r[0] = (BN_ULONG)ll & BN_MASK2;  | 
304  |  |         ll >>= BN_BITS2;  | 
305  |  |         a++;  | 
306  |  |         b++;  | 
307  |  |         r++;  | 
308  |  |         n--;  | 
309  |  |     }  | 
310  |  |     return (BN_ULONG)ll;  | 
311  |  | }  | 
312  |  | #else                           /* !BN_LLONG */  | 
313  |  | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,  | 
314  |  |                       int n)  | 
315  | 0  | { | 
316  | 0  |     BN_ULONG c, l, t;  | 
317  |  | 
  | 
318  | 0  |     assert(n >= 0);  | 
319  | 0  |     if (n <= 0)  | 
320  | 0  |         return (BN_ULONG)0;  | 
321  |  |  | 
322  | 0  |     c = 0;  | 
323  | 0  | # ifndef OPENSSL_SMALL_FOOTPRINT  | 
324  | 0  |     while (n & ~3) { | 
325  | 0  |         t = a[0];  | 
326  | 0  |         t = (t + c) & BN_MASK2;  | 
327  | 0  |         c = (t < c);  | 
328  | 0  |         l = (t + b[0]) & BN_MASK2;  | 
329  | 0  |         c += (l < t);  | 
330  | 0  |         r[0] = l;  | 
331  | 0  |         t = a[1];  | 
332  | 0  |         t = (t + c) & BN_MASK2;  | 
333  | 0  |         c = (t < c);  | 
334  | 0  |         l = (t + b[1]) & BN_MASK2;  | 
335  | 0  |         c += (l < t);  | 
336  | 0  |         r[1] = l;  | 
337  | 0  |         t = a[2];  | 
338  | 0  |         t = (t + c) & BN_MASK2;  | 
339  | 0  |         c = (t < c);  | 
340  | 0  |         l = (t + b[2]) & BN_MASK2;  | 
341  | 0  |         c += (l < t);  | 
342  | 0  |         r[2] = l;  | 
343  | 0  |         t = a[3];  | 
344  | 0  |         t = (t + c) & BN_MASK2;  | 
345  | 0  |         c = (t < c);  | 
346  | 0  |         l = (t + b[3]) & BN_MASK2;  | 
347  | 0  |         c += (l < t);  | 
348  | 0  |         r[3] = l;  | 
349  | 0  |         a += 4;  | 
350  | 0  |         b += 4;  | 
351  | 0  |         r += 4;  | 
352  | 0  |         n -= 4;  | 
353  | 0  |     }  | 
354  | 0  | # endif  | 
355  | 0  |     while (n) { | 
356  | 0  |         t = a[0];  | 
357  | 0  |         t = (t + c) & BN_MASK2;  | 
358  | 0  |         c = (t < c);  | 
359  | 0  |         l = (t + b[0]) & BN_MASK2;  | 
360  | 0  |         c += (l < t);  | 
361  | 0  |         r[0] = l;  | 
362  | 0  |         a++;  | 
363  | 0  |         b++;  | 
364  | 0  |         r++;  | 
365  | 0  |         n--;  | 
366  | 0  |     }  | 
367  | 0  |     return (BN_ULONG)c;  | 
368  | 0  | }  | 
369  |  | #endif                          /* !BN_LLONG */  | 
370  |  |  | 
371  |  | BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,  | 
372  |  |                       int n)  | 
373  | 0  | { | 
374  | 0  |     BN_ULONG t1, t2;  | 
375  | 0  |     int c = 0;  | 
376  |  | 
  | 
377  | 0  |     assert(n >= 0);  | 
378  | 0  |     if (n <= 0)  | 
379  | 0  |         return (BN_ULONG)0;  | 
380  |  |  | 
381  | 0  | #ifndef OPENSSL_SMALL_FOOTPRINT  | 
382  | 0  |     while (n & ~3) { | 
383  | 0  |         t1 = a[0];  | 
384  | 0  |         t2 = (t1 - c) & BN_MASK2;  | 
385  | 0  |         c  = (t2 > t1);  | 
386  | 0  |         t1 = b[0];  | 
387  | 0  |         t1 = (t2 - t1) & BN_MASK2;  | 
388  | 0  |         r[0] = t1;  | 
389  | 0  |         c += (t1 > t2);  | 
390  | 0  |         t1 = a[1];  | 
391  | 0  |         t2 = (t1 - c) & BN_MASK2;  | 
392  | 0  |         c  = (t2 > t1);  | 
393  | 0  |         t1 = b[1];  | 
394  | 0  |         t1 = (t2 - t1) & BN_MASK2;  | 
395  | 0  |         r[1] = t1;  | 
396  | 0  |         c += (t1 > t2);  | 
397  | 0  |         t1 = a[2];  | 
398  | 0  |         t2 = (t1 - c) & BN_MASK2;  | 
399  | 0  |         c  = (t2 > t1);  | 
400  | 0  |         t1 = b[2];  | 
401  | 0  |         t1 = (t2 - t1) & BN_MASK2;  | 
402  | 0  |         r[2] = t1;  | 
403  | 0  |         c += (t1 > t2);  | 
404  | 0  |         t1 = a[3];  | 
405  | 0  |         t2 = (t1 - c) & BN_MASK2;  | 
406  | 0  |         c  = (t2 > t1);  | 
407  | 0  |         t1 = b[3];  | 
408  | 0  |         t1 = (t2 - t1) & BN_MASK2;  | 
409  | 0  |         r[3] = t1;  | 
410  | 0  |         c += (t1 > t2);  | 
411  | 0  |         a += 4;  | 
412  | 0  |         b += 4;  | 
413  | 0  |         r += 4;  | 
414  | 0  |         n -= 4;  | 
415  | 0  |     }  | 
416  | 0  | #endif  | 
417  | 0  |     while (n) { | 
418  | 0  |         t1 = a[0];  | 
419  | 0  |         t2 = (t1 - c) & BN_MASK2;  | 
420  | 0  |         c  = (t2 > t1);  | 
421  | 0  |         t1 = b[0];  | 
422  | 0  |         t1 = (t2 - t1) & BN_MASK2;  | 
423  | 0  |         r[0] = t1;  | 
424  | 0  |         c += (t1 > t2);  | 
425  | 0  |         a++;  | 
426  | 0  |         b++;  | 
427  | 0  |         r++;  | 
428  | 0  |         n--;  | 
429  | 0  |     }  | 
430  | 0  |     return c;  | 
431  | 0  | }  | 
432  |  |  | 
433  |  | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)  | 
434  |  |  | 
435  |  | /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */  | 
436  |  | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */  | 
437  |  | /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */  | 
438  |  | /*  | 
439  |  |  * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number  | 
440  |  |  * c=(c2,c1,c0)  | 
441  |  |  */  | 
442  |  |  | 
443  |  | # ifdef BN_LLONG  | 
444  |  | /*  | 
445  |  |  * Keep in mind that additions to multiplication result can not  | 
446  |  |  * overflow, because its high half cannot be all-ones.  | 
447  |  |  */  | 
448  |  | #  define mul_add_c(a,b,c0,c1,c2)       do {    \ | 
449  |  |         BN_ULONG hi;                            \  | 
450  |  |         BN_ULLONG t = (BN_ULLONG)(a)*(b);       \  | 
451  |  |         t += c0;                /* no carry */  \  | 
452  |  |         c0 = (BN_ULONG)Lw(t);                   \  | 
453  |  |         hi = (BN_ULONG)Hw(t);                   \  | 
454  |  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
455  |  |         } while(0)  | 
456  |  |  | 
457  |  | #  define mul_add_c2(a,b,c0,c1,c2)      do {    \ | 
458  |  |         BN_ULONG hi;                            \  | 
459  |  |         BN_ULLONG t = (BN_ULLONG)(a)*(b);       \  | 
460  |  |         BN_ULLONG tt = t+c0;    /* no carry */  \  | 
461  |  |         c0 = (BN_ULONG)Lw(tt);                  \  | 
462  |  |         hi = (BN_ULONG)Hw(tt);                  \  | 
463  |  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
464  |  |         t += c0;                /* no carry */  \  | 
465  |  |         c0 = (BN_ULONG)Lw(t);                   \  | 
466  |  |         hi = (BN_ULONG)Hw(t);                   \  | 
467  |  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
468  |  |         } while(0)  | 
469  |  |  | 
470  |  | #  define sqr_add_c(a,i,c0,c1,c2)       do {    \ | 
471  |  |         BN_ULONG hi;                            \  | 
472  |  |         BN_ULLONG t = (BN_ULLONG)a[i]*a[i];     \  | 
473  |  |         t += c0;                /* no carry */  \  | 
474  |  |         c0 = (BN_ULONG)Lw(t);                   \  | 
475  |  |         hi = (BN_ULONG)Hw(t);                   \  | 
476  |  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
477  |  |         } while(0)  | 
478  |  |  | 
479  |  | #  define sqr_add_c2(a,i,j,c0,c1,c2) \  | 
480  |  |         mul_add_c2((a)[i],(a)[j],c0,c1,c2)  | 
481  |  |  | 
482  |  | # elif defined(BN_UMULT_LOHI)  | 
483  |  | /*  | 
484  |  |  * Keep in mind that additions to hi can not overflow, because  | 
485  |  |  * the high word of a multiplication result cannot be all-ones.  | 
486  |  |  */  | 
487  |  | #  define mul_add_c(a,b,c0,c1,c2)       do {    \ | 
488  |  |         BN_ULONG ta = (a), tb = (b);            \  | 
489  |  |         BN_ULONG lo, hi;                        \  | 
490  |  |         BN_UMULT_LOHI(lo,hi,ta,tb);             \  | 
491  |  |         c0 += lo; hi += (c0<lo);                \  | 
492  |  |         c1 += hi; c2 += (c1<hi);                \  | 
493  |  |         } while(0)  | 
494  |  |  | 
495  |  | #  define mul_add_c2(a,b,c0,c1,c2)      do {    \ | 
496  |  |         BN_ULONG ta = (a), tb = (b);            \  | 
497  |  |         BN_ULONG lo, hi, tt;                    \  | 
498  |  |         BN_UMULT_LOHI(lo,hi,ta,tb);             \  | 
499  |  |         c0 += lo; tt = hi + (c0<lo);            \  | 
500  |  |         c1 += tt; c2 += (c1<tt);                \  | 
501  |  |         c0 += lo; hi += (c0<lo);                \  | 
502  |  |         c1 += hi; c2 += (c1<hi);                \  | 
503  |  |         } while(0)  | 
504  |  |  | 
505  |  | #  define sqr_add_c(a,i,c0,c1,c2)       do {    \ | 
506  |  |         BN_ULONG ta = (a)[i];                   \  | 
507  |  |         BN_ULONG lo, hi;                        \  | 
508  |  |         BN_UMULT_LOHI(lo,hi,ta,ta);             \  | 
509  |  |         c0 += lo; hi += (c0<lo);                \  | 
510  |  |         c1 += hi; c2 += (c1<hi);                \  | 
511  |  |         } while(0)  | 
512  |  |  | 
513  |  | #  define sqr_add_c2(a,i,j,c0,c1,c2)    \  | 
514  |  |         mul_add_c2((a)[i],(a)[j],c0,c1,c2)  | 
515  |  |  | 
516  |  | # elif defined(BN_UMULT_HIGH)  | 
517  |  | /*  | 
518  |  |  * Keep in mind that additions to hi can not overflow, because  | 
519  |  |  * the high word of a multiplication result cannot be all-ones.  | 
520  |  |  */  | 
521  |  | #  define mul_add_c(a,b,c0,c1,c2)       do {    \ | 
522  |  |         BN_ULONG ta = (a), tb = (b);            \  | 
523  |  |         BN_ULONG lo = ta * tb;                  \  | 
524  |  |         BN_ULONG hi = BN_UMULT_HIGH(ta,tb);     \  | 
525  |  |         c0 += lo; hi += (c0<lo);                \  | 
526  |  |         c1 += hi; c2 += (c1<hi);                \  | 
527  |  |         } while(0)  | 
528  |  |  | 
529  |  | #  define mul_add_c2(a,b,c0,c1,c2)      do {    \ | 
530  |  |         BN_ULONG ta = (a), tb = (b), tt;        \  | 
531  |  |         BN_ULONG lo = ta * tb;                  \  | 
532  |  |         BN_ULONG hi = BN_UMULT_HIGH(ta,tb);     \  | 
533  |  |         c0 += lo; tt = hi + (c0<lo);            \  | 
534  |  |         c1 += tt; c2 += (c1<tt);                \  | 
535  |  |         c0 += lo; hi += (c0<lo);                \  | 
536  |  |         c1 += hi; c2 += (c1<hi);                \  | 
537  |  |         } while(0)  | 
538  |  |  | 
539  |  | #  define sqr_add_c(a,i,c0,c1,c2)       do {    \ | 
540  |  |         BN_ULONG ta = (a)[i];                   \  | 
541  |  |         BN_ULONG lo = ta * ta;                  \  | 
542  |  |         BN_ULONG hi = BN_UMULT_HIGH(ta,ta);     \  | 
543  |  |         c0 += lo; hi += (c0<lo);                \  | 
544  |  |         c1 += hi; c2 += (c1<hi);                \  | 
545  |  |         } while(0)  | 
546  |  |  | 
547  |  | #  define sqr_add_c2(a,i,j,c0,c1,c2)      \  | 
548  |  |         mul_add_c2((a)[i],(a)[j],c0,c1,c2)  | 
549  |  |  | 
550  |  | # else                          /* !BN_LLONG */  | 
551  |  | /*  | 
552  |  |  * Keep in mind that additions to hi can not overflow, because  | 
553  |  |  * the high word of a multiplication result cannot be all-ones.  | 
554  |  |  */  | 
555  | 0  | #  define mul_add_c(a,b,c0,c1,c2)       do {    \ | 
556  | 0  |         BN_ULONG lo = LBITS(a), hi = HBITS(a);  \  | 
557  | 0  |         BN_ULONG bl = LBITS(b), bh = HBITS(b);  \  | 
558  | 0  |         mul64(lo,hi,bl,bh);                     \  | 
559  | 0  |         c0 = (c0+lo)&BN_MASK2; hi += (c0<lo);   \  | 
560  | 0  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
561  | 0  |         } while(0)  | 
562  |  |  | 
563  | 0  | #  define mul_add_c2(a,b,c0,c1,c2)      do {    \ | 
564  | 0  |         BN_ULONG tt;                            \  | 
565  | 0  |         BN_ULONG lo = LBITS(a), hi = HBITS(a);  \  | 
566  | 0  |         BN_ULONG bl = LBITS(b), bh = HBITS(b);  \  | 
567  | 0  |         mul64(lo,hi,bl,bh);                     \  | 
568  | 0  |         tt = hi;                                \  | 
569  | 0  |         c0 = (c0+lo)&BN_MASK2; tt += (c0<lo);   \  | 
570  | 0  |         c1 = (c1+tt)&BN_MASK2; c2 += (c1<tt);   \  | 
571  | 0  |         c0 = (c0+lo)&BN_MASK2; hi += (c0<lo);   \  | 
572  | 0  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
573  | 0  |         } while(0)  | 
574  |  |  | 
575  | 0  | #  define sqr_add_c(a,i,c0,c1,c2)       do {    \ | 
576  | 0  |         BN_ULONG lo, hi;                        \  | 
577  | 0  |         sqr64(lo,hi,(a)[i]);                    \  | 
578  | 0  |         c0 = (c0+lo)&BN_MASK2; hi += (c0<lo);   \  | 
579  | 0  |         c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi);   \  | 
580  | 0  |         } while(0)  | 
581  |  |  | 
582  |  | #  define sqr_add_c2(a,i,j,c0,c1,c2) \  | 
583  | 0  |         mul_add_c2((a)[i],(a)[j],c0,c1,c2)  | 
584  |  | # endif                         /* !BN_LLONG */  | 
585  |  |  | 
586  |  | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)  | 
587  | 0  | { | 
588  | 0  |     BN_ULONG c1, c2, c3;  | 
589  |  | 
  | 
590  | 0  |     c1 = 0;  | 
591  | 0  |     c2 = 0;  | 
592  | 0  |     c3 = 0;  | 
593  | 0  |     mul_add_c(a[0], b[0], c1, c2, c3);  | 
594  | 0  |     r[0] = c1;  | 
595  | 0  |     c1 = 0;  | 
596  | 0  |     mul_add_c(a[0], b[1], c2, c3, c1);  | 
597  | 0  |     mul_add_c(a[1], b[0], c2, c3, c1);  | 
598  | 0  |     r[1] = c2;  | 
599  | 0  |     c2 = 0;  | 
600  | 0  |     mul_add_c(a[2], b[0], c3, c1, c2);  | 
601  | 0  |     mul_add_c(a[1], b[1], c3, c1, c2);  | 
602  | 0  |     mul_add_c(a[0], b[2], c3, c1, c2);  | 
603  | 0  |     r[2] = c3;  | 
604  | 0  |     c3 = 0;  | 
605  | 0  |     mul_add_c(a[0], b[3], c1, c2, c3);  | 
606  | 0  |     mul_add_c(a[1], b[2], c1, c2, c3);  | 
607  | 0  |     mul_add_c(a[2], b[1], c1, c2, c3);  | 
608  | 0  |     mul_add_c(a[3], b[0], c1, c2, c3);  | 
609  | 0  |     r[3] = c1;  | 
610  | 0  |     c1 = 0;  | 
611  | 0  |     mul_add_c(a[4], b[0], c2, c3, c1);  | 
612  | 0  |     mul_add_c(a[3], b[1], c2, c3, c1);  | 
613  | 0  |     mul_add_c(a[2], b[2], c2, c3, c1);  | 
614  | 0  |     mul_add_c(a[1], b[3], c2, c3, c1);  | 
615  | 0  |     mul_add_c(a[0], b[4], c2, c3, c1);  | 
616  | 0  |     r[4] = c2;  | 
617  | 0  |     c2 = 0;  | 
618  | 0  |     mul_add_c(a[0], b[5], c3, c1, c2);  | 
619  | 0  |     mul_add_c(a[1], b[4], c3, c1, c2);  | 
620  | 0  |     mul_add_c(a[2], b[3], c3, c1, c2);  | 
621  | 0  |     mul_add_c(a[3], b[2], c3, c1, c2);  | 
622  | 0  |     mul_add_c(a[4], b[1], c3, c1, c2);  | 
623  | 0  |     mul_add_c(a[5], b[0], c3, c1, c2);  | 
624  | 0  |     r[5] = c3;  | 
625  | 0  |     c3 = 0;  | 
626  | 0  |     mul_add_c(a[6], b[0], c1, c2, c3);  | 
627  | 0  |     mul_add_c(a[5], b[1], c1, c2, c3);  | 
628  | 0  |     mul_add_c(a[4], b[2], c1, c2, c3);  | 
629  | 0  |     mul_add_c(a[3], b[3], c1, c2, c3);  | 
630  | 0  |     mul_add_c(a[2], b[4], c1, c2, c3);  | 
631  | 0  |     mul_add_c(a[1], b[5], c1, c2, c3);  | 
632  | 0  |     mul_add_c(a[0], b[6], c1, c2, c3);  | 
633  | 0  |     r[6] = c1;  | 
634  | 0  |     c1 = 0;  | 
635  | 0  |     mul_add_c(a[0], b[7], c2, c3, c1);  | 
636  | 0  |     mul_add_c(a[1], b[6], c2, c3, c1);  | 
637  | 0  |     mul_add_c(a[2], b[5], c2, c3, c1);  | 
638  | 0  |     mul_add_c(a[3], b[4], c2, c3, c1);  | 
639  | 0  |     mul_add_c(a[4], b[3], c2, c3, c1);  | 
640  | 0  |     mul_add_c(a[5], b[2], c2, c3, c1);  | 
641  | 0  |     mul_add_c(a[6], b[1], c2, c3, c1);  | 
642  | 0  |     mul_add_c(a[7], b[0], c2, c3, c1);  | 
643  | 0  |     r[7] = c2;  | 
644  | 0  |     c2 = 0;  | 
645  | 0  |     mul_add_c(a[7], b[1], c3, c1, c2);  | 
646  | 0  |     mul_add_c(a[6], b[2], c3, c1, c2);  | 
647  | 0  |     mul_add_c(a[5], b[3], c3, c1, c2);  | 
648  | 0  |     mul_add_c(a[4], b[4], c3, c1, c2);  | 
649  | 0  |     mul_add_c(a[3], b[5], c3, c1, c2);  | 
650  | 0  |     mul_add_c(a[2], b[6], c3, c1, c2);  | 
651  | 0  |     mul_add_c(a[1], b[7], c3, c1, c2);  | 
652  | 0  |     r[8] = c3;  | 
653  | 0  |     c3 = 0;  | 
654  | 0  |     mul_add_c(a[2], b[7], c1, c2, c3);  | 
655  | 0  |     mul_add_c(a[3], b[6], c1, c2, c3);  | 
656  | 0  |     mul_add_c(a[4], b[5], c1, c2, c3);  | 
657  | 0  |     mul_add_c(a[5], b[4], c1, c2, c3);  | 
658  | 0  |     mul_add_c(a[6], b[3], c1, c2, c3);  | 
659  | 0  |     mul_add_c(a[7], b[2], c1, c2, c3);  | 
660  | 0  |     r[9] = c1;  | 
661  | 0  |     c1 = 0;  | 
662  | 0  |     mul_add_c(a[7], b[3], c2, c3, c1);  | 
663  | 0  |     mul_add_c(a[6], b[4], c2, c3, c1);  | 
664  | 0  |     mul_add_c(a[5], b[5], c2, c3, c1);  | 
665  | 0  |     mul_add_c(a[4], b[6], c2, c3, c1);  | 
666  | 0  |     mul_add_c(a[3], b[7], c2, c3, c1);  | 
667  | 0  |     r[10] = c2;  | 
668  | 0  |     c2 = 0;  | 
669  | 0  |     mul_add_c(a[4], b[7], c3, c1, c2);  | 
670  | 0  |     mul_add_c(a[5], b[6], c3, c1, c2);  | 
671  | 0  |     mul_add_c(a[6], b[5], c3, c1, c2);  | 
672  | 0  |     mul_add_c(a[7], b[4], c3, c1, c2);  | 
673  | 0  |     r[11] = c3;  | 
674  | 0  |     c3 = 0;  | 
675  | 0  |     mul_add_c(a[7], b[5], c1, c2, c3);  | 
676  | 0  |     mul_add_c(a[6], b[6], c1, c2, c3);  | 
677  | 0  |     mul_add_c(a[5], b[7], c1, c2, c3);  | 
678  | 0  |     r[12] = c1;  | 
679  | 0  |     c1 = 0;  | 
680  | 0  |     mul_add_c(a[6], b[7], c2, c3, c1);  | 
681  | 0  |     mul_add_c(a[7], b[6], c2, c3, c1);  | 
682  | 0  |     r[13] = c2;  | 
683  | 0  |     c2 = 0;  | 
684  | 0  |     mul_add_c(a[7], b[7], c3, c1, c2);  | 
685  | 0  |     r[14] = c3;  | 
686  | 0  |     r[15] = c1;  | 
687  | 0  | }  | 
688  |  |  | 
689  |  | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)  | 
690  | 0  | { | 
691  | 0  |     BN_ULONG c1, c2, c3;  | 
692  |  | 
  | 
693  | 0  |     c1 = 0;  | 
694  | 0  |     c2 = 0;  | 
695  | 0  |     c3 = 0;  | 
696  | 0  |     mul_add_c(a[0], b[0], c1, c2, c3);  | 
697  | 0  |     r[0] = c1;  | 
698  | 0  |     c1 = 0;  | 
699  | 0  |     mul_add_c(a[0], b[1], c2, c3, c1);  | 
700  | 0  |     mul_add_c(a[1], b[0], c2, c3, c1);  | 
701  | 0  |     r[1] = c2;  | 
702  | 0  |     c2 = 0;  | 
703  | 0  |     mul_add_c(a[2], b[0], c3, c1, c2);  | 
704  | 0  |     mul_add_c(a[1], b[1], c3, c1, c2);  | 
705  | 0  |     mul_add_c(a[0], b[2], c3, c1, c2);  | 
706  | 0  |     r[2] = c3;  | 
707  | 0  |     c3 = 0;  | 
708  | 0  |     mul_add_c(a[0], b[3], c1, c2, c3);  | 
709  | 0  |     mul_add_c(a[1], b[2], c1, c2, c3);  | 
710  | 0  |     mul_add_c(a[2], b[1], c1, c2, c3);  | 
711  | 0  |     mul_add_c(a[3], b[0], c1, c2, c3);  | 
712  | 0  |     r[3] = c1;  | 
713  | 0  |     c1 = 0;  | 
714  | 0  |     mul_add_c(a[3], b[1], c2, c3, c1);  | 
715  | 0  |     mul_add_c(a[2], b[2], c2, c3, c1);  | 
716  | 0  |     mul_add_c(a[1], b[3], c2, c3, c1);  | 
717  | 0  |     r[4] = c2;  | 
718  | 0  |     c2 = 0;  | 
719  | 0  |     mul_add_c(a[2], b[3], c3, c1, c2);  | 
720  | 0  |     mul_add_c(a[3], b[2], c3, c1, c2);  | 
721  | 0  |     r[5] = c3;  | 
722  | 0  |     c3 = 0;  | 
723  | 0  |     mul_add_c(a[3], b[3], c1, c2, c3);  | 
724  | 0  |     r[6] = c1;  | 
725  | 0  |     r[7] = c2;  | 
726  | 0  | }  | 
727  |  |  | 
728  |  | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)  | 
729  | 0  | { | 
730  | 0  |     BN_ULONG c1, c2, c3;  | 
731  |  | 
  | 
732  | 0  |     c1 = 0;  | 
733  | 0  |     c2 = 0;  | 
734  | 0  |     c3 = 0;  | 
735  | 0  |     sqr_add_c(a, 0, c1, c2, c3);  | 
736  | 0  |     r[0] = c1;  | 
737  | 0  |     c1 = 0;  | 
738  | 0  |     sqr_add_c2(a, 1, 0, c2, c3, c1);  | 
739  | 0  |     r[1] = c2;  | 
740  | 0  |     c2 = 0;  | 
741  | 0  |     sqr_add_c(a, 1, c3, c1, c2);  | 
742  | 0  |     sqr_add_c2(a, 2, 0, c3, c1, c2);  | 
743  | 0  |     r[2] = c3;  | 
744  | 0  |     c3 = 0;  | 
745  | 0  |     sqr_add_c2(a, 3, 0, c1, c2, c3);  | 
746  | 0  |     sqr_add_c2(a, 2, 1, c1, c2, c3);  | 
747  | 0  |     r[3] = c1;  | 
748  | 0  |     c1 = 0;  | 
749  | 0  |     sqr_add_c(a, 2, c2, c3, c1);  | 
750  | 0  |     sqr_add_c2(a, 3, 1, c2, c3, c1);  | 
751  | 0  |     sqr_add_c2(a, 4, 0, c2, c3, c1);  | 
752  | 0  |     r[4] = c2;  | 
753  | 0  |     c2 = 0;  | 
754  | 0  |     sqr_add_c2(a, 5, 0, c3, c1, c2);  | 
755  | 0  |     sqr_add_c2(a, 4, 1, c3, c1, c2);  | 
756  | 0  |     sqr_add_c2(a, 3, 2, c3, c1, c2);  | 
757  | 0  |     r[5] = c3;  | 
758  | 0  |     c3 = 0;  | 
759  | 0  |     sqr_add_c(a, 3, c1, c2, c3);  | 
760  | 0  |     sqr_add_c2(a, 4, 2, c1, c2, c3);  | 
761  | 0  |     sqr_add_c2(a, 5, 1, c1, c2, c3);  | 
762  | 0  |     sqr_add_c2(a, 6, 0, c1, c2, c3);  | 
763  | 0  |     r[6] = c1;  | 
764  | 0  |     c1 = 0;  | 
765  | 0  |     sqr_add_c2(a, 7, 0, c2, c3, c1);  | 
766  | 0  |     sqr_add_c2(a, 6, 1, c2, c3, c1);  | 
767  | 0  |     sqr_add_c2(a, 5, 2, c2, c3, c1);  | 
768  | 0  |     sqr_add_c2(a, 4, 3, c2, c3, c1);  | 
769  | 0  |     r[7] = c2;  | 
770  | 0  |     c2 = 0;  | 
771  | 0  |     sqr_add_c(a, 4, c3, c1, c2);  | 
772  | 0  |     sqr_add_c2(a, 5, 3, c3, c1, c2);  | 
773  | 0  |     sqr_add_c2(a, 6, 2, c3, c1, c2);  | 
774  | 0  |     sqr_add_c2(a, 7, 1, c3, c1, c2);  | 
775  | 0  |     r[8] = c3;  | 
776  | 0  |     c3 = 0;  | 
777  | 0  |     sqr_add_c2(a, 7, 2, c1, c2, c3);  | 
778  | 0  |     sqr_add_c2(a, 6, 3, c1, c2, c3);  | 
779  | 0  |     sqr_add_c2(a, 5, 4, c1, c2, c3);  | 
780  | 0  |     r[9] = c1;  | 
781  | 0  |     c1 = 0;  | 
782  | 0  |     sqr_add_c(a, 5, c2, c3, c1);  | 
783  | 0  |     sqr_add_c2(a, 6, 4, c2, c3, c1);  | 
784  | 0  |     sqr_add_c2(a, 7, 3, c2, c3, c1);  | 
785  | 0  |     r[10] = c2;  | 
786  | 0  |     c2 = 0;  | 
787  | 0  |     sqr_add_c2(a, 7, 4, c3, c1, c2);  | 
788  | 0  |     sqr_add_c2(a, 6, 5, c3, c1, c2);  | 
789  | 0  |     r[11] = c3;  | 
790  | 0  |     c3 = 0;  | 
791  | 0  |     sqr_add_c(a, 6, c1, c2, c3);  | 
792  | 0  |     sqr_add_c2(a, 7, 5, c1, c2, c3);  | 
793  | 0  |     r[12] = c1;  | 
794  | 0  |     c1 = 0;  | 
795  | 0  |     sqr_add_c2(a, 7, 6, c2, c3, c1);  | 
796  | 0  |     r[13] = c2;  | 
797  | 0  |     c2 = 0;  | 
798  | 0  |     sqr_add_c(a, 7, c3, c1, c2);  | 
799  | 0  |     r[14] = c3;  | 
800  | 0  |     r[15] = c1;  | 
801  | 0  | }  | 
802  |  |  | 
803  |  | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)  | 
804  | 0  | { | 
805  | 0  |     BN_ULONG c1, c2, c3;  | 
806  |  | 
  | 
807  | 0  |     c1 = 0;  | 
808  | 0  |     c2 = 0;  | 
809  | 0  |     c3 = 0;  | 
810  | 0  |     sqr_add_c(a, 0, c1, c2, c3);  | 
811  | 0  |     r[0] = c1;  | 
812  | 0  |     c1 = 0;  | 
813  | 0  |     sqr_add_c2(a, 1, 0, c2, c3, c1);  | 
814  | 0  |     r[1] = c2;  | 
815  | 0  |     c2 = 0;  | 
816  | 0  |     sqr_add_c(a, 1, c3, c1, c2);  | 
817  | 0  |     sqr_add_c2(a, 2, 0, c3, c1, c2);  | 
818  | 0  |     r[2] = c3;  | 
819  | 0  |     c3 = 0;  | 
820  | 0  |     sqr_add_c2(a, 3, 0, c1, c2, c3);  | 
821  | 0  |     sqr_add_c2(a, 2, 1, c1, c2, c3);  | 
822  | 0  |     r[3] = c1;  | 
823  | 0  |     c1 = 0;  | 
824  | 0  |     sqr_add_c(a, 2, c2, c3, c1);  | 
825  | 0  |     sqr_add_c2(a, 3, 1, c2, c3, c1);  | 
826  | 0  |     r[4] = c2;  | 
827  | 0  |     c2 = 0;  | 
828  | 0  |     sqr_add_c2(a, 3, 2, c3, c1, c2);  | 
829  | 0  |     r[5] = c3;  | 
830  | 0  |     c3 = 0;  | 
831  | 0  |     sqr_add_c(a, 3, c1, c2, c3);  | 
832  | 0  |     r[6] = c1;  | 
833  | 0  |     r[7] = c2;  | 
834  | 0  | }  | 
835  |  |  | 
836  |  | # ifdef OPENSSL_NO_ASM  | 
837  |  | #  ifdef OPENSSL_BN_ASM_MONT  | 
838  |  | #   include <alloca.h>  | 
839  |  | /*  | 
840  |  |  * This is essentially reference implementation, which may or may not  | 
841  |  |  * result in performance improvement. E.g. on IA-32 this routine was  | 
842  |  |  * observed to give 40% faster rsa1024 private key operations and 10%  | 
843  |  |  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only  | 
844  |  |  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a  | 
845  |  |  * reference implementation, one to be used as starting point for  | 
846  |  |  * platform-specific assembler. Mentioned numbers apply to compiler  | 
847  |  |  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and  | 
848  |  |  * can vary not only from platform to platform, but even for compiler  | 
849  |  |  * versions. Assembler vs. assembler improvement coefficients can  | 
850  |  |  * [and are known to] differ and are to be documented elsewhere.  | 
851  |  |  */  | 
852  |  | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
853  |  |                 const BN_ULONG *np, const BN_ULONG *n0p, int num)  | 
854  |  | { | 
855  |  |     BN_ULONG c0, c1, ml, *tp, n0;  | 
856  |  | #   ifdef mul64  | 
857  |  |     BN_ULONG mh;  | 
858  |  | #   endif  | 
859  |  |     volatile BN_ULONG *vp;  | 
860  |  |     int i = 0, j;  | 
861  |  |  | 
862  |  | #   if 0                        /* template for platform-specific  | 
863  |  |                                  * implementation */  | 
864  |  |     if (ap == bp)  | 
865  |  |         return bn_sqr_mont(rp, ap, np, n0p, num);  | 
866  |  | #   endif  | 
867  |  |     vp = tp = alloca((num + 2) * sizeof(BN_ULONG));  | 
868  |  |  | 
869  |  |     n0 = *n0p;  | 
870  |  |  | 
871  |  |     c0 = 0;  | 
872  |  |     ml = bp[0];  | 
873  |  | #   ifdef mul64  | 
874  |  |     mh = HBITS(ml);  | 
875  |  |     ml = LBITS(ml);  | 
876  |  |     for (j = 0; j < num; ++j)  | 
877  |  |         mul(tp[j], ap[j], ml, mh, c0);  | 
878  |  | #   else  | 
879  |  |     for (j = 0; j < num; ++j)  | 
880  |  |         mul(tp[j], ap[j], ml, c0);  | 
881  |  | #   endif  | 
882  |  |  | 
883  |  |     tp[num] = c0;  | 
884  |  |     tp[num + 1] = 0;  | 
885  |  |     goto enter;  | 
886  |  |  | 
887  |  |     for (i = 0; i < num; i++) { | 
888  |  |         c0 = 0;  | 
889  |  |         ml = bp[i];  | 
890  |  | #   ifdef mul64  | 
891  |  |         mh = HBITS(ml);  | 
892  |  |         ml = LBITS(ml);  | 
893  |  |         for (j = 0; j < num; ++j)  | 
894  |  |             mul_add(tp[j], ap[j], ml, mh, c0);  | 
895  |  | #   else  | 
896  |  |         for (j = 0; j < num; ++j)  | 
897  |  |             mul_add(tp[j], ap[j], ml, c0);  | 
898  |  | #   endif  | 
899  |  |         c1 = (tp[num] + c0) & BN_MASK2;  | 
900  |  |         tp[num] = c1;  | 
901  |  |         tp[num + 1] = (c1 < c0 ? 1 : 0);  | 
902  |  |  enter:  | 
903  |  |         c1 = tp[0];  | 
904  |  |         ml = (c1 * n0) & BN_MASK2;  | 
905  |  |         c0 = 0;  | 
906  |  | #   ifdef mul64  | 
907  |  |         mh = HBITS(ml);  | 
908  |  |         ml = LBITS(ml);  | 
909  |  |         mul_add(c1, np[0], ml, mh, c0);  | 
910  |  | #   else  | 
911  |  |         mul_add(c1, ml, np[0], c0);  | 
912  |  | #   endif  | 
913  |  |         for (j = 1; j < num; j++) { | 
914  |  |             c1 = tp[j];  | 
915  |  | #   ifdef mul64  | 
916  |  |             mul_add(c1, np[j], ml, mh, c0);  | 
917  |  | #   else  | 
918  |  |             mul_add(c1, ml, np[j], c0);  | 
919  |  | #   endif  | 
920  |  |             tp[j - 1] = c1 & BN_MASK2;  | 
921  |  |         }  | 
922  |  |         c1 = (tp[num] + c0) & BN_MASK2;  | 
923  |  |         tp[num - 1] = c1;  | 
924  |  |         tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);  | 
925  |  |     }  | 
926  |  |  | 
927  |  |     if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { | 
928  |  |         c0 = bn_sub_words(rp, tp, np, num);  | 
929  |  |         if (tp[num] != 0 || c0 == 0) { | 
930  |  |             for (i = 0; i < num + 2; i++)  | 
931  |  |                 vp[i] = 0;  | 
932  |  |             return 1;  | 
933  |  |         }  | 
934  |  |     }  | 
935  |  |     for (i = 0; i < num; i++)  | 
936  |  |         rp[i] = tp[i], vp[i] = 0;  | 
937  |  |     vp[num] = 0;  | 
938  |  |     vp[num + 1] = 0;  | 
939  |  |     return 1;  | 
940  |  | }  | 
941  |  | #  else  | 
942  |  | /*  | 
943  |  |  * Return value of 0 indicates that multiplication/convolution was not  | 
944  |  |  * performed to signal the caller to fall down to alternative/original  | 
945  |  |  * code-path.  | 
946  |  |  */  | 
947  |  | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
948  |  |                 const BN_ULONG *np, const BN_ULONG *n0, int num)  | 
949  | 0  | { | 
950  | 0  |     return 0;  | 
951  | 0  | }  | 
952  |  | #  endif                        /* OPENSSL_BN_ASM_MONT */  | 
953  |  | # endif  | 
954  |  |  | 
955  |  | #else                           /* !BN_MUL_COMBA */  | 
956  |  |  | 
957  |  | /* hmm... is it faster just to do a multiply? */  | 
958  |  | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)  | 
959  |  | { | 
960  |  |     BN_ULONG t[8];  | 
961  |  |     bn_sqr_normal(r, a, 4, t);  | 
962  |  | }  | 
963  |  |  | 
964  |  | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)  | 
965  |  | { | 
966  |  |     BN_ULONG t[16];  | 
967  |  |     bn_sqr_normal(r, a, 8, t);  | 
968  |  | }  | 
969  |  |  | 
970  |  | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)  | 
971  |  | { | 
972  |  |     r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);  | 
973  |  |     r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);  | 
974  |  |     r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);  | 
975  |  |     r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);  | 
976  |  | }  | 
977  |  |  | 
978  |  | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)  | 
979  |  | { | 
980  |  |     r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);  | 
981  |  |     r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);  | 
982  |  |     r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);  | 
983  |  |     r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);  | 
984  |  |     r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);  | 
985  |  |     r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);  | 
986  |  |     r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);  | 
987  |  |     r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);  | 
988  |  | }  | 
989  |  |  | 
990  |  | # ifdef OPENSSL_NO_ASM  | 
991  |  | #  ifdef OPENSSL_BN_ASM_MONT  | 
992  |  | #   include <alloca.h>  | 
993  |  | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
994  |  |                 const BN_ULONG *np, const BN_ULONG *n0p, int num)  | 
995  |  | { | 
996  |  |     BN_ULONG c0, c1, *tp, n0 = *n0p;  | 
997  |  |     volatile BN_ULONG *vp;  | 
998  |  |     int i = 0, j;  | 
999  |  |  | 
1000  |  |     vp = tp = alloca((num + 2) * sizeof(BN_ULONG));  | 
1001  |  |  | 
1002  |  |     for (i = 0; i <= num; i++)  | 
1003  |  |         tp[i] = 0;  | 
1004  |  |  | 
1005  |  |     for (i = 0; i < num; i++) { | 
1006  |  |         c0 = bn_mul_add_words(tp, ap, num, bp[i]);  | 
1007  |  |         c1 = (tp[num] + c0) & BN_MASK2;  | 
1008  |  |         tp[num] = c1;  | 
1009  |  |         tp[num + 1] = (c1 < c0 ? 1 : 0);  | 
1010  |  |  | 
1011  |  |         c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);  | 
1012  |  |         c1 = (tp[num] + c0) & BN_MASK2;  | 
1013  |  |         tp[num] = c1;  | 
1014  |  |         tp[num + 1] += (c1 < c0 ? 1 : 0);  | 
1015  |  |         for (j = 0; j <= num; j++)  | 
1016  |  |             tp[j] = tp[j + 1];  | 
1017  |  |     }  | 
1018  |  |  | 
1019  |  |     if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { | 
1020  |  |         c0 = bn_sub_words(rp, tp, np, num);  | 
1021  |  |         if (tp[num] != 0 || c0 == 0) { | 
1022  |  |             for (i = 0; i < num + 2; i++)  | 
1023  |  |                 vp[i] = 0;  | 
1024  |  |             return 1;  | 
1025  |  |         }  | 
1026  |  |     }  | 
1027  |  |     for (i = 0; i < num; i++)  | 
1028  |  |         rp[i] = tp[i], vp[i] = 0;  | 
1029  |  |     vp[num] = 0;  | 
1030  |  |     vp[num + 1] = 0;  | 
1031  |  |     return 1;  | 
1032  |  | }  | 
1033  |  | #  else  | 
1034  |  | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,  | 
1035  |  |                 const BN_ULONG *np, const BN_ULONG *n0, int num)  | 
1036  |  | { | 
1037  |  |     return 0;  | 
1038  |  | }  | 
1039  |  | #  endif                        /* OPENSSL_BN_ASM_MONT */  | 
1040  |  | # endif  | 
1041  |  |  | 
1042  |  | #endif                          /* !BN_MUL_COMBA */  |