/src/openssl/crypto/evp/e_aes.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2001-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * This file uses the low-level AES functions (which are deprecated for  | 
12  |  |  * non-internal use) in order to implement the EVP AES ciphers.  | 
13  |  |  */  | 
14  |  | #include "internal/deprecated.h"  | 
15  |  |  | 
16  |  | #include <string.h>  | 
17  |  | #include <assert.h>  | 
18  |  | #include <openssl/opensslconf.h>  | 
19  |  | #include <openssl/crypto.h>  | 
20  |  | #include <openssl/evp.h>  | 
21  |  | #include <openssl/err.h>  | 
22  |  | #include <openssl/aes.h>  | 
23  |  | #include <openssl/rand.h>  | 
24  |  | #include <openssl/cmac.h>  | 
25  |  | #include "crypto/evp.h"  | 
26  |  | #include "internal/cryptlib.h"  | 
27  |  | #include "crypto/modes.h"  | 
28  |  | #include "crypto/siv.h"  | 
29  |  | #include "crypto/aes_platform.h"  | 
30  |  | #include "evp_local.h"  | 
31  |  |  | 
32  |  | typedef struct { | 
33  |  |     union { | 
34  |  |         OSSL_UNION_ALIGN;  | 
35  |  |         AES_KEY ks;  | 
36  |  |     } ks;  | 
37  |  |     block128_f block;  | 
38  |  |     union { | 
39  |  |         cbc128_f cbc;  | 
40  |  |         ctr128_f ctr;  | 
41  |  |     } stream;  | 
42  |  | } EVP_AES_KEY;  | 
43  |  |  | 
44  |  | typedef struct { | 
45  |  |     union { | 
46  |  |         OSSL_UNION_ALIGN;  | 
47  |  |         AES_KEY ks;  | 
48  |  |     } ks;                       /* AES key schedule to use */  | 
49  |  |     int key_set;                /* Set if key initialised */  | 
50  |  |     int iv_set;                 /* Set if an iv is set */  | 
51  |  |     GCM128_CONTEXT gcm;  | 
52  |  |     unsigned char *iv;          /* Temporary IV store */  | 
53  |  |     int ivlen;                  /* IV length */  | 
54  |  |     int taglen;  | 
55  |  |     int iv_gen;                 /* It is OK to generate IVs */  | 
56  |  |     int iv_gen_rand;            /* No IV was specified, so generate a rand IV */  | 
57  |  |     int tls_aad_len;            /* TLS AAD length */  | 
58  |  |     uint64_t tls_enc_records;   /* Number of TLS records encrypted */  | 
59  |  |     ctr128_f ctr;  | 
60  |  | } EVP_AES_GCM_CTX;  | 
61  |  |  | 
62  |  | typedef struct { | 
63  |  |     union { | 
64  |  |         OSSL_UNION_ALIGN;  | 
65  |  |         AES_KEY ks;  | 
66  |  |     } ks1, ks2;                 /* AES key schedules to use */  | 
67  |  |     XTS128_CONTEXT xts;  | 
68  |  |     void (*stream) (const unsigned char *in,  | 
69  |  |                     unsigned char *out, size_t length,  | 
70  |  |                     const AES_KEY *key1, const AES_KEY *key2,  | 
71  |  |                     const unsigned char iv[16]);  | 
72  |  | } EVP_AES_XTS_CTX;  | 
73  |  |  | 
74  |  | #ifdef FIPS_MODULE  | 
75  |  | static const int allow_insecure_decrypt = 0;  | 
76  |  | #else  | 
77  |  | static const int allow_insecure_decrypt = 1;  | 
78  |  | #endif  | 
79  |  |  | 
80  |  | typedef struct { | 
81  |  |     union { | 
82  |  |         OSSL_UNION_ALIGN;  | 
83  |  |         AES_KEY ks;  | 
84  |  |     } ks;                       /* AES key schedule to use */  | 
85  |  |     int key_set;                /* Set if key initialised */  | 
86  |  |     int iv_set;                 /* Set if an iv is set */  | 
87  |  |     int tag_set;                /* Set if tag is valid */  | 
88  |  |     int len_set;                /* Set if message length set */  | 
89  |  |     int L, M;                   /* L and M parameters from RFC3610 */  | 
90  |  |     int tls_aad_len;            /* TLS AAD length */  | 
91  |  |     CCM128_CONTEXT ccm;  | 
92  |  |     ccm128_f str;  | 
93  |  | } EVP_AES_CCM_CTX;  | 
94  |  |  | 
95  |  | #ifndef OPENSSL_NO_OCB  | 
96  |  | typedef struct { | 
97  |  |     union { | 
98  |  |         OSSL_UNION_ALIGN;  | 
99  |  |         AES_KEY ks;  | 
100  |  |     } ksenc;                    /* AES key schedule to use for encryption */  | 
101  |  |     union { | 
102  |  |         OSSL_UNION_ALIGN;  | 
103  |  |         AES_KEY ks;  | 
104  |  |     } ksdec;                    /* AES key schedule to use for decryption */  | 
105  |  |     int key_set;                /* Set if key initialised */  | 
106  |  |     int iv_set;                 /* Set if an iv is set */  | 
107  |  |     OCB128_CONTEXT ocb;  | 
108  |  |     unsigned char *iv;          /* Temporary IV store */  | 
109  |  |     unsigned char tag[16];  | 
110  |  |     unsigned char data_buf[16]; /* Store partial data blocks */  | 
111  |  |     unsigned char aad_buf[16];  /* Store partial AAD blocks */  | 
112  |  |     int data_buf_len;  | 
113  |  |     int aad_buf_len;  | 
114  |  |     int ivlen;                  /* IV length */  | 
115  |  |     int taglen;  | 
116  |  | } EVP_AES_OCB_CTX;  | 
117  |  | #endif  | 
118  |  |  | 
119  | 0  | #define MAXBITCHUNK     ((size_t)1<<(sizeof(size_t)*8-4))  | 
120  |  |  | 
121  |  | /* increment counter (64-bit int) by 1 */  | 
122  |  | static void ctr64_inc(unsigned char *counter)  | 
123  | 0  | { | 
124  | 0  |     int n = 8;  | 
125  | 0  |     unsigned char c;  | 
126  |  | 
  | 
127  | 0  |     do { | 
128  | 0  |         --n;  | 
129  | 0  |         c = counter[n];  | 
130  | 0  |         ++c;  | 
131  | 0  |         counter[n] = c;  | 
132  | 0  |         if (c)  | 
133  | 0  |             return;  | 
134  | 0  |     } while (n);  | 
135  | 0  | }  | 
136  |  |  | 
137  |  | #if defined(AESNI_CAPABLE)  | 
138  |  | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)  | 
139  |  | #  define AES_GCM_ASM2(gctx)      (gctx->gcm.block==(block128_f)aesni_encrypt && \  | 
140  |  |                                  gctx->gcm.ghash==gcm_ghash_avx)  | 
141  |  | #  undef AES_GCM_ASM2          /* minor size optimization */  | 
142  |  | # endif  | 
143  |  |  | 
144  |  | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
145  |  |                           const unsigned char *iv, int enc)  | 
146  |  | { | 
147  |  |     int ret, mode;  | 
148  |  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
149  |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
150  |  |  | 
151  |  |     if (keylen <= 0) { | 
152  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
153  |  |         return 0;  | 
154  |  |     }  | 
155  |  |     mode = EVP_CIPHER_CTX_get_mode(ctx);  | 
156  |  |     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)  | 
157  |  |         && !enc) { | 
158  |  |         ret = aesni_set_decrypt_key(key, keylen, &dat->ks.ks);  | 
159  |  |         dat->block = (block128_f) aesni_decrypt;  | 
160  |  |         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
161  |  |             (cbc128_f) aesni_cbc_encrypt : NULL;  | 
162  |  |     } else { | 
163  |  |         ret = aesni_set_encrypt_key(key, keylen, &dat->ks.ks);  | 
164  |  |         dat->block = (block128_f) aesni_encrypt;  | 
165  |  |         if (mode == EVP_CIPH_CBC_MODE)  | 
166  |  |             dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;  | 
167  |  |         else if (mode == EVP_CIPH_CTR_MODE)  | 
168  |  |             dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;  | 
169  |  |         else  | 
170  |  |             dat->stream.cbc = NULL;  | 
171  |  |     }  | 
172  |  |  | 
173  |  |     if (ret < 0) { | 
174  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);  | 
175  |  |         return 0;  | 
176  |  |     }  | 
177  |  |  | 
178  |  |     return 1;  | 
179  |  | }  | 
180  |  |  | 
181  |  | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
182  |  |                             const unsigned char *in, size_t len)  | 
183  |  | { | 
184  |  |     aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,  | 
185  |  |                       ctx->iv, EVP_CIPHER_CTX_is_encrypting(ctx));  | 
186  |  |  | 
187  |  |     return 1;  | 
188  |  | }  | 
189  |  |  | 
190  |  | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
191  |  |                             const unsigned char *in, size_t len)  | 
192  |  | { | 
193  |  |     size_t bl = EVP_CIPHER_CTX_get_block_size(ctx);  | 
194  |  |  | 
195  |  |     if (len < bl)  | 
196  |  |         return 1;  | 
197  |  |  | 
198  |  |     aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,  | 
199  |  |                       EVP_CIPHER_CTX_is_encrypting(ctx));  | 
200  |  |  | 
201  |  |     return 1;  | 
202  |  | }  | 
203  |  |  | 
204  |  | # define aesni_ofb_cipher aes_ofb_cipher  | 
205  |  | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
206  |  |                             const unsigned char *in, size_t len);  | 
207  |  |  | 
208  |  | # define aesni_cfb_cipher aes_cfb_cipher  | 
209  |  | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
210  |  |                             const unsigned char *in, size_t len);  | 
211  |  |  | 
212  |  | # define aesni_cfb8_cipher aes_cfb8_cipher  | 
213  |  | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
214  |  |                              const unsigned char *in, size_t len);  | 
215  |  |  | 
216  |  | # define aesni_cfb1_cipher aes_cfb1_cipher  | 
217  |  | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
218  |  |                              const unsigned char *in, size_t len);  | 
219  |  |  | 
220  |  | # define aesni_ctr_cipher aes_ctr_cipher  | 
221  |  | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
222  |  |                             const unsigned char *in, size_t len);  | 
223  |  |  | 
224  |  | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
225  |  |                               const unsigned char *iv, int enc)  | 
226  |  | { | 
227  |  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx);  | 
228  |  |  | 
229  |  |     if (iv == NULL && key == NULL)  | 
230  |  |         return 1;  | 
231  |  |  | 
232  |  |     if (key) { | 
233  |  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
234  |  |  | 
235  |  |         if (keylen <= 0) { | 
236  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
237  |  |             return 0;  | 
238  |  |         }  | 
239  |  |         aesni_set_encrypt_key(key, keylen, &gctx->ks.ks);  | 
240  |  |         CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);  | 
241  |  |         gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;  | 
242  |  |         /*  | 
243  |  |          * If we have an iv can set it directly, otherwise use saved IV.  | 
244  |  |          */  | 
245  |  |         if (iv == NULL && gctx->iv_set)  | 
246  |  |             iv = gctx->iv;  | 
247  |  |         if (iv) { | 
248  |  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);  | 
249  |  |             gctx->iv_set = 1;  | 
250  |  |         }  | 
251  |  |         gctx->key_set = 1;  | 
252  |  |     } else { | 
253  |  |         /* If key set use IV, otherwise copy */  | 
254  |  |         if (gctx->key_set)  | 
255  |  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);  | 
256  |  |         else  | 
257  |  |             memcpy(gctx->iv, iv, gctx->ivlen);  | 
258  |  |         gctx->iv_set = 1;  | 
259  |  |         gctx->iv_gen = 0;  | 
260  |  |     }  | 
261  |  |     return 1;  | 
262  |  | }  | 
263  |  |  | 
264  |  | # define aesni_gcm_cipher aes_gcm_cipher  | 
265  |  | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
266  |  |                             const unsigned char *in, size_t len);  | 
267  |  |  | 
268  |  | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
269  |  |                               const unsigned char *iv, int enc)  | 
270  |  | { | 
271  |  |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);  | 
272  |  |  | 
273  |  |     if (iv == NULL && key == NULL)  | 
274  |  |         return 1;  | 
275  |  |  | 
276  |  |     if (key) { | 
277  |  |         /* The key is two half length keys in reality */  | 
278  |  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
279  |  |         const int bytes = keylen / 2;  | 
280  |  |         const int bits = bytes * 8;  | 
281  |  |  | 
282  |  |         if (keylen <= 0) { | 
283  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
284  |  |             return 0;  | 
285  |  |         }  | 
286  |  |         /*  | 
287  |  |          * Verify that the two keys are different.  | 
288  |  |          *  | 
289  |  |          * This addresses Rogaway's vulnerability.  | 
290  |  |          * See comment in aes_xts_init_key() below.  | 
291  |  |          */  | 
292  |  |         if ((!allow_insecure_decrypt || enc)  | 
293  |  |                 && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { | 
294  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);  | 
295  |  |             return 0;  | 
296  |  |         }  | 
297  |  |  | 
298  |  |         /* key_len is two AES keys */  | 
299  |  |         if (enc) { | 
300  |  |             aesni_set_encrypt_key(key, bits, &xctx->ks1.ks);  | 
301  |  |             xctx->xts.block1 = (block128_f) aesni_encrypt;  | 
302  |  |             xctx->stream = aesni_xts_encrypt;  | 
303  |  |         } else { | 
304  |  |             aesni_set_decrypt_key(key, bits, &xctx->ks1.ks);  | 
305  |  |             xctx->xts.block1 = (block128_f) aesni_decrypt;  | 
306  |  |             xctx->stream = aesni_xts_decrypt;  | 
307  |  |         }  | 
308  |  |  | 
309  |  |         aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);  | 
310  |  |         xctx->xts.block2 = (block128_f) aesni_encrypt;  | 
311  |  |  | 
312  |  |         xctx->xts.key1 = &xctx->ks1;  | 
313  |  |     }  | 
314  |  |  | 
315  |  |     if (iv) { | 
316  |  |         xctx->xts.key2 = &xctx->ks2;  | 
317  |  |         memcpy(ctx->iv, iv, 16);  | 
318  |  |     }  | 
319  |  |  | 
320  |  |     return 1;  | 
321  |  | }  | 
322  |  |  | 
323  |  | # define aesni_xts_cipher aes_xts_cipher  | 
324  |  | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
325  |  |                             const unsigned char *in, size_t len);  | 
326  |  |  | 
327  |  | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
328  |  |                               const unsigned char *iv, int enc)  | 
329  |  | { | 
330  |  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);  | 
331  |  |  | 
332  |  |     if (iv == NULL && key == NULL)  | 
333  |  |         return 1;  | 
334  |  |  | 
335  |  |     if (key != NULL) { | 
336  |  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
337  |  |  | 
338  |  |         if (keylen <= 0) { | 
339  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
340  |  |             return 0;  | 
341  |  |         }  | 
342  |  |         aesni_set_encrypt_key(key, keylen, &cctx->ks.ks);  | 
343  |  |         CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,  | 
344  |  |                            &cctx->ks, (block128_f) aesni_encrypt);  | 
345  |  |         cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :  | 
346  |  |             (ccm128_f) aesni_ccm64_decrypt_blocks;  | 
347  |  |         cctx->key_set = 1;  | 
348  |  |     }  | 
349  |  |     if (iv) { | 
350  |  |         memcpy(ctx->iv, iv, 15 - cctx->L);  | 
351  |  |         cctx->iv_set = 1;  | 
352  |  |     }  | 
353  |  |     return 1;  | 
354  |  | }  | 
355  |  |  | 
356  |  | # define aesni_ccm_cipher aes_ccm_cipher  | 
357  |  | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
358  |  |                             const unsigned char *in, size_t len);  | 
359  |  |  | 
360  |  | # ifndef OPENSSL_NO_OCB  | 
361  |  | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
362  |  |                               const unsigned char *iv, int enc)  | 
363  |  | { | 
364  |  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);  | 
365  |  |  | 
366  |  |     if (iv == NULL && key == NULL)  | 
367  |  |         return 1;  | 
368  |  |  | 
369  |  |     if (key != NULL) { | 
370  |  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
371  |  |  | 
372  |  |         if (keylen <= 0) { | 
373  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
374  |  |             return 0;  | 
375  |  |         }  | 
376  |  |         do { | 
377  |  |             /*  | 
378  |  |              * We set both the encrypt and decrypt key here because decrypt  | 
379  |  |              * needs both. We could possibly optimise to remove setting the  | 
380  |  |              * decrypt for an encryption operation.  | 
381  |  |              */  | 
382  |  |             aesni_set_encrypt_key(key, keylen, &octx->ksenc.ks);  | 
383  |  |             aesni_set_decrypt_key(key, keylen, &octx->ksdec.ks);  | 
384  |  |             if (!CRYPTO_ocb128_init(&octx->ocb,  | 
385  |  |                                     &octx->ksenc.ks, &octx->ksdec.ks,  | 
386  |  |                                     (block128_f) aesni_encrypt,  | 
387  |  |                                     (block128_f) aesni_decrypt,  | 
388  |  |                                     enc ? aesni_ocb_encrypt  | 
389  |  |                                         : aesni_ocb_decrypt))  | 
390  |  |                 return 0;  | 
391  |  |         }  | 
392  |  |         while (0);  | 
393  |  |  | 
394  |  |         /*  | 
395  |  |          * If we have an iv we can set it directly, otherwise use saved IV.  | 
396  |  |          */  | 
397  |  |         if (iv == NULL && octx->iv_set)  | 
398  |  |             iv = octx->iv;  | 
399  |  |         if (iv) { | 
400  |  |             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)  | 
401  |  |                 != 1)  | 
402  |  |                 return 0;  | 
403  |  |             octx->iv_set = 1;  | 
404  |  |         }  | 
405  |  |         octx->key_set = 1;  | 
406  |  |     } else { | 
407  |  |         /* If key set use IV, otherwise copy */  | 
408  |  |         if (octx->key_set)  | 
409  |  |             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);  | 
410  |  |         else  | 
411  |  |             memcpy(octx->iv, iv, octx->ivlen);  | 
412  |  |         octx->iv_set = 1;  | 
413  |  |     }  | 
414  |  |     return 1;  | 
415  |  | }  | 
416  |  |  | 
417  |  | #  define aesni_ocb_cipher aes_ocb_cipher  | 
418  |  | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
419  |  |                             const unsigned char *in, size_t len);  | 
420  |  | # endif                        /* OPENSSL_NO_OCB */  | 
421  |  |  | 
422  |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \  | 
423  |  | static const EVP_CIPHER aesni_##keylen##_##mode = { \ | 
424  |  |         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \  | 
425  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
426  |  |         EVP_ORIG_GLOBAL,                \  | 
427  |  |         aesni_init_key,                 \  | 
428  |  |         aesni_##mode##_cipher,          \  | 
429  |  |         NULL,                           \  | 
430  |  |         sizeof(EVP_AES_KEY),            \  | 
431  |  |         NULL,NULL,NULL,NULL }; \  | 
432  |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
433  |  |         nid##_##keylen##_##nmode,blocksize,     \  | 
434  |  |         keylen/8,ivlen,                 \  | 
435  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
436  |  |         EVP_ORIG_GLOBAL,                 \  | 
437  |  |         aes_init_key,                   \  | 
438  |  |         aes_##mode##_cipher,            \  | 
439  |  |         NULL,                           \  | 
440  |  |         sizeof(EVP_AES_KEY),            \  | 
441  |  |         NULL,NULL,NULL,NULL }; \  | 
442  |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  | 
443  |  | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
444  |  |  | 
445  |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \  | 
446  |  | static const EVP_CIPHER aesni_##keylen##_##mode = { \ | 
447  |  |         nid##_##keylen##_##mode,blocksize, \  | 
448  |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \  | 
449  |  |         ivlen,                          \  | 
450  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
451  |  |         EVP_ORIG_GLOBAL,                \  | 
452  |  |         aesni_##mode##_init_key,        \  | 
453  |  |         aesni_##mode##_cipher,          \  | 
454  |  |         aes_##mode##_cleanup,           \  | 
455  |  |         sizeof(EVP_AES_##MODE##_CTX),   \  | 
456  |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \  | 
457  |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
458  |  |         nid##_##keylen##_##mode,blocksize, \  | 
459  |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \  | 
460  |  |         ivlen,                          \  | 
461  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
462  |  |         EVP_ORIG_GLOBAL,                \  | 
463  |  |         aes_##mode##_init_key,          \  | 
464  |  |         aes_##mode##_cipher,            \  | 
465  |  |         aes_##mode##_cleanup,           \  | 
466  |  |         sizeof(EVP_AES_##MODE##_CTX),   \  | 
467  |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \  | 
468  |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  | 
469  |  | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } | 
470  |  |  | 
471  |  | #elif defined(SPARC_AES_CAPABLE)  | 
472  |  |  | 
473  |  | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
474  |  |                            const unsigned char *iv, int enc)  | 
475  |  | { | 
476  |  |     int ret, mode, bits;  | 
477  |  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
478  |  |  | 
479  |  |     mode = EVP_CIPHER_CTX_get_mode(ctx);  | 
480  |  |     bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
481  |  |     if (bits <= 0) { | 
482  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
483  |  |         return 0;  | 
484  |  |     }  | 
485  |  |     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)  | 
486  |  |         && !enc) { | 
487  |  |         ret = 0;  | 
488  |  |         aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);  | 
489  |  |         dat->block = (block128_f) aes_t4_decrypt;  | 
490  |  |         switch (bits) { | 
491  |  |         case 128:  | 
492  |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
493  |  |                 (cbc128_f) aes128_t4_cbc_decrypt : NULL;  | 
494  |  |             break;  | 
495  |  |         case 192:  | 
496  |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
497  |  |                 (cbc128_f) aes192_t4_cbc_decrypt : NULL;  | 
498  |  |             break;  | 
499  |  |         case 256:  | 
500  |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
501  |  |                 (cbc128_f) aes256_t4_cbc_decrypt : NULL;  | 
502  |  |             break;  | 
503  |  |         default:  | 
504  |  |             ret = -1;  | 
505  |  |         }  | 
506  |  |     } else { | 
507  |  |         ret = 0;  | 
508  |  |         aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);  | 
509  |  |         dat->block = (block128_f) aes_t4_encrypt;  | 
510  |  |         switch (bits) { | 
511  |  |         case 128:  | 
512  |  |             if (mode == EVP_CIPH_CBC_MODE)  | 
513  |  |                 dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;  | 
514  |  |             else if (mode == EVP_CIPH_CTR_MODE)  | 
515  |  |                 dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;  | 
516  |  |             else  | 
517  |  |                 dat->stream.cbc = NULL;  | 
518  |  |             break;  | 
519  |  |         case 192:  | 
520  |  |             if (mode == EVP_CIPH_CBC_MODE)  | 
521  |  |                 dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;  | 
522  |  |             else if (mode == EVP_CIPH_CTR_MODE)  | 
523  |  |                 dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;  | 
524  |  |             else  | 
525  |  |                 dat->stream.cbc = NULL;  | 
526  |  |             break;  | 
527  |  |         case 256:  | 
528  |  |             if (mode == EVP_CIPH_CBC_MODE)  | 
529  |  |                 dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;  | 
530  |  |             else if (mode == EVP_CIPH_CTR_MODE)  | 
531  |  |                 dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;  | 
532  |  |             else  | 
533  |  |                 dat->stream.cbc = NULL;  | 
534  |  |             break;  | 
535  |  |         default:  | 
536  |  |             ret = -1;  | 
537  |  |         }  | 
538  |  |     }  | 
539  |  |  | 
540  |  |     if (ret < 0) { | 
541  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);  | 
542  |  |         return 0;  | 
543  |  |     }  | 
544  |  |  | 
545  |  |     return 1;  | 
546  |  | }  | 
547  |  |  | 
548  |  | # define aes_t4_cbc_cipher aes_cbc_cipher  | 
549  |  | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
550  |  |                              const unsigned char *in, size_t len);  | 
551  |  |  | 
552  |  | # define aes_t4_ecb_cipher aes_ecb_cipher  | 
553  |  | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
554  |  |                              const unsigned char *in, size_t len);  | 
555  |  |  | 
556  |  | # define aes_t4_ofb_cipher aes_ofb_cipher  | 
557  |  | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
558  |  |                              const unsigned char *in, size_t len);  | 
559  |  |  | 
560  |  | # define aes_t4_cfb_cipher aes_cfb_cipher  | 
561  |  | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
562  |  |                              const unsigned char *in, size_t len);  | 
563  |  |  | 
564  |  | # define aes_t4_cfb8_cipher aes_cfb8_cipher  | 
565  |  | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
566  |  |                               const unsigned char *in, size_t len);  | 
567  |  |  | 
568  |  | # define aes_t4_cfb1_cipher aes_cfb1_cipher  | 
569  |  | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
570  |  |                               const unsigned char *in, size_t len);  | 
571  |  |  | 
572  |  | # define aes_t4_ctr_cipher aes_ctr_cipher  | 
573  |  | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
574  |  |                              const unsigned char *in, size_t len);  | 
575  |  |  | 
576  |  | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
577  |  |                                const unsigned char *iv, int enc)  | 
578  |  | { | 
579  |  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);  | 
580  |  |  | 
581  |  |     if (iv == NULL && key == NULL)  | 
582  |  |         return 1;  | 
583  |  |     if (key) { | 
584  |  |         const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
585  |  |  | 
586  |  |         if (bits <= 0) { | 
587  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
588  |  |             return 0;  | 
589  |  |         }  | 
590  |  |         aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);  | 
591  |  |         CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,  | 
592  |  |                            (block128_f) aes_t4_encrypt);  | 
593  |  |         switch (bits) { | 
594  |  |         case 128:  | 
595  |  |             gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;  | 
596  |  |             break;  | 
597  |  |         case 192:  | 
598  |  |             gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;  | 
599  |  |             break;  | 
600  |  |         case 256:  | 
601  |  |             gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;  | 
602  |  |             break;  | 
603  |  |         default:  | 
604  |  |             return 0;  | 
605  |  |         }  | 
606  |  |         /*  | 
607  |  |          * If we have an iv can set it directly, otherwise use saved IV.  | 
608  |  |          */  | 
609  |  |         if (iv == NULL && gctx->iv_set)  | 
610  |  |             iv = gctx->iv;  | 
611  |  |         if (iv) { | 
612  |  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);  | 
613  |  |             gctx->iv_set = 1;  | 
614  |  |         }  | 
615  |  |         gctx->key_set = 1;  | 
616  |  |     } else { | 
617  |  |         /* If key set use IV, otherwise copy */  | 
618  |  |         if (gctx->key_set)  | 
619  |  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);  | 
620  |  |         else  | 
621  |  |             memcpy(gctx->iv, iv, gctx->ivlen);  | 
622  |  |         gctx->iv_set = 1;  | 
623  |  |         gctx->iv_gen = 0;  | 
624  |  |     }  | 
625  |  |     return 1;  | 
626  |  | }  | 
627  |  |  | 
628  |  | # define aes_t4_gcm_cipher aes_gcm_cipher  | 
629  |  | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
630  |  |                              const unsigned char *in, size_t len);  | 
631  |  |  | 
632  |  | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
633  |  |                                const unsigned char *iv, int enc)  | 
634  |  | { | 
635  |  |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);  | 
636  |  |  | 
637  |  |     if (!iv && !key)  | 
638  |  |         return 1;  | 
639  |  |  | 
640  |  |     if (key) { | 
641  |  |         /* The key is two half length keys in reality */  | 
642  |  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
643  |  |         const int bytes = keylen / 2;  | 
644  |  |         const int bits = bytes * 8;  | 
645  |  |  | 
646  |  |         if (keylen <= 0) { | 
647  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
648  |  |             return 0;  | 
649  |  |         }  | 
650  |  |         /*  | 
651  |  |          * Verify that the two keys are different.  | 
652  |  |          *  | 
653  |  |          * This addresses Rogaway's vulnerability.  | 
654  |  |          * See comment in aes_xts_init_key() below.  | 
655  |  |          */  | 
656  |  |         if ((!allow_insecure_decrypt || enc)  | 
657  |  |                 && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { | 
658  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);  | 
659  |  |             return 0;  | 
660  |  |         }  | 
661  |  |  | 
662  |  |         xctx->stream = NULL;  | 
663  |  |         /* key_len is two AES keys */  | 
664  |  |         if (enc) { | 
665  |  |             aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);  | 
666  |  |             xctx->xts.block1 = (block128_f) aes_t4_encrypt;  | 
667  |  |             switch (bits) { | 
668  |  |             case 128:  | 
669  |  |                 xctx->stream = aes128_t4_xts_encrypt;  | 
670  |  |                 break;  | 
671  |  |             case 256:  | 
672  |  |                 xctx->stream = aes256_t4_xts_encrypt;  | 
673  |  |                 break;  | 
674  |  |             default:  | 
675  |  |                 return 0;  | 
676  |  |             }  | 
677  |  |         } else { | 
678  |  |             aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks);  | 
679  |  |             xctx->xts.block1 = (block128_f) aes_t4_decrypt;  | 
680  |  |             switch (bits) { | 
681  |  |             case 128:  | 
682  |  |                 xctx->stream = aes128_t4_xts_decrypt;  | 
683  |  |                 break;  | 
684  |  |             case 256:  | 
685  |  |                 xctx->stream = aes256_t4_xts_decrypt;  | 
686  |  |                 break;  | 
687  |  |             default:  | 
688  |  |                 return 0;  | 
689  |  |             }  | 
690  |  |         }  | 
691  |  |  | 
692  |  |         aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);  | 
693  |  |         xctx->xts.block2 = (block128_f) aes_t4_encrypt;  | 
694  |  |  | 
695  |  |         xctx->xts.key1 = &xctx->ks1;  | 
696  |  |     }  | 
697  |  |  | 
698  |  |     if (iv) { | 
699  |  |         xctx->xts.key2 = &xctx->ks2;  | 
700  |  |         memcpy(ctx->iv, iv, 16);  | 
701  |  |     }  | 
702  |  |  | 
703  |  |     return 1;  | 
704  |  | }  | 
705  |  |  | 
706  |  | # define aes_t4_xts_cipher aes_xts_cipher  | 
707  |  | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
708  |  |                              const unsigned char *in, size_t len);  | 
709  |  |  | 
710  |  | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
711  |  |                                const unsigned char *iv, int enc)  | 
712  |  | { | 
713  |  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);  | 
714  |  |  | 
715  |  |     if (iv == NULL && key == NULL)  | 
716  |  |         return 1;  | 
717  |  |  | 
718  |  |     if (key != NULL) { | 
719  |  |         const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
720  |  |  | 
721  |  |         if (bits <= 0) { | 
722  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
723  |  |             return 0;  | 
724  |  |         }  | 
725  |  |         aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);  | 
726  |  |         CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,  | 
727  |  |                            &cctx->ks, (block128_f) aes_t4_encrypt);  | 
728  |  |         cctx->str = NULL;  | 
729  |  |         cctx->key_set = 1;  | 
730  |  |     }  | 
731  |  |     if (iv) { | 
732  |  |         memcpy(ctx->iv, iv, 15 - cctx->L);  | 
733  |  |         cctx->iv_set = 1;  | 
734  |  |     }  | 
735  |  |     return 1;  | 
736  |  | }  | 
737  |  |  | 
738  |  | # define aes_t4_ccm_cipher aes_ccm_cipher  | 
739  |  | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
740  |  |                              const unsigned char *in, size_t len);  | 
741  |  |  | 
742  |  | # ifndef OPENSSL_NO_OCB  | 
743  |  | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
744  |  |                                const unsigned char *iv, int enc)  | 
745  |  | { | 
746  |  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);  | 
747  |  |  | 
748  |  |     if (iv == NULL && key == NULL)  | 
749  |  |         return 1;  | 
750  |  |  | 
751  |  |     if (key != NULL) { | 
752  |  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
753  |  |  | 
754  |  |         if (keylen <= 0) { | 
755  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
756  |  |             return 0;  | 
757  |  |         }  | 
758  |  |         do { | 
759  |  |             /*  | 
760  |  |              * We set both the encrypt and decrypt key here because decrypt  | 
761  |  |              * needs both. We could possibly optimise to remove setting the  | 
762  |  |              * decrypt for an encryption operation.  | 
763  |  |              */  | 
764  |  |             aes_t4_set_encrypt_key(key, keylen, &octx->ksenc.ks);  | 
765  |  |             aes_t4_set_decrypt_key(key, keylen, &octx->ksdec.ks);  | 
766  |  |             if (!CRYPTO_ocb128_init(&octx->ocb,  | 
767  |  |                                     &octx->ksenc.ks, &octx->ksdec.ks,  | 
768  |  |                                     (block128_f) aes_t4_encrypt,  | 
769  |  |                                     (block128_f) aes_t4_decrypt,  | 
770  |  |                                     NULL))  | 
771  |  |                 return 0;  | 
772  |  |         }  | 
773  |  |         while (0);  | 
774  |  |  | 
775  |  |         /*  | 
776  |  |          * If we have an iv we can set it directly, otherwise use saved IV.  | 
777  |  |          */  | 
778  |  |         if (iv == NULL && octx->iv_set)  | 
779  |  |             iv = octx->iv;  | 
780  |  |         if (iv) { | 
781  |  |             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)  | 
782  |  |                 != 1)  | 
783  |  |                 return 0;  | 
784  |  |             octx->iv_set = 1;  | 
785  |  |         }  | 
786  |  |         octx->key_set = 1;  | 
787  |  |     } else { | 
788  |  |         /* If key set use IV, otherwise copy */  | 
789  |  |         if (octx->key_set)  | 
790  |  |             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);  | 
791  |  |         else  | 
792  |  |             memcpy(octx->iv, iv, octx->ivlen);  | 
793  |  |         octx->iv_set = 1;  | 
794  |  |     }  | 
795  |  |     return 1;  | 
796  |  | }  | 
797  |  |  | 
798  |  | #  define aes_t4_ocb_cipher aes_ocb_cipher  | 
799  |  | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
800  |  |                              const unsigned char *in, size_t len);  | 
801  |  | # endif                        /* OPENSSL_NO_OCB */  | 
802  |  |  | 
803  |  | # ifndef OPENSSL_NO_SIV  | 
804  |  | #  define aes_t4_siv_init_key aes_siv_init_key  | 
805  |  | #  define aes_t4_siv_cipher aes_siv_cipher  | 
806  |  | # endif /* OPENSSL_NO_SIV */  | 
807  |  |  | 
808  |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \  | 
809  |  | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ | 
810  |  |         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \  | 
811  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
812  |  |         EVP_ORIG_GLOBAL,                \  | 
813  |  |         aes_t4_init_key,                \  | 
814  |  |         aes_t4_##mode##_cipher,         \  | 
815  |  |         NULL,                           \  | 
816  |  |         sizeof(EVP_AES_KEY),            \  | 
817  |  |         NULL,NULL,NULL,NULL }; \  | 
818  |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
819  |  |         nid##_##keylen##_##nmode,blocksize,     \  | 
820  |  |         keylen/8,ivlen, \  | 
821  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
822  |  |         EVP_ORIG_GLOBAL,                \  | 
823  |  |         aes_init_key,                   \  | 
824  |  |         aes_##mode##_cipher,            \  | 
825  |  |         NULL,                           \  | 
826  |  |         sizeof(EVP_AES_KEY),            \  | 
827  |  |         NULL,NULL,NULL,NULL }; \  | 
828  |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  | 
829  |  | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } | 
830  |  |  | 
831  |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \  | 
832  |  | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ | 
833  |  |         nid##_##keylen##_##mode,blocksize, \  | 
834  |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \  | 
835  |  |         ivlen,                          \  | 
836  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
837  |  |         EVP_ORIG_GLOBAL,                \  | 
838  |  |         aes_t4_##mode##_init_key,       \  | 
839  |  |         aes_t4_##mode##_cipher,         \  | 
840  |  |         aes_##mode##_cleanup,           \  | 
841  |  |         sizeof(EVP_AES_##MODE##_CTX),   \  | 
842  |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \  | 
843  |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
844  |  |         nid##_##keylen##_##mode,blocksize, \  | 
845  |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \  | 
846  |  |         ivlen,                          \  | 
847  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
848  |  |         EVP_ORIG_GLOBAL,                \  | 
849  |  |         aes_##mode##_init_key,          \  | 
850  |  |         aes_##mode##_cipher,            \  | 
851  |  |         aes_##mode##_cleanup,           \  | 
852  |  |         sizeof(EVP_AES_##MODE##_CTX),   \  | 
853  |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \  | 
854  |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  | 
855  |  | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } | 
856  |  |  | 
857  |  | #elif defined(S390X_aes_128_CAPABLE)  | 
858  |  | /* IBM S390X support */  | 
859  |  | typedef struct { | 
860  |  |     union { | 
861  |  |         OSSL_UNION_ALIGN;  | 
862  |  |         /*-  | 
863  |  |          * KM-AES parameter block - begin  | 
864  |  |          * (see z/Architecture Principles of Operation >= SA22-7832-06)  | 
865  |  |          */  | 
866  |  |         struct { | 
867  |  |             unsigned char k[32];  | 
868  |  |         } param;  | 
869  |  |         /* KM-AES parameter block - end */  | 
870  |  |     } km;  | 
871  |  |     unsigned int fc;  | 
872  |  | } S390X_AES_ECB_CTX;  | 
873  |  |  | 
874  |  | typedef struct { | 
875  |  |     union { | 
876  |  |         OSSL_UNION_ALIGN;  | 
877  |  |         /*-  | 
878  |  |          * KMO-AES parameter block - begin  | 
879  |  |          * (see z/Architecture Principles of Operation >= SA22-7832-08)  | 
880  |  |          */  | 
881  |  |         struct { | 
882  |  |             unsigned char cv[16];  | 
883  |  |             unsigned char k[32];  | 
884  |  |         } param;  | 
885  |  |         /* KMO-AES parameter block - end */  | 
886  |  |     } kmo;  | 
887  |  |     unsigned int fc;  | 
888  |  | } S390X_AES_OFB_CTX;  | 
889  |  |  | 
890  |  | typedef struct { | 
891  |  |     union { | 
892  |  |         OSSL_UNION_ALIGN;  | 
893  |  |         /*-  | 
894  |  |          * KMF-AES parameter block - begin  | 
895  |  |          * (see z/Architecture Principles of Operation >= SA22-7832-08)  | 
896  |  |          */  | 
897  |  |         struct { | 
898  |  |             unsigned char cv[16];  | 
899  |  |             unsigned char k[32];  | 
900  |  |         } param;  | 
901  |  |         /* KMF-AES parameter block - end */  | 
902  |  |     } kmf;  | 
903  |  |     unsigned int fc;  | 
904  |  | } S390X_AES_CFB_CTX;  | 
905  |  |  | 
906  |  | typedef struct { | 
907  |  |     union { | 
908  |  |         OSSL_UNION_ALIGN;  | 
909  |  |         /*-  | 
910  |  |          * KMA-GCM-AES parameter block - begin  | 
911  |  |          * (see z/Architecture Principles of Operation >= SA22-7832-11)  | 
912  |  |          */  | 
913  |  |         struct { | 
914  |  |             unsigned char reserved[12];  | 
915  |  |             union { | 
916  |  |                 unsigned int w;  | 
917  |  |                 unsigned char b[4];  | 
918  |  |             } cv;  | 
919  |  |             union { | 
920  |  |                 unsigned long long g[2];  | 
921  |  |                 unsigned char b[16];  | 
922  |  |             } t;  | 
923  |  |             unsigned char h[16];  | 
924  |  |             unsigned long long taadl;  | 
925  |  |             unsigned long long tpcl;  | 
926  |  |             union { | 
927  |  |                 unsigned long long g[2];  | 
928  |  |                 unsigned int w[4];  | 
929  |  |             } j0;  | 
930  |  |             unsigned char k[32];  | 
931  |  |         } param;  | 
932  |  |         /* KMA-GCM-AES parameter block - end */  | 
933  |  |     } kma;  | 
934  |  |     unsigned int fc;  | 
935  |  |     int key_set;  | 
936  |  |  | 
937  |  |     unsigned char *iv;  | 
938  |  |     int ivlen;  | 
939  |  |     int iv_set;  | 
940  |  |     int iv_gen;  | 
941  |  |  | 
942  |  |     int taglen;  | 
943  |  |  | 
944  |  |     unsigned char ares[16];  | 
945  |  |     unsigned char mres[16];  | 
946  |  |     unsigned char kres[16];  | 
947  |  |     int areslen;  | 
948  |  |     int mreslen;  | 
949  |  |     int kreslen;  | 
950  |  |  | 
951  |  |     int tls_aad_len;  | 
952  |  |     uint64_t tls_enc_records;   /* Number of TLS records encrypted */  | 
953  |  | } S390X_AES_GCM_CTX;  | 
954  |  |  | 
955  |  | typedef struct { | 
956  |  |     union { | 
957  |  |         OSSL_UNION_ALIGN;  | 
958  |  |         /*-  | 
959  |  |          * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and  | 
960  |  |          * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's  | 
961  |  |          * rounds field is used to store the function code and that the key  | 
962  |  |          * schedule is not stored (if aes hardware support is detected).  | 
963  |  |          */  | 
964  |  |         struct { | 
965  |  |             unsigned char pad[16];  | 
966  |  |             AES_KEY k;  | 
967  |  |         } key;  | 
968  |  |  | 
969  |  |         struct { | 
970  |  |             /*-  | 
971  |  |              * KMAC-AES parameter block - begin  | 
972  |  |              * (see z/Architecture Principles of Operation >= SA22-7832-08)  | 
973  |  |              */  | 
974  |  |             struct { | 
975  |  |                 union { | 
976  |  |                     unsigned long long g[2];  | 
977  |  |                     unsigned char b[16];  | 
978  |  |                 } icv;  | 
979  |  |                 unsigned char k[32];  | 
980  |  |             } kmac_param;  | 
981  |  |             /* KMAC-AES parameter block - end */  | 
982  |  |  | 
983  |  |             union { | 
984  |  |                 unsigned long long g[2];  | 
985  |  |                 unsigned char b[16];  | 
986  |  |             } nonce;  | 
987  |  |             union { | 
988  |  |                 unsigned long long g[2];  | 
989  |  |                 unsigned char b[16];  | 
990  |  |             } buf;  | 
991  |  |  | 
992  |  |             unsigned long long blocks;  | 
993  |  |             int l;  | 
994  |  |             int m;  | 
995  |  |             int tls_aad_len;  | 
996  |  |             int iv_set;  | 
997  |  |             int tag_set;  | 
998  |  |             int len_set;  | 
999  |  |             int key_set;  | 
1000  |  |  | 
1001  |  |             unsigned char pad[140];  | 
1002  |  |             unsigned int fc;  | 
1003  |  |         } ccm;  | 
1004  |  |     } aes;  | 
1005  |  | } S390X_AES_CCM_CTX;  | 
1006  |  |  | 
1007  |  | # define s390x_aes_init_key aes_init_key  | 
1008  |  | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
1009  |  |                               const unsigned char *iv, int enc);  | 
1010  |  |  | 
1011  |  | # define S390X_AES_CBC_CTX              EVP_AES_KEY  | 
1012  |  |  | 
1013  |  | # define s390x_aes_cbc_init_key aes_init_key  | 
1014  |  |  | 
1015  |  | # define s390x_aes_cbc_cipher aes_cbc_cipher  | 
1016  |  | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1017  |  |                                 const unsigned char *in, size_t len);  | 
1018  |  |  | 
1019  |  | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,  | 
1020  |  |                                   const unsigned char *key,  | 
1021  |  |                                   const unsigned char *iv, int enc)  | 
1022  |  | { | 
1023  |  |     S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);  | 
1024  |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
1025  |  |  | 
1026  |  |     if (keylen <= 0) { | 
1027  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
1028  |  |         return 0;  | 
1029  |  |     }  | 
1030  |  |     cctx->fc = S390X_AES_FC(keylen);  | 
1031  |  |     if (!enc)  | 
1032  |  |         cctx->fc |= S390X_DECRYPT;  | 
1033  |  |  | 
1034  |  |     memcpy(cctx->km.param.k, key, keylen);  | 
1035  |  |     return 1;  | 
1036  |  | }  | 
1037  |  |  | 
1038  |  | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1039  |  |                                 const unsigned char *in, size_t len)  | 
1040  |  | { | 
1041  |  |     S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);  | 
1042  |  |  | 
1043  |  |     s390x_km(in, len, out, cctx->fc, &cctx->km.param);  | 
1044  |  |     return 1;  | 
1045  |  | }  | 
1046  |  |  | 
1047  |  | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,  | 
1048  |  |                                   const unsigned char *key,  | 
1049  |  |                                   const unsigned char *ivec, int enc)  | 
1050  |  | { | 
1051  |  |     S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);  | 
1052  |  |     const unsigned char *iv = ctx->oiv;  | 
1053  |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
1054  |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1055  |  |  | 
1056  |  |     if (keylen <= 0) { | 
1057  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
1058  |  |         return 0;  | 
1059  |  |     }  | 
1060  |  |     if (ivlen <= 0) { | 
1061  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);  | 
1062  |  |         return 0;  | 
1063  |  |     }  | 
1064  |  |     memcpy(cctx->kmo.param.cv, iv, ivlen);  | 
1065  |  |     memcpy(cctx->kmo.param.k, key, keylen);  | 
1066  |  |     cctx->fc = S390X_AES_FC(keylen);  | 
1067  |  |     return 1;  | 
1068  |  | }  | 
1069  |  |  | 
1070  |  | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1071  |  |                                 const unsigned char *in, size_t len)  | 
1072  |  | { | 
1073  |  |     S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);  | 
1074  |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1075  |  |     unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);  | 
1076  |  |     int n = ctx->num;  | 
1077  |  |     int rem;  | 
1078  |  |  | 
1079  |  |     memcpy(cctx->kmo.param.cv, iv, ivlen);  | 
1080  |  |     while (n && len) { | 
1081  |  |         *out = *in ^ cctx->kmo.param.cv[n];  | 
1082  |  |         n = (n + 1) & 0xf;  | 
1083  |  |         --len;  | 
1084  |  |         ++in;  | 
1085  |  |         ++out;  | 
1086  |  |     }  | 
1087  |  |  | 
1088  |  |     rem = len & 0xf;  | 
1089  |  |  | 
1090  |  |     len &= ~(size_t)0xf;  | 
1091  |  |     if (len) { | 
1092  |  |         s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);  | 
1093  |  |  | 
1094  |  |         out += len;  | 
1095  |  |         in += len;  | 
1096  |  |     }  | 
1097  |  |  | 
1098  |  |     if (rem) { | 
1099  |  |         s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,  | 
1100  |  |                  cctx->kmo.param.k);  | 
1101  |  |  | 
1102  |  |         while (rem--) { | 
1103  |  |             out[n] = in[n] ^ cctx->kmo.param.cv[n];  | 
1104  |  |             ++n;  | 
1105  |  |         }  | 
1106  |  |     }  | 
1107  |  |  | 
1108  |  |     memcpy(iv, cctx->kmo.param.cv, ivlen);  | 
1109  |  |     ctx->num = n;  | 
1110  |  |     return 1;  | 
1111  |  | }  | 
1112  |  |  | 
1113  |  | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,  | 
1114  |  |                                   const unsigned char *key,  | 
1115  |  |                                   const unsigned char *ivec, int enc)  | 
1116  |  | { | 
1117  |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);  | 
1118  |  |     const unsigned char *iv = ctx->oiv;  | 
1119  |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
1120  |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1121  |  |  | 
1122  |  |     if (keylen <= 0) { | 
1123  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
1124  |  |         return 0;  | 
1125  |  |     }  | 
1126  |  |     if (ivlen <= 0) { | 
1127  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);  | 
1128  |  |         return 0;  | 
1129  |  |     }  | 
1130  |  |     cctx->fc = S390X_AES_FC(keylen);  | 
1131  |  |     cctx->fc |= 16 << 24;   /* 16 bytes cipher feedback */  | 
1132  |  |     if (!enc)  | 
1133  |  |         cctx->fc |= S390X_DECRYPT;  | 
1134  |  |  | 
1135  |  |     memcpy(cctx->kmf.param.cv, iv, ivlen);  | 
1136  |  |     memcpy(cctx->kmf.param.k, key, keylen);  | 
1137  |  |     return 1;  | 
1138  |  | }  | 
1139  |  |  | 
1140  |  | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1141  |  |                                 const unsigned char *in, size_t len)  | 
1142  |  | { | 
1143  |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);  | 
1144  |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
1145  |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);  | 
1146  |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1147  |  |     unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);  | 
1148  |  |     int n = ctx->num;  | 
1149  |  |     int rem;  | 
1150  |  |     unsigned char tmp;  | 
1151  |  |  | 
1152  |  |     if (keylen <= 0) { | 
1153  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
1154  |  |         return 0;  | 
1155  |  |     }  | 
1156  |  |     if (ivlen <= 0) { | 
1157  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);  | 
1158  |  |         return 0;  | 
1159  |  |     }  | 
1160  |  |     memcpy(cctx->kmf.param.cv, iv, ivlen);  | 
1161  |  |     while (n && len) { | 
1162  |  |         tmp = *in;  | 
1163  |  |         *out = cctx->kmf.param.cv[n] ^ tmp;  | 
1164  |  |         cctx->kmf.param.cv[n] = enc ? *out : tmp;  | 
1165  |  |         n = (n + 1) & 0xf;  | 
1166  |  |         --len;  | 
1167  |  |         ++in;  | 
1168  |  |         ++out;  | 
1169  |  |     }  | 
1170  |  |  | 
1171  |  |     rem = len & 0xf;  | 
1172  |  |  | 
1173  |  |     len &= ~(size_t)0xf;  | 
1174  |  |     if (len) { | 
1175  |  |         s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);  | 
1176  |  |  | 
1177  |  |         out += len;  | 
1178  |  |         in += len;  | 
1179  |  |     }  | 
1180  |  |  | 
1181  |  |     if (rem) { | 
1182  |  |         s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,  | 
1183  |  |                  S390X_AES_FC(keylen), cctx->kmf.param.k);  | 
1184  |  |  | 
1185  |  |         while (rem--) { | 
1186  |  |             tmp = in[n];  | 
1187  |  |             out[n] = cctx->kmf.param.cv[n] ^ tmp;  | 
1188  |  |             cctx->kmf.param.cv[n] = enc ? out[n] : tmp;  | 
1189  |  |             ++n;  | 
1190  |  |         }  | 
1191  |  |     }  | 
1192  |  |  | 
1193  |  |     memcpy(iv, cctx->kmf.param.cv, ivlen);  | 
1194  |  |     ctx->num = n;  | 
1195  |  |     return 1;  | 
1196  |  | }  | 
1197  |  |  | 
1198  |  | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,  | 
1199  |  |                                    const unsigned char *key,  | 
1200  |  |                                    const unsigned char *ivec, int enc)  | 
1201  |  | { | 
1202  |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);  | 
1203  |  |     const unsigned char *iv = ctx->oiv;  | 
1204  |  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
1205  |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1206  |  |  | 
1207  |  |     if (keylen <= 0) { | 
1208  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
1209  |  |         return 0;  | 
1210  |  |     }  | 
1211  |  |     if (ivlen <= 0) { | 
1212  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH);  | 
1213  |  |         return 0;  | 
1214  |  |     }  | 
1215  |  |     cctx->fc = S390X_AES_FC(keylen);  | 
1216  |  |     cctx->fc |= 1 << 24;   /* 1 byte cipher feedback */  | 
1217  |  |     if (!enc)  | 
1218  |  |         cctx->fc |= S390X_DECRYPT;  | 
1219  |  |  | 
1220  |  |     memcpy(cctx->kmf.param.cv, iv, ivlen);  | 
1221  |  |     memcpy(cctx->kmf.param.k, key, keylen);  | 
1222  |  |     return 1;  | 
1223  |  | }  | 
1224  |  |  | 
1225  |  | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1226  |  |                                  const unsigned char *in, size_t len)  | 
1227  |  | { | 
1228  |  |     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);  | 
1229  |  |     const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
1230  |  |     unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);  | 
1231  |  |  | 
1232  |  |     memcpy(cctx->kmf.param.cv, iv, ivlen);  | 
1233  |  |     s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);  | 
1234  |  |     memcpy(iv, cctx->kmf.param.cv, ivlen);  | 
1235  |  |     return 1;  | 
1236  |  | }  | 
1237  |  |  | 
1238  |  | # define s390x_aes_cfb1_init_key aes_init_key  | 
1239  |  |  | 
1240  |  | # define s390x_aes_cfb1_cipher aes_cfb1_cipher  | 
1241  |  | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1242  |  |                                  const unsigned char *in, size_t len);  | 
1243  |  |  | 
1244  |  | # define S390X_AES_CTR_CTX              EVP_AES_KEY  | 
1245  |  |  | 
1246  |  | # define s390x_aes_ctr_init_key aes_init_key  | 
1247  |  |  | 
1248  |  | # define s390x_aes_ctr_cipher aes_ctr_cipher  | 
1249  |  | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1250  |  |                                 const unsigned char *in, size_t len);  | 
1251  |  |  | 
1252  |  | /* iv + padding length for iv lengths != 12 */  | 
1253  |  | # define S390X_gcm_ivpadlen(i)  ((((i) + 15) >> 4 << 4) + 16)  | 
1254  |  |  | 
1255  |  | /*-  | 
1256  |  |  * Process additional authenticated data. Returns 0 on success. Code is  | 
1257  |  |  * big-endian.  | 
1258  |  |  */  | 
1259  |  | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,  | 
1260  |  |                              size_t len)  | 
1261  |  | { | 
1262  |  |     unsigned long long alen;  | 
1263  |  |     int n, rem;  | 
1264  |  |  | 
1265  |  |     if (ctx->kma.param.tpcl)  | 
1266  |  |         return -2;  | 
1267  |  |  | 
1268  |  |     alen = ctx->kma.param.taadl + len;  | 
1269  |  |     if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))  | 
1270  |  |         return -1;  | 
1271  |  |     ctx->kma.param.taadl = alen;  | 
1272  |  |  | 
1273  |  |     n = ctx->areslen;  | 
1274  |  |     if (n) { | 
1275  |  |         while (n && len) { | 
1276  |  |             ctx->ares[n] = *aad;  | 
1277  |  |             n = (n + 1) & 0xf;  | 
1278  |  |             ++aad;  | 
1279  |  |             --len;  | 
1280  |  |         }  | 
1281  |  |         /* ctx->ares contains a complete block if offset has wrapped around */  | 
1282  |  |         if (!n) { | 
1283  |  |             s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);  | 
1284  |  |             ctx->fc |= S390X_KMA_HS;  | 
1285  |  |         }  | 
1286  |  |         ctx->areslen = n;  | 
1287  |  |     }  | 
1288  |  |  | 
1289  |  |     rem = len & 0xf;  | 
1290  |  |  | 
1291  |  |     len &= ~(size_t)0xf;  | 
1292  |  |     if (len) { | 
1293  |  |         s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);  | 
1294  |  |         aad += len;  | 
1295  |  |         ctx->fc |= S390X_KMA_HS;  | 
1296  |  |     }  | 
1297  |  |  | 
1298  |  |     if (rem) { | 
1299  |  |         ctx->areslen = rem;  | 
1300  |  |  | 
1301  |  |         do { | 
1302  |  |             --rem;  | 
1303  |  |             ctx->ares[rem] = aad[rem];  | 
1304  |  |         } while (rem);  | 
1305  |  |     }  | 
1306  |  |     return 0;  | 
1307  |  | }  | 
1308  |  |  | 
1309  |  | /*-  | 
1310  |  |  * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for  | 
1311  |  |  * success. Code is big-endian.  | 
1312  |  |  */  | 
1313  |  | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,  | 
1314  |  |                          unsigned char *out, size_t len)  | 
1315  |  | { | 
1316  |  |     const unsigned char *inptr;  | 
1317  |  |     unsigned long long mlen;  | 
1318  |  |     union { | 
1319  |  |         unsigned int w[4];  | 
1320  |  |         unsigned char b[16];  | 
1321  |  |     } buf;  | 
1322  |  |     size_t inlen;  | 
1323  |  |     int n, rem, i;  | 
1324  |  |  | 
1325  |  |     mlen = ctx->kma.param.tpcl + len;  | 
1326  |  |     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))  | 
1327  |  |         return -1;  | 
1328  |  |     ctx->kma.param.tpcl = mlen;  | 
1329  |  |  | 
1330  |  |     n = ctx->mreslen;  | 
1331  |  |     if (n) { | 
1332  |  |         inptr = in;  | 
1333  |  |         inlen = len;  | 
1334  |  |         while (n && inlen) { | 
1335  |  |             ctx->mres[n] = *inptr;  | 
1336  |  |             n = (n + 1) & 0xf;  | 
1337  |  |             ++inptr;  | 
1338  |  |             --inlen;  | 
1339  |  |         }  | 
1340  |  |         /* ctx->mres contains a complete block if offset has wrapped around */  | 
1341  |  |         if (!n) { | 
1342  |  |             s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,  | 
1343  |  |                       ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);  | 
1344  |  |             ctx->fc |= S390X_KMA_HS;  | 
1345  |  |             ctx->areslen = 0;  | 
1346  |  |  | 
1347  |  |             /* previous call already encrypted/decrypted its remainder,  | 
1348  |  |              * see comment below */  | 
1349  |  |             n = ctx->mreslen;  | 
1350  |  |             while (n) { | 
1351  |  |                 *out = buf.b[n];  | 
1352  |  |                 n = (n + 1) & 0xf;  | 
1353  |  |                 ++out;  | 
1354  |  |                 ++in;  | 
1355  |  |                 --len;  | 
1356  |  |             }  | 
1357  |  |             ctx->mreslen = 0;  | 
1358  |  |         }  | 
1359  |  |     }  | 
1360  |  |  | 
1361  |  |     rem = len & 0xf;  | 
1362  |  |  | 
1363  |  |     len &= ~(size_t)0xf;  | 
1364  |  |     if (len) { | 
1365  |  |         s390x_kma(ctx->ares, ctx->areslen, in, len, out,  | 
1366  |  |                   ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);  | 
1367  |  |         in += len;  | 
1368  |  |         out += len;  | 
1369  |  |         ctx->fc |= S390X_KMA_HS;  | 
1370  |  |         ctx->areslen = 0;  | 
1371  |  |     }  | 
1372  |  |  | 
1373  |  |     /*-  | 
1374  |  |      * If there is a remainder, it has to be saved such that it can be  | 
1375  |  |      * processed by kma later. However, we also have to do the for-now  | 
1376  |  |      * unauthenticated encryption/decryption part here and now...  | 
1377  |  |      */  | 
1378  |  |     if (rem) { | 
1379  |  |         if (!ctx->mreslen) { | 
1380  |  |             buf.w[0] = ctx->kma.param.j0.w[0];  | 
1381  |  |             buf.w[1] = ctx->kma.param.j0.w[1];  | 
1382  |  |             buf.w[2] = ctx->kma.param.j0.w[2];  | 
1383  |  |             buf.w[3] = ctx->kma.param.cv.w + 1;  | 
1384  |  |             s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);  | 
1385  |  |         }  | 
1386  |  |  | 
1387  |  |         n = ctx->mreslen;  | 
1388  |  |         for (i = 0; i < rem; i++) { | 
1389  |  |             ctx->mres[n + i] = in[i];  | 
1390  |  |             out[i] = in[i] ^ ctx->kres[n + i];  | 
1391  |  |         }  | 
1392  |  |  | 
1393  |  |         ctx->mreslen += rem;  | 
1394  |  |     }  | 
1395  |  |     return 0;  | 
1396  |  | }  | 
1397  |  |  | 
1398  |  | /*-  | 
1399  |  |  * Initialize context structure. Code is big-endian.  | 
1400  |  |  */  | 
1401  |  | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,  | 
1402  |  |                                 const unsigned char *iv)  | 
1403  |  | { | 
1404  |  |     ctx->kma.param.t.g[0] = 0;  | 
1405  |  |     ctx->kma.param.t.g[1] = 0;  | 
1406  |  |     ctx->kma.param.tpcl = 0;  | 
1407  |  |     ctx->kma.param.taadl = 0;  | 
1408  |  |     ctx->mreslen = 0;  | 
1409  |  |     ctx->areslen = 0;  | 
1410  |  |     ctx->kreslen = 0;  | 
1411  |  |  | 
1412  |  |     if (ctx->ivlen == 12) { | 
1413  |  |         memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);  | 
1414  |  |         ctx->kma.param.j0.w[3] = 1;  | 
1415  |  |         ctx->kma.param.cv.w = 1;  | 
1416  |  |     } else { | 
1417  |  |         /* ctx->iv has the right size and is already padded. */  | 
1418  |  |         memcpy(ctx->iv, iv, ctx->ivlen);  | 
1419  |  |         s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,  | 
1420  |  |                   ctx->fc, &ctx->kma.param);  | 
1421  |  |         ctx->fc |= S390X_KMA_HS;  | 
1422  |  |  | 
1423  |  |         ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];  | 
1424  |  |         ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];  | 
1425  |  |         ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];  | 
1426  |  |         ctx->kma.param.t.g[0] = 0;  | 
1427  |  |         ctx->kma.param.t.g[1] = 0;  | 
1428  |  |     }  | 
1429  |  | }  | 
1430  |  |  | 
1431  |  | /*-  | 
1432  |  |  * Performs various operations on the context structure depending on control  | 
1433  |  |  * type. Returns 1 for success, 0 for failure and -1 for unknown control type.  | 
1434  |  |  * Code is big-endian.  | 
1435  |  |  */  | 
1436  |  | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)  | 
1437  |  | { | 
1438  |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);  | 
1439  |  |     S390X_AES_GCM_CTX *gctx_out;  | 
1440  |  |     EVP_CIPHER_CTX *out;  | 
1441  |  |     unsigned char *buf;  | 
1442  |  |     int ivlen, enc, len;  | 
1443  |  |  | 
1444  |  |     switch (type) { | 
1445  |  |     case EVP_CTRL_INIT:  | 
1446  |  |         ivlen = EVP_CIPHER_get_iv_length(c->cipher);  | 
1447  |  |         gctx->key_set = 0;  | 
1448  |  |         gctx->iv_set = 0;  | 
1449  |  |         gctx->ivlen = ivlen;  | 
1450  |  |         gctx->iv = c->iv;  | 
1451  |  |         gctx->taglen = -1;  | 
1452  |  |         gctx->iv_gen = 0;  | 
1453  |  |         gctx->tls_aad_len = -1;  | 
1454  |  |         return 1;  | 
1455  |  |  | 
1456  |  |     case EVP_CTRL_GET_IVLEN:  | 
1457  |  |         *(int *)ptr = gctx->ivlen;  | 
1458  |  |         return 1;  | 
1459  |  |  | 
1460  |  |     case EVP_CTRL_AEAD_SET_IVLEN:  | 
1461  |  |         if (arg <= 0)  | 
1462  |  |             return 0;  | 
1463  |  |  | 
1464  |  |         if (arg != 12) { | 
1465  |  |             len = S390X_gcm_ivpadlen(arg);  | 
1466  |  |  | 
1467  |  |             /* Allocate memory for iv if needed. */  | 
1468  |  |             if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { | 
1469  |  |                 if (gctx->iv != c->iv)  | 
1470  |  |                     OPENSSL_free(gctx->iv);  | 
1471  |  |  | 
1472  |  |                 if ((gctx->iv = OPENSSL_malloc(len)) == NULL)  | 
1473  |  |                     return 0;  | 
1474  |  |             }  | 
1475  |  |             /* Add padding. */  | 
1476  |  |             memset(gctx->iv + arg, 0, len - arg - 8);  | 
1477  |  |             *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;  | 
1478  |  |         }  | 
1479  |  |         gctx->ivlen = arg;  | 
1480  |  |         return 1;  | 
1481  |  |  | 
1482  |  |     case EVP_CTRL_AEAD_SET_TAG:  | 
1483  |  |         buf = EVP_CIPHER_CTX_buf_noconst(c);  | 
1484  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
1485  |  |         if (arg <= 0 || arg > 16 || enc)  | 
1486  |  |             return 0;  | 
1487  |  |  | 
1488  |  |         memcpy(buf, ptr, arg);  | 
1489  |  |         gctx->taglen = arg;  | 
1490  |  |         return 1;  | 
1491  |  |  | 
1492  |  |     case EVP_CTRL_AEAD_GET_TAG:  | 
1493  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
1494  |  |         if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)  | 
1495  |  |             return 0;  | 
1496  |  |  | 
1497  |  |         memcpy(ptr, gctx->kma.param.t.b, arg);  | 
1498  |  |         return 1;  | 
1499  |  |  | 
1500  |  |     case EVP_CTRL_GCM_SET_IV_FIXED:  | 
1501  |  |         /* Special case: -1 length restores whole iv */  | 
1502  |  |         if (arg == -1) { | 
1503  |  |             memcpy(gctx->iv, ptr, gctx->ivlen);  | 
1504  |  |             gctx->iv_gen = 1;  | 
1505  |  |             return 1;  | 
1506  |  |         }  | 
1507  |  |         /*  | 
1508  |  |          * Fixed field must be at least 4 bytes and invocation field at least  | 
1509  |  |          * 8.  | 
1510  |  |          */  | 
1511  |  |         if ((arg < 4) || (gctx->ivlen - arg) < 8)  | 
1512  |  |             return 0;  | 
1513  |  |  | 
1514  |  |         if (arg)  | 
1515  |  |             memcpy(gctx->iv, ptr, arg);  | 
1516  |  |  | 
1517  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
1518  |  |         if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)  | 
1519  |  |             return 0;  | 
1520  |  |  | 
1521  |  |         gctx->iv_gen = 1;  | 
1522  |  |         return 1;  | 
1523  |  |  | 
1524  |  |     case EVP_CTRL_GCM_IV_GEN:  | 
1525  |  |         if (gctx->iv_gen == 0 || gctx->key_set == 0)  | 
1526  |  |             return 0;  | 
1527  |  |  | 
1528  |  |         s390x_aes_gcm_setiv(gctx, gctx->iv);  | 
1529  |  |  | 
1530  |  |         if (arg <= 0 || arg > gctx->ivlen)  | 
1531  |  |             arg = gctx->ivlen;  | 
1532  |  |  | 
1533  |  |         memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);  | 
1534  |  |         /*  | 
1535  |  |          * Invocation field will be at least 8 bytes in size and so no need  | 
1536  |  |          * to check wrap around or increment more than last 8 bytes.  | 
1537  |  |          */  | 
1538  |  |         ctr64_inc(gctx->iv + gctx->ivlen - 8);  | 
1539  |  |         gctx->iv_set = 1;  | 
1540  |  |         return 1;  | 
1541  |  |  | 
1542  |  |     case EVP_CTRL_GCM_SET_IV_INV:  | 
1543  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
1544  |  |         if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)  | 
1545  |  |             return 0;  | 
1546  |  |  | 
1547  |  |         memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);  | 
1548  |  |         s390x_aes_gcm_setiv(gctx, gctx->iv);  | 
1549  |  |         gctx->iv_set = 1;  | 
1550  |  |         return 1;  | 
1551  |  |  | 
1552  |  |     case EVP_CTRL_AEAD_TLS1_AAD:  | 
1553  |  |         /* Save the aad for later use. */  | 
1554  |  |         if (arg != EVP_AEAD_TLS1_AAD_LEN)  | 
1555  |  |             return 0;  | 
1556  |  |  | 
1557  |  |         buf = EVP_CIPHER_CTX_buf_noconst(c);  | 
1558  |  |         memcpy(buf, ptr, arg);  | 
1559  |  |         gctx->tls_aad_len = arg;  | 
1560  |  |         gctx->tls_enc_records = 0;  | 
1561  |  |  | 
1562  |  |         len = buf[arg - 2] << 8 | buf[arg - 1];  | 
1563  |  |         /* Correct length for explicit iv. */  | 
1564  |  |         if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)  | 
1565  |  |             return 0;  | 
1566  |  |         len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;  | 
1567  |  |  | 
1568  |  |         /* If decrypting correct for tag too. */  | 
1569  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
1570  |  |         if (!enc) { | 
1571  |  |             if (len < EVP_GCM_TLS_TAG_LEN)  | 
1572  |  |                 return 0;  | 
1573  |  |             len -= EVP_GCM_TLS_TAG_LEN;  | 
1574  |  |         }  | 
1575  |  |         buf[arg - 2] = len >> 8;  | 
1576  |  |         buf[arg - 1] = len & 0xff;  | 
1577  |  |         /* Extra padding: tag appended to record. */  | 
1578  |  |         return EVP_GCM_TLS_TAG_LEN;  | 
1579  |  |  | 
1580  |  |     case EVP_CTRL_COPY:  | 
1581  |  |         out = ptr;  | 
1582  |  |         gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);  | 
1583  |  |  | 
1584  |  |         if (gctx->iv == c->iv) { | 
1585  |  |             gctx_out->iv = out->iv;  | 
1586  |  |         } else { | 
1587  |  |             len = S390X_gcm_ivpadlen(gctx->ivlen);  | 
1588  |  |  | 
1589  |  |             if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL)  | 
1590  |  |                 return 0;  | 
1591  |  |  | 
1592  |  |             memcpy(gctx_out->iv, gctx->iv, len);  | 
1593  |  |         }  | 
1594  |  |         return 1;  | 
1595  |  |  | 
1596  |  |     default:  | 
1597  |  |         return -1;  | 
1598  |  |     }  | 
1599  |  | }  | 
1600  |  |  | 
1601  |  | /*-  | 
1602  |  |  * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.  | 
1603  |  |  */  | 
1604  |  | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,  | 
1605  |  |                                   const unsigned char *key,  | 
1606  |  |                                   const unsigned char *iv, int enc)  | 
1607  |  | { | 
1608  |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);  | 
1609  |  |     int keylen;  | 
1610  |  |  | 
1611  |  |     if (iv == NULL && key == NULL)  | 
1612  |  |         return 1;  | 
1613  |  |  | 
1614  |  |     if (key != NULL) { | 
1615  |  |         keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
1616  |  |         if (keylen <= 0) { | 
1617  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
1618  |  |             return 0;  | 
1619  |  |         }  | 
1620  |  |  | 
1621  |  |         memcpy(&gctx->kma.param.k, key, keylen);  | 
1622  |  |  | 
1623  |  |         gctx->fc = S390X_AES_FC(keylen);  | 
1624  |  |         if (!enc)  | 
1625  |  |             gctx->fc |= S390X_DECRYPT;  | 
1626  |  |  | 
1627  |  |         if (iv == NULL && gctx->iv_set)  | 
1628  |  |             iv = gctx->iv;  | 
1629  |  |  | 
1630  |  |         if (iv != NULL) { | 
1631  |  |             s390x_aes_gcm_setiv(gctx, iv);  | 
1632  |  |             gctx->iv_set = 1;  | 
1633  |  |         }  | 
1634  |  |         gctx->key_set = 1;  | 
1635  |  |     } else { | 
1636  |  |         if (gctx->key_set)  | 
1637  |  |             s390x_aes_gcm_setiv(gctx, iv);  | 
1638  |  |         else  | 
1639  |  |             memcpy(gctx->iv, iv, gctx->ivlen);  | 
1640  |  |  | 
1641  |  |         gctx->iv_set = 1;  | 
1642  |  |         gctx->iv_gen = 0;  | 
1643  |  |     }  | 
1644  |  |     return 1;  | 
1645  |  | }  | 
1646  |  |  | 
1647  |  | /*-  | 
1648  |  |  * En/de-crypt and authenticate TLS packet. Returns the number of bytes written  | 
1649  |  |  * if successful. Otherwise -1 is returned. Code is big-endian.  | 
1650  |  |  */  | 
1651  |  | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1652  |  |                                     const unsigned char *in, size_t len)  | 
1653  |  | { | 
1654  |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);  | 
1655  |  |     const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);  | 
1656  |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);  | 
1657  |  |     int rv = -1;  | 
1658  |  |  | 
1659  |  |     if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))  | 
1660  |  |         return -1;  | 
1661  |  |  | 
1662  |  |     /*  | 
1663  |  |      * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness  | 
1664  |  |      * Requirements from SP 800-38D".  The requirements is for one party to the  | 
1665  |  |      * communication to fail after 2^64 - 1 keys.  We do this on the encrypting  | 
1666  |  |      * side only.  | 
1667  |  |      */  | 
1668  |  |     if (enc && ++gctx->tls_enc_records == 0) { | 
1669  |  |         ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS);  | 
1670  |  |         goto err;  | 
1671  |  |     }  | 
1672  |  |  | 
1673  |  |     if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN  | 
1674  |  |                                      : EVP_CTRL_GCM_SET_IV_INV,  | 
1675  |  |                             EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)  | 
1676  |  |         goto err;  | 
1677  |  |  | 
1678  |  |     in += EVP_GCM_TLS_EXPLICIT_IV_LEN;  | 
1679  |  |     out += EVP_GCM_TLS_EXPLICIT_IV_LEN;  | 
1680  |  |     len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;  | 
1681  |  |  | 
1682  |  |     gctx->kma.param.taadl = gctx->tls_aad_len << 3;  | 
1683  |  |     gctx->kma.param.tpcl = len << 3;  | 
1684  |  |     s390x_kma(buf, gctx->tls_aad_len, in, len, out,  | 
1685  |  |               gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);  | 
1686  |  |  | 
1687  |  |     if (enc) { | 
1688  |  |         memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);  | 
1689  |  |         rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;  | 
1690  |  |     } else { | 
1691  |  |         if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,  | 
1692  |  |                           EVP_GCM_TLS_TAG_LEN)) { | 
1693  |  |             OPENSSL_cleanse(out, len);  | 
1694  |  |             goto err;  | 
1695  |  |         }  | 
1696  |  |         rv = len;  | 
1697  |  |     }  | 
1698  |  | err:  | 
1699  |  |     gctx->iv_set = 0;  | 
1700  |  |     gctx->tls_aad_len = -1;  | 
1701  |  |     return rv;  | 
1702  |  | }  | 
1703  |  |  | 
1704  |  | /*-  | 
1705  |  |  * Called from EVP layer to initialize context, process additional  | 
1706  |  |  * authenticated data, en/de-crypt plain/cipher-text and authenticate  | 
1707  |  |  * ciphertext or process a TLS packet, depending on context. Returns bytes  | 
1708  |  |  * written on success. Otherwise -1 is returned. Code is big-endian.  | 
1709  |  |  */  | 
1710  |  | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1711  |  |                                 const unsigned char *in, size_t len)  | 
1712  |  | { | 
1713  |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);  | 
1714  |  |     unsigned char *buf, tmp[16];  | 
1715  |  |     int enc;  | 
1716  |  |  | 
1717  |  |     if (!gctx->key_set)  | 
1718  |  |         return -1;  | 
1719  |  |  | 
1720  |  |     if (gctx->tls_aad_len >= 0)  | 
1721  |  |         return s390x_aes_gcm_tls_cipher(ctx, out, in, len);  | 
1722  |  |  | 
1723  |  |     if (!gctx->iv_set)  | 
1724  |  |         return -1;  | 
1725  |  |  | 
1726  |  |     if (in != NULL) { | 
1727  |  |         if (out == NULL) { | 
1728  |  |             if (s390x_aes_gcm_aad(gctx, in, len))  | 
1729  |  |                 return -1;  | 
1730  |  |         } else { | 
1731  |  |             if (s390x_aes_gcm(gctx, in, out, len))  | 
1732  |  |                 return -1;  | 
1733  |  |         }  | 
1734  |  |         return len;  | 
1735  |  |     } else { | 
1736  |  |         gctx->kma.param.taadl <<= 3;  | 
1737  |  |         gctx->kma.param.tpcl <<= 3;  | 
1738  |  |         s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,  | 
1739  |  |                   gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);  | 
1740  |  |         /* recall that we already did en-/decrypt gctx->mres  | 
1741  |  |          * and returned it to caller... */  | 
1742  |  |         OPENSSL_cleanse(tmp, gctx->mreslen);  | 
1743  |  |         gctx->iv_set = 0;  | 
1744  |  |  | 
1745  |  |         enc = EVP_CIPHER_CTX_is_encrypting(ctx);  | 
1746  |  |         if (enc) { | 
1747  |  |             gctx->taglen = 16;  | 
1748  |  |         } else { | 
1749  |  |             if (gctx->taglen < 0)  | 
1750  |  |                 return -1;  | 
1751  |  |  | 
1752  |  |             buf = EVP_CIPHER_CTX_buf_noconst(ctx);  | 
1753  |  |             if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))  | 
1754  |  |                 return -1;  | 
1755  |  |         }  | 
1756  |  |         return 0;  | 
1757  |  |     }  | 
1758  |  | }  | 
1759  |  |  | 
1760  |  | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)  | 
1761  |  | { | 
1762  |  |     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);  | 
1763  |  |  | 
1764  |  |     if (gctx == NULL)  | 
1765  |  |         return 0;  | 
1766  |  |  | 
1767  |  |     if (gctx->iv != c->iv)  | 
1768  |  |         OPENSSL_free(gctx->iv);  | 
1769  |  |  | 
1770  |  |     OPENSSL_cleanse(gctx, sizeof(*gctx));  | 
1771  |  |     return 1;  | 
1772  |  | }  | 
1773  |  |  | 
1774  |  | # define S390X_AES_XTS_CTX              EVP_AES_XTS_CTX  | 
1775  |  |  | 
1776  |  | # define s390x_aes_xts_init_key aes_xts_init_key  | 
1777  |  | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,  | 
1778  |  |                                   const unsigned char *key,  | 
1779  |  |                                   const unsigned char *iv, int enc);  | 
1780  |  | # define s390x_aes_xts_cipher aes_xts_cipher  | 
1781  |  | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1782  |  |                                 const unsigned char *in, size_t len);  | 
1783  |  | # define s390x_aes_xts_ctrl aes_xts_ctrl  | 
1784  |  | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);  | 
1785  |  | # define s390x_aes_xts_cleanup aes_xts_cleanup  | 
1786  |  |  | 
1787  |  | /*-  | 
1788  |  |  * Set nonce and length fields. Code is big-endian.  | 
1789  |  |  */  | 
1790  |  | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,  | 
1791  |  |                                           const unsigned char *nonce,  | 
1792  |  |                                           size_t mlen)  | 
1793  |  | { | 
1794  |  |     ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;  | 
1795  |  |     ctx->aes.ccm.nonce.g[1] = mlen;  | 
1796  |  |     memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);  | 
1797  |  | }  | 
1798  |  |  | 
1799  |  | /*-  | 
1800  |  |  * Process additional authenticated data. Code is big-endian.  | 
1801  |  |  */  | 
1802  |  | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,  | 
1803  |  |                               size_t alen)  | 
1804  |  | { | 
1805  |  |     unsigned char *ptr;  | 
1806  |  |     int i, rem;  | 
1807  |  |  | 
1808  |  |     if (!alen)  | 
1809  |  |         return;  | 
1810  |  |  | 
1811  |  |     ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;  | 
1812  |  |  | 
1813  |  |     /* Suppress 'type-punned pointer dereference' warning. */  | 
1814  |  |     ptr = ctx->aes.ccm.buf.b;  | 
1815  |  |  | 
1816  |  |     if (alen < ((1 << 16) - (1 << 8))) { | 
1817  |  |         *(uint16_t *)ptr = alen;  | 
1818  |  |         i = 2;  | 
1819  |  |     } else if (sizeof(alen) == 8  | 
1820  |  |                && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { | 
1821  |  |         *(uint16_t *)ptr = 0xffff;  | 
1822  |  |         *(uint64_t *)(ptr + 2) = alen;  | 
1823  |  |         i = 10;  | 
1824  |  |     } else { | 
1825  |  |         *(uint16_t *)ptr = 0xfffe;  | 
1826  |  |         *(uint32_t *)(ptr + 2) = alen;  | 
1827  |  |         i = 6;  | 
1828  |  |     }  | 
1829  |  |  | 
1830  |  |     while (i < 16 && alen) { | 
1831  |  |         ctx->aes.ccm.buf.b[i] = *aad;  | 
1832  |  |         ++aad;  | 
1833  |  |         --alen;  | 
1834  |  |         ++i;  | 
1835  |  |     }  | 
1836  |  |     while (i < 16) { | 
1837  |  |         ctx->aes.ccm.buf.b[i] = 0;  | 
1838  |  |         ++i;  | 
1839  |  |     }  | 
1840  |  |  | 
1841  |  |     ctx->aes.ccm.kmac_param.icv.g[0] = 0;  | 
1842  |  |     ctx->aes.ccm.kmac_param.icv.g[1] = 0;  | 
1843  |  |     s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,  | 
1844  |  |                &ctx->aes.ccm.kmac_param);  | 
1845  |  |     ctx->aes.ccm.blocks += 2;  | 
1846  |  |  | 
1847  |  |     rem = alen & 0xf;  | 
1848  |  |     alen &= ~(size_t)0xf;  | 
1849  |  |     if (alen) { | 
1850  |  |         s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);  | 
1851  |  |         ctx->aes.ccm.blocks += alen >> 4;  | 
1852  |  |         aad += alen;  | 
1853  |  |     }  | 
1854  |  |     if (rem) { | 
1855  |  |         for (i = 0; i < rem; i++)  | 
1856  |  |             ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];  | 
1857  |  |  | 
1858  |  |         s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,  | 
1859  |  |                  ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,  | 
1860  |  |                  ctx->aes.ccm.kmac_param.k);  | 
1861  |  |         ctx->aes.ccm.blocks++;  | 
1862  |  |     }  | 
1863  |  | }  | 
1864  |  |  | 
1865  |  | /*-  | 
1866  |  |  * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for  | 
1867  |  |  * success.  | 
1868  |  |  */  | 
1869  |  | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,  | 
1870  |  |                          unsigned char *out, size_t len, int enc)  | 
1871  |  | { | 
1872  |  |     size_t n, rem;  | 
1873  |  |     unsigned int i, l, num;  | 
1874  |  |     unsigned char flags;  | 
1875  |  |  | 
1876  |  |     flags = ctx->aes.ccm.nonce.b[0];  | 
1877  |  |     if (!(flags & S390X_CCM_AAD_FLAG)) { | 
1878  |  |         s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,  | 
1879  |  |                  ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);  | 
1880  |  |         ctx->aes.ccm.blocks++;  | 
1881  |  |     }  | 
1882  |  |     l = flags & 0x7;  | 
1883  |  |     ctx->aes.ccm.nonce.b[0] = l;  | 
1884  |  |  | 
1885  |  |     /*-  | 
1886  |  |      * Reconstruct length from encoded length field  | 
1887  |  |      * and initialize it with counter value.  | 
1888  |  |      */  | 
1889  |  |     n = 0;  | 
1890  |  |     for (i = 15 - l; i < 15; i++) { | 
1891  |  |         n |= ctx->aes.ccm.nonce.b[i];  | 
1892  |  |         ctx->aes.ccm.nonce.b[i] = 0;  | 
1893  |  |         n <<= 8;  | 
1894  |  |     }  | 
1895  |  |     n |= ctx->aes.ccm.nonce.b[15];  | 
1896  |  |     ctx->aes.ccm.nonce.b[15] = 1;  | 
1897  |  |  | 
1898  |  |     if (n != len)  | 
1899  |  |         return -1;              /* length mismatch */  | 
1900  |  |  | 
1901  |  |     if (enc) { | 
1902  |  |         /* Two operations per block plus one for tag encryption */  | 
1903  |  |         ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;  | 
1904  |  |         if (ctx->aes.ccm.blocks > (1ULL << 61))  | 
1905  |  |             return -2;          /* too much data */  | 
1906  |  |     }  | 
1907  |  |  | 
1908  |  |     num = 0;  | 
1909  |  |     rem = len & 0xf;  | 
1910  |  |     len &= ~(size_t)0xf;  | 
1911  |  |  | 
1912  |  |     if (enc) { | 
1913  |  |         /* mac-then-encrypt */  | 
1914  |  |         if (len)  | 
1915  |  |             s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);  | 
1916  |  |         if (rem) { | 
1917  |  |             for (i = 0; i < rem; i++)  | 
1918  |  |                 ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];  | 
1919  |  |  | 
1920  |  |             s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,  | 
1921  |  |                      ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,  | 
1922  |  |                      ctx->aes.ccm.kmac_param.k);  | 
1923  |  |         }  | 
1924  |  |  | 
1925  |  |         CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,  | 
1926  |  |                                     ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,  | 
1927  |  |                                     &num, (ctr128_f)AES_ctr32_encrypt);  | 
1928  |  |     } else { | 
1929  |  |         /* decrypt-then-mac */  | 
1930  |  |         CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,  | 
1931  |  |                                     ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,  | 
1932  |  |                                     &num, (ctr128_f)AES_ctr32_encrypt);  | 
1933  |  |  | 
1934  |  |         if (len)  | 
1935  |  |             s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);  | 
1936  |  |         if (rem) { | 
1937  |  |             for (i = 0; i < rem; i++)  | 
1938  |  |                 ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];  | 
1939  |  |  | 
1940  |  |             s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,  | 
1941  |  |                      ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,  | 
1942  |  |                      ctx->aes.ccm.kmac_param.k);  | 
1943  |  |         }  | 
1944  |  |     }  | 
1945  |  |     /* encrypt tag */  | 
1946  |  |     for (i = 15 - l; i < 16; i++)  | 
1947  |  |         ctx->aes.ccm.nonce.b[i] = 0;  | 
1948  |  |  | 
1949  |  |     s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,  | 
1950  |  |              ctx->aes.ccm.kmac_param.k);  | 
1951  |  |     ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];  | 
1952  |  |     ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];  | 
1953  |  |  | 
1954  |  |     ctx->aes.ccm.nonce.b[0] = flags;    /* restore flags field */  | 
1955  |  |     return 0;  | 
1956  |  | }  | 
1957  |  |  | 
1958  |  | /*-  | 
1959  |  |  * En/de-crypt and authenticate TLS packet. Returns the number of bytes written  | 
1960  |  |  * if successful. Otherwise -1 is returned.  | 
1961  |  |  */  | 
1962  |  | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
1963  |  |                                     const unsigned char *in, size_t len)  | 
1964  |  | { | 
1965  |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);  | 
1966  |  |     unsigned char *ivec = ctx->iv;  | 
1967  |  |     unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);  | 
1968  |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);  | 
1969  |  |  | 
1970  |  |     if (out != in  | 
1971  |  |             || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))  | 
1972  |  |         return -1;  | 
1973  |  |  | 
1974  |  |     if (enc) { | 
1975  |  |         /* Set explicit iv (sequence number). */  | 
1976  |  |         memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);  | 
1977  |  |     }  | 
1978  |  |  | 
1979  |  |     len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;  | 
1980  |  |     /*-  | 
1981  |  |      * Get explicit iv (sequence number). We already have fixed iv  | 
1982  |  |      * (server/client_write_iv) here.  | 
1983  |  |      */  | 
1984  |  |     memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);  | 
1985  |  |     s390x_aes_ccm_setiv(cctx, ivec, len);  | 
1986  |  |  | 
1987  |  |     /* Process aad (sequence number|type|version|length) */  | 
1988  |  |     s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);  | 
1989  |  |  | 
1990  |  |     in += EVP_CCM_TLS_EXPLICIT_IV_LEN;  | 
1991  |  |     out += EVP_CCM_TLS_EXPLICIT_IV_LEN;  | 
1992  |  |  | 
1993  |  |     if (enc) { | 
1994  |  |         if (s390x_aes_ccm(cctx, in, out, len, enc))  | 
1995  |  |             return -1;  | 
1996  |  |  | 
1997  |  |         memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);  | 
1998  |  |         return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;  | 
1999  |  |     } else { | 
2000  |  |         if (!s390x_aes_ccm(cctx, in, out, len, enc)) { | 
2001  |  |             if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,  | 
2002  |  |                                cctx->aes.ccm.m))  | 
2003  |  |                 return len;  | 
2004  |  |         }  | 
2005  |  |  | 
2006  |  |         OPENSSL_cleanse(out, len);  | 
2007  |  |         return -1;  | 
2008  |  |     }  | 
2009  |  | }  | 
2010  |  |  | 
2011  |  | /*-  | 
2012  |  |  * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is  | 
2013  |  |  * returned.  | 
2014  |  |  */  | 
2015  |  | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,  | 
2016  |  |                                   const unsigned char *key,  | 
2017  |  |                                   const unsigned char *iv, int enc)  | 
2018  |  | { | 
2019  |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);  | 
2020  |  |     int keylen;  | 
2021  |  |  | 
2022  |  |     if (iv == NULL && key == NULL)  | 
2023  |  |         return 1;  | 
2024  |  |  | 
2025  |  |     if (key != NULL) { | 
2026  |  |         keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
2027  |  |         if (keylen <= 0) { | 
2028  |  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
2029  |  |             return 0;  | 
2030  |  |         }  | 
2031  |  |  | 
2032  |  |         cctx->aes.ccm.fc = S390X_AES_FC(keylen);  | 
2033  |  |         memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);  | 
2034  |  |  | 
2035  |  |         /* Store encoded m and l. */  | 
2036  |  |         cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)  | 
2037  |  |                                  | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;  | 
2038  |  |         memset(cctx->aes.ccm.nonce.b + 1, 0,  | 
2039  |  |                sizeof(cctx->aes.ccm.nonce.b));  | 
2040  |  |         cctx->aes.ccm.blocks = 0;  | 
2041  |  |  | 
2042  |  |         cctx->aes.ccm.key_set = 1;  | 
2043  |  |     }  | 
2044  |  |  | 
2045  |  |     if (iv != NULL) { | 
2046  |  |         memcpy(ctx->iv, iv, 15 - cctx->aes.ccm.l);  | 
2047  |  |  | 
2048  |  |         cctx->aes.ccm.iv_set = 1;  | 
2049  |  |     }  | 
2050  |  |  | 
2051  |  |     return 1;  | 
2052  |  | }  | 
2053  |  |  | 
2054  |  | /*-  | 
2055  |  |  * Called from EVP layer to initialize context, process additional  | 
2056  |  |  * authenticated data, en/de-crypt plain/cipher-text and authenticate  | 
2057  |  |  * plaintext or process a TLS packet, depending on context. Returns bytes  | 
2058  |  |  * written on success. Otherwise -1 is returned.  | 
2059  |  |  */  | 
2060  |  | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2061  |  |                                 const unsigned char *in, size_t len)  | 
2062  |  | { | 
2063  |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);  | 
2064  |  |     const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);  | 
2065  |  |     int rv;  | 
2066  |  |     unsigned char *buf;  | 
2067  |  |  | 
2068  |  |     if (!cctx->aes.ccm.key_set)  | 
2069  |  |         return -1;  | 
2070  |  |  | 
2071  |  |     if (cctx->aes.ccm.tls_aad_len >= 0)  | 
2072  |  |         return s390x_aes_ccm_tls_cipher(ctx, out, in, len);  | 
2073  |  |  | 
2074  |  |     /*-  | 
2075  |  |      * Final(): Does not return any data. Recall that ccm is mac-then-encrypt  | 
2076  |  |      * so integrity must be checked already at Update() i.e., before  | 
2077  |  |      * potentially corrupted data is output.  | 
2078  |  |      */  | 
2079  |  |     if (in == NULL && out != NULL)  | 
2080  |  |         return 0;  | 
2081  |  |  | 
2082  |  |     if (!cctx->aes.ccm.iv_set)  | 
2083  |  |         return -1;  | 
2084  |  |  | 
2085  |  |     if (out == NULL) { | 
2086  |  |         /* Update(): Pass message length. */  | 
2087  |  |         if (in == NULL) { | 
2088  |  |             s390x_aes_ccm_setiv(cctx, ctx->iv, len);  | 
2089  |  |  | 
2090  |  |             cctx->aes.ccm.len_set = 1;  | 
2091  |  |             return len;  | 
2092  |  |         }  | 
2093  |  |  | 
2094  |  |         /* Update(): Process aad. */  | 
2095  |  |         if (!cctx->aes.ccm.len_set && len)  | 
2096  |  |             return -1;  | 
2097  |  |  | 
2098  |  |         s390x_aes_ccm_aad(cctx, in, len);  | 
2099  |  |         return len;  | 
2100  |  |     }  | 
2101  |  |  | 
2102  |  |     /* The tag must be set before actually decrypting data */  | 
2103  |  |     if (!enc && !cctx->aes.ccm.tag_set)  | 
2104  |  |         return -1;  | 
2105  |  |  | 
2106  |  |     /* Update(): Process message. */  | 
2107  |  |  | 
2108  |  |     if (!cctx->aes.ccm.len_set) { | 
2109  |  |         /*-  | 
2110  |  |          * In case message length was not previously set explicitly via  | 
2111  |  |          * Update(), set it now.  | 
2112  |  |          */  | 
2113  |  |         s390x_aes_ccm_setiv(cctx, ctx->iv, len);  | 
2114  |  |  | 
2115  |  |         cctx->aes.ccm.len_set = 1;  | 
2116  |  |     }  | 
2117  |  |  | 
2118  |  |     if (enc) { | 
2119  |  |         if (s390x_aes_ccm(cctx, in, out, len, enc))  | 
2120  |  |             return -1;  | 
2121  |  |  | 
2122  |  |         cctx->aes.ccm.tag_set = 1;  | 
2123  |  |         return len;  | 
2124  |  |     } else { | 
2125  |  |         rv = -1;  | 
2126  |  |  | 
2127  |  |         if (!s390x_aes_ccm(cctx, in, out, len, enc)) { | 
2128  |  |             buf = EVP_CIPHER_CTX_buf_noconst(ctx);  | 
2129  |  |             if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,  | 
2130  |  |                                cctx->aes.ccm.m))  | 
2131  |  |                 rv = len;  | 
2132  |  |         }  | 
2133  |  |  | 
2134  |  |         if (rv == -1)  | 
2135  |  |             OPENSSL_cleanse(out, len);  | 
2136  |  |  | 
2137  |  |         cctx->aes.ccm.iv_set = 0;  | 
2138  |  |         cctx->aes.ccm.tag_set = 0;  | 
2139  |  |         cctx->aes.ccm.len_set = 0;  | 
2140  |  |         return rv;  | 
2141  |  |     }  | 
2142  |  | }  | 
2143  |  |  | 
2144  |  | /*-  | 
2145  |  |  * Performs various operations on the context structure depending on control  | 
2146  |  |  * type. Returns 1 for success, 0 for failure and -1 for unknown control type.  | 
2147  |  |  * Code is big-endian.  | 
2148  |  |  */  | 
2149  |  | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)  | 
2150  |  | { | 
2151  |  |     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);  | 
2152  |  |     unsigned char *buf;  | 
2153  |  |     int enc, len;  | 
2154  |  |  | 
2155  |  |     switch (type) { | 
2156  |  |     case EVP_CTRL_INIT:  | 
2157  |  |         cctx->aes.ccm.key_set = 0;  | 
2158  |  |         cctx->aes.ccm.iv_set = 0;  | 
2159  |  |         cctx->aes.ccm.l = 8;  | 
2160  |  |         cctx->aes.ccm.m = 12;  | 
2161  |  |         cctx->aes.ccm.tag_set = 0;  | 
2162  |  |         cctx->aes.ccm.len_set = 0;  | 
2163  |  |         cctx->aes.ccm.tls_aad_len = -1;  | 
2164  |  |         return 1;  | 
2165  |  |  | 
2166  |  |     case EVP_CTRL_GET_IVLEN:  | 
2167  |  |         *(int *)ptr = 15 - cctx->aes.ccm.l;  | 
2168  |  |         return 1;  | 
2169  |  |  | 
2170  |  |     case EVP_CTRL_AEAD_TLS1_AAD:  | 
2171  |  |         if (arg != EVP_AEAD_TLS1_AAD_LEN)  | 
2172  |  |             return 0;  | 
2173  |  |  | 
2174  |  |         /* Save the aad for later use. */  | 
2175  |  |         buf = EVP_CIPHER_CTX_buf_noconst(c);  | 
2176  |  |         memcpy(buf, ptr, arg);  | 
2177  |  |         cctx->aes.ccm.tls_aad_len = arg;  | 
2178  |  |  | 
2179  |  |         len = buf[arg - 2] << 8 | buf[arg - 1];  | 
2180  |  |         if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)  | 
2181  |  |             return 0;  | 
2182  |  |  | 
2183  |  |         /* Correct length for explicit iv. */  | 
2184  |  |         len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;  | 
2185  |  |  | 
2186  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
2187  |  |         if (!enc) { | 
2188  |  |             if (len < cctx->aes.ccm.m)  | 
2189  |  |                 return 0;  | 
2190  |  |  | 
2191  |  |             /* Correct length for tag. */  | 
2192  |  |             len -= cctx->aes.ccm.m;  | 
2193  |  |         }  | 
2194  |  |  | 
2195  |  |         buf[arg - 2] = len >> 8;  | 
2196  |  |         buf[arg - 1] = len & 0xff;  | 
2197  |  |  | 
2198  |  |         /* Extra padding: tag appended to record. */  | 
2199  |  |         return cctx->aes.ccm.m;  | 
2200  |  |  | 
2201  |  |     case EVP_CTRL_CCM_SET_IV_FIXED:  | 
2202  |  |         if (arg != EVP_CCM_TLS_FIXED_IV_LEN)  | 
2203  |  |             return 0;  | 
2204  |  |  | 
2205  |  |         /* Copy to first part of the iv. */  | 
2206  |  |         memcpy(c->iv, ptr, arg);  | 
2207  |  |         return 1;  | 
2208  |  |  | 
2209  |  |     case EVP_CTRL_AEAD_SET_IVLEN:  | 
2210  |  |         arg = 15 - arg;  | 
2211  |  |         /* fall-through */  | 
2212  |  |  | 
2213  |  |     case EVP_CTRL_CCM_SET_L:  | 
2214  |  |         if (arg < 2 || arg > 8)  | 
2215  |  |             return 0;  | 
2216  |  |  | 
2217  |  |         cctx->aes.ccm.l = arg;  | 
2218  |  |         return 1;  | 
2219  |  |  | 
2220  |  |     case EVP_CTRL_AEAD_SET_TAG:  | 
2221  |  |         if ((arg & 1) || arg < 4 || arg > 16)  | 
2222  |  |             return 0;  | 
2223  |  |  | 
2224  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
2225  |  |         if (enc && ptr)  | 
2226  |  |             return 0;  | 
2227  |  |  | 
2228  |  |         if (ptr) { | 
2229  |  |             cctx->aes.ccm.tag_set = 1;  | 
2230  |  |             buf = EVP_CIPHER_CTX_buf_noconst(c);  | 
2231  |  |             memcpy(buf, ptr, arg);  | 
2232  |  |         }  | 
2233  |  |  | 
2234  |  |         cctx->aes.ccm.m = arg;  | 
2235  |  |         return 1;  | 
2236  |  |  | 
2237  |  |     case EVP_CTRL_AEAD_GET_TAG:  | 
2238  |  |         enc = EVP_CIPHER_CTX_is_encrypting(c);  | 
2239  |  |         if (!enc || !cctx->aes.ccm.tag_set)  | 
2240  |  |             return 0;  | 
2241  |  |  | 
2242  |  |         if (arg < cctx->aes.ccm.m)  | 
2243  |  |             return 0;  | 
2244  |  |  | 
2245  |  |         memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);  | 
2246  |  |         cctx->aes.ccm.tag_set = 0;  | 
2247  |  |         cctx->aes.ccm.iv_set = 0;  | 
2248  |  |         cctx->aes.ccm.len_set = 0;  | 
2249  |  |         return 1;  | 
2250  |  |  | 
2251  |  |     case EVP_CTRL_COPY:  | 
2252  |  |         return 1;  | 
2253  |  |  | 
2254  |  |     default:  | 
2255  |  |         return -1;  | 
2256  |  |     }  | 
2257  |  | }  | 
2258  |  |  | 
2259  |  | # define s390x_aes_ccm_cleanup aes_ccm_cleanup  | 
2260  |  |  | 
2261  |  | # ifndef OPENSSL_NO_OCB  | 
2262  |  | #  define S390X_AES_OCB_CTX             EVP_AES_OCB_CTX  | 
2263  |  |  | 
2264  |  | #  define s390x_aes_ocb_init_key aes_ocb_init_key  | 
2265  |  | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
2266  |  |                                   const unsigned char *iv, int enc);  | 
2267  |  | #  define s390x_aes_ocb_cipher aes_ocb_cipher  | 
2268  |  | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2269  |  |                                 const unsigned char *in, size_t len);  | 
2270  |  | #  define s390x_aes_ocb_cleanup aes_ocb_cleanup  | 
2271  |  | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);  | 
2272  |  | #  define s390x_aes_ocb_ctrl aes_ocb_ctrl  | 
2273  |  | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);  | 
2274  |  | # endif  | 
2275  |  |  | 
2276  |  | # ifndef OPENSSL_NO_SIV  | 
2277  |  | #  define S390X_AES_SIV_CTX             EVP_AES_SIV_CTX  | 
2278  |  |  | 
2279  |  | #  define s390x_aes_siv_init_key aes_siv_init_key  | 
2280  |  | #  define s390x_aes_siv_cipher aes_siv_cipher  | 
2281  |  | #  define s390x_aes_siv_cleanup aes_siv_cleanup  | 
2282  |  | #  define s390x_aes_siv_ctrl aes_siv_ctrl  | 
2283  |  | # endif  | 
2284  |  |  | 
2285  |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,    \  | 
2286  |  |                               MODE,flags)                               \  | 
2287  |  | static const EVP_CIPHER s390x_aes_##keylen##_##mode = {                 \ | 
2288  |  |     nid##_##keylen##_##nmode,blocksize,                                 \  | 
2289  |  |     keylen / 8,                                                         \  | 
2290  |  |     ivlen,                                                              \  | 
2291  |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \  | 
2292  |  |     EVP_ORIG_GLOBAL,                                                    \  | 
2293  |  |     s390x_aes_##mode##_init_key,                                        \  | 
2294  |  |     s390x_aes_##mode##_cipher,                                          \  | 
2295  |  |     NULL,                                                               \  | 
2296  |  |     sizeof(S390X_AES_##MODE##_CTX),                                     \  | 
2297  |  |     NULL,                                                               \  | 
2298  |  |     NULL,                                                               \  | 
2299  |  |     NULL,                                                               \  | 
2300  |  |     NULL                                                                \  | 
2301  |  | };                                                                      \  | 
2302  |  | static const EVP_CIPHER aes_##keylen##_##mode = {                       \ | 
2303  |  |     nid##_##keylen##_##nmode,                                           \  | 
2304  |  |     blocksize,                                                          \  | 
2305  |  |     keylen / 8,                                                         \  | 
2306  |  |     ivlen,                                                              \  | 
2307  |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \  | 
2308  |  |     EVP_ORIG_GLOBAL,                                                    \  | 
2309  |  |     aes_init_key,                                                       \  | 
2310  |  |     aes_##mode##_cipher,                                                \  | 
2311  |  |     NULL,                                                               \  | 
2312  |  |     sizeof(EVP_AES_KEY),                                                \  | 
2313  |  |     NULL,                                                               \  | 
2314  |  |     NULL,                                                               \  | 
2315  |  |     NULL,                                                               \  | 
2316  |  |     NULL                                                                \  | 
2317  |  | };                                                                      \  | 
2318  |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void)                       \  | 
2319  |  | {                                                                       \ | 
2320  |  |     return S390X_aes_##keylen##_##mode##_CAPABLE ?                      \  | 
2321  |  |            &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode;       \  | 
2322  |  | }  | 
2323  |  |  | 
2324  |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\  | 
2325  |  | static const EVP_CIPHER s390x_aes_##keylen##_##mode = {                 \ | 
2326  |  |     nid##_##keylen##_##mode,                                            \  | 
2327  |  |     blocksize,                                                          \  | 
2328  |  |     (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8,        \  | 
2329  |  |     ivlen,                                                              \  | 
2330  |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \  | 
2331  |  |     EVP_ORIG_GLOBAL,                                                    \  | 
2332  |  |     s390x_aes_##mode##_init_key,                                        \  | 
2333  |  |     s390x_aes_##mode##_cipher,                                          \  | 
2334  |  |     s390x_aes_##mode##_cleanup,                                         \  | 
2335  |  |     sizeof(S390X_AES_##MODE##_CTX),                                     \  | 
2336  |  |     NULL,                                                               \  | 
2337  |  |     NULL,                                                               \  | 
2338  |  |     s390x_aes_##mode##_ctrl,                                            \  | 
2339  |  |     NULL                                                                \  | 
2340  |  | };                                                                      \  | 
2341  |  | static const EVP_CIPHER aes_##keylen##_##mode = {                       \ | 
2342  |  |     nid##_##keylen##_##mode,blocksize,                                  \  | 
2343  |  |     (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8,        \  | 
2344  |  |     ivlen,                                                              \  | 
2345  |  |     flags | EVP_CIPH_##MODE##_MODE,                                     \  | 
2346  |  |     EVP_ORIG_GLOBAL,                                                    \  | 
2347  |  |     aes_##mode##_init_key,                                              \  | 
2348  |  |     aes_##mode##_cipher,                                                \  | 
2349  |  |     aes_##mode##_cleanup,                                               \  | 
2350  |  |     sizeof(EVP_AES_##MODE##_CTX),                                       \  | 
2351  |  |     NULL,                                                               \  | 
2352  |  |     NULL,                                                               \  | 
2353  |  |     aes_##mode##_ctrl,                                                  \  | 
2354  |  |     NULL                                                                \  | 
2355  |  | };                                                                      \  | 
2356  |  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void)                       \  | 
2357  |  | {                                                                       \ | 
2358  |  |     return S390X_aes_##keylen##_##mode##_CAPABLE ?                      \  | 
2359  |  |            &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode;       \  | 
2360  |  | }  | 
2361  |  |  | 
2362  |  | #else  | 
2363  |  |  | 
2364  |  | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \  | 
2365  |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
2366  |  |         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \  | 
2367  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
2368  |  |         EVP_ORIG_GLOBAL,                \  | 
2369  |  |         aes_init_key,                   \  | 
2370  |  |         aes_##mode##_cipher,            \  | 
2371  |  |         NULL,                           \  | 
2372  |  |         sizeof(EVP_AES_KEY),            \  | 
2373  |  |         NULL,NULL,NULL,NULL }; \  | 
2374  | 63  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  | 
2375  | 63  | { return &aes_##keylen##_##mode; }Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2374  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2375  | 3  | { return &aes_##keylen##_##mode; } |  
  | 
2376  |  |  | 
2377  |  | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \  | 
2378  |  | static const EVP_CIPHER aes_##keylen##_##mode = { \ | 
2379  |  |         nid##_##keylen##_##mode,blocksize, \  | 
2380  |  |         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \  | 
2381  |  |         ivlen,                          \  | 
2382  |  |         flags|EVP_CIPH_##MODE##_MODE,   \  | 
2383  |  |         EVP_ORIG_GLOBAL,                \  | 
2384  |  |         aes_##mode##_init_key,          \  | 
2385  |  |         aes_##mode##_cipher,            \  | 
2386  |  |         aes_##mode##_cleanup,           \  | 
2387  |  |         sizeof(EVP_AES_##MODE##_CTX),   \  | 
2388  |  |         NULL,NULL,aes_##mode##_ctrl,NULL }; \  | 
2389  | 33  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  | 
2390  | 33  | { return &aes_##keylen##_##mode; }Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
 Line  | Count  | Source  |  2389  | 3  | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \  |  2390  | 3  | { return &aes_##keylen##_##mode; } |  
  | 
2391  |  |  | 
2392  |  | #endif  | 
2393  |  |  | 
2394  |  | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags)             \  | 
2395  |  |         BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)     \  | 
2396  |  |         BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)      \  | 
2397  |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)   \  | 
2398  |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)   \  | 
2399  |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags)       \  | 
2400  |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags)       \  | 
2401  |  |         BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)  | 
2402  |  |  | 
2403  |  | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
2404  |  |                         const unsigned char *iv, int enc)  | 
2405  | 0  | { | 
2406  | 0  |     int ret, mode;  | 
2407  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2408  | 0  |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
2409  |  | 
  | 
2410  | 0  |     if (keylen <= 0) { | 
2411  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
2412  | 0  |         return 0;  | 
2413  | 0  |     }  | 
2414  |  |  | 
2415  | 0  |     mode = EVP_CIPHER_CTX_get_mode(ctx);  | 
2416  | 0  |     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)  | 
2417  | 0  |         && !enc) { | 
2418  |  | #ifdef HWAES_CAPABLE  | 
2419  |  |         if (HWAES_CAPABLE) { | 
2420  |  |             ret = HWAES_set_decrypt_key(key, keylen, &dat->ks.ks);  | 
2421  |  |             dat->block = (block128_f) HWAES_decrypt;  | 
2422  |  |             dat->stream.cbc = NULL;  | 
2423  |  | # ifdef HWAES_cbc_encrypt  | 
2424  |  |             if (mode == EVP_CIPH_CBC_MODE)  | 
2425  |  |                 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;  | 
2426  |  | # endif  | 
2427  |  |         } else  | 
2428  |  | #endif  | 
2429  |  | #ifdef BSAES_CAPABLE  | 
2430  |  |         if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { | 
2431  |  |             ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks);  | 
2432  |  |             dat->block = (block128_f) AES_decrypt;  | 
2433  |  |             dat->stream.cbc = (cbc128_f) ossl_bsaes_cbc_encrypt;  | 
2434  |  |         } else  | 
2435  |  | #endif  | 
2436  |  | #ifdef VPAES_CAPABLE  | 
2437  |  |         if (VPAES_CAPABLE) { | 
2438  |  |             ret = vpaes_set_decrypt_key(key, keylen, &dat->ks.ks);  | 
2439  |  |             dat->block = (block128_f) vpaes_decrypt;  | 
2440  |  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
2441  |  |                 (cbc128_f) vpaes_cbc_encrypt : NULL;  | 
2442  |  |         } else  | 
2443  |  | #endif  | 
2444  | 0  |         { | 
2445  | 0  |             ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks);  | 
2446  | 0  |             dat->block = (block128_f) AES_decrypt;  | 
2447  | 0  |             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
2448  | 0  |                 (cbc128_f) AES_cbc_encrypt : NULL;  | 
2449  | 0  |         }  | 
2450  | 0  |     } else  | 
2451  |  | #ifdef HWAES_CAPABLE  | 
2452  |  |     if (HWAES_CAPABLE) { | 
2453  |  |         ret = HWAES_set_encrypt_key(key, keylen, &dat->ks.ks);  | 
2454  |  |         dat->block = (block128_f) HWAES_encrypt;  | 
2455  |  |         dat->stream.cbc = NULL;  | 
2456  |  | # ifdef HWAES_cbc_encrypt  | 
2457  |  |         if (mode == EVP_CIPH_CBC_MODE)  | 
2458  |  |             dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;  | 
2459  |  |         else  | 
2460  |  | # endif  | 
2461  |  | # ifdef HWAES_ctr32_encrypt_blocks  | 
2462  |  |         if (mode == EVP_CIPH_CTR_MODE)  | 
2463  |  |             dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;  | 
2464  |  |         else  | 
2465  |  | # endif  | 
2466  |  |             (void)0;            /* terminate potentially open 'else' */  | 
2467  |  |     } else  | 
2468  |  | #endif  | 
2469  |  | #ifdef BSAES_CAPABLE  | 
2470  |  |     if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { | 
2471  |  |         ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks);  | 
2472  |  |         dat->block = (block128_f) AES_encrypt;  | 
2473  |  |         dat->stream.ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;  | 
2474  |  |     } else  | 
2475  |  | #endif  | 
2476  |  | #ifdef VPAES_CAPABLE  | 
2477  |  |     if (VPAES_CAPABLE) { | 
2478  |  |         ret = vpaes_set_encrypt_key(key, keylen, &dat->ks.ks);  | 
2479  |  |         dat->block = (block128_f) vpaes_encrypt;  | 
2480  |  |         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
2481  |  |             (cbc128_f) vpaes_cbc_encrypt : NULL;  | 
2482  |  |     } else  | 
2483  |  | #endif  | 
2484  | 0  |     { | 
2485  | 0  |         ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks);  | 
2486  | 0  |         dat->block = (block128_f) AES_encrypt;  | 
2487  | 0  |         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?  | 
2488  | 0  |             (cbc128_f) AES_cbc_encrypt : NULL;  | 
2489  |  | #ifdef AES_CTR_ASM  | 
2490  |  |         if (mode == EVP_CIPH_CTR_MODE)  | 
2491  |  |             dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;  | 
2492  |  | #endif  | 
2493  | 0  |     }  | 
2494  |  | 
  | 
2495  | 0  |     if (ret < 0) { | 
2496  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);  | 
2497  | 0  |         return 0;  | 
2498  | 0  |     }  | 
2499  |  |  | 
2500  | 0  |     return 1;  | 
2501  | 0  | }  | 
2502  |  |  | 
2503  |  | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2504  |  |                           const unsigned char *in, size_t len)  | 
2505  | 0  | { | 
2506  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2507  |  | 
  | 
2508  | 0  |     if (dat->stream.cbc)  | 
2509  | 0  |         (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv,  | 
2510  | 0  |                             EVP_CIPHER_CTX_is_encrypting(ctx));  | 
2511  | 0  |     else if (EVP_CIPHER_CTX_is_encrypting(ctx))  | 
2512  | 0  |         CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,  | 
2513  | 0  |                               dat->block);  | 
2514  | 0  |     else  | 
2515  | 0  |         CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,  | 
2516  | 0  |                               ctx->iv, dat->block);  | 
2517  |  | 
  | 
2518  | 0  |     return 1;  | 
2519  | 0  | }  | 
2520  |  |  | 
2521  |  | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2522  |  |                           const unsigned char *in, size_t len)  | 
2523  | 0  | { | 
2524  | 0  |     size_t bl = EVP_CIPHER_CTX_get_block_size(ctx);  | 
2525  | 0  |     size_t i;  | 
2526  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2527  |  | 
  | 
2528  | 0  |     if (len < bl)  | 
2529  | 0  |         return 1;  | 
2530  |  |  | 
2531  | 0  |     for (i = 0, len -= bl; i <= len; i += bl)  | 
2532  | 0  |         (*dat->block) (in + i, out + i, &dat->ks);  | 
2533  |  | 
  | 
2534  | 0  |     return 1;  | 
2535  | 0  | }  | 
2536  |  |  | 
2537  |  | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2538  |  |                           const unsigned char *in, size_t len)  | 
2539  | 0  | { | 
2540  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2541  |  | 
  | 
2542  | 0  |     int num = EVP_CIPHER_CTX_get_num(ctx);  | 
2543  | 0  |     CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,  | 
2544  | 0  |                           ctx->iv, &num, dat->block);  | 
2545  | 0  |     EVP_CIPHER_CTX_set_num(ctx, num);  | 
2546  | 0  |     return 1;  | 
2547  | 0  | }  | 
2548  |  |  | 
2549  |  | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2550  |  |                           const unsigned char *in, size_t len)  | 
2551  | 0  | { | 
2552  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2553  |  | 
  | 
2554  | 0  |     int num = EVP_CIPHER_CTX_get_num(ctx);  | 
2555  | 0  |     CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,  | 
2556  | 0  |                           ctx->iv, &num,  | 
2557  | 0  |                           EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);  | 
2558  | 0  |     EVP_CIPHER_CTX_set_num(ctx, num);  | 
2559  | 0  |     return 1;  | 
2560  | 0  | }  | 
2561  |  |  | 
2562  |  | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2563  |  |                            const unsigned char *in, size_t len)  | 
2564  | 0  | { | 
2565  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2566  |  | 
  | 
2567  | 0  |     int num = EVP_CIPHER_CTX_get_num(ctx);  | 
2568  | 0  |     CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,  | 
2569  | 0  |                             ctx->iv, &num,  | 
2570  | 0  |                             EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);  | 
2571  | 0  |     EVP_CIPHER_CTX_set_num(ctx, num);  | 
2572  | 0  |     return 1;  | 
2573  | 0  | }  | 
2574  |  |  | 
2575  |  | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2576  |  |                            const unsigned char *in, size_t len)  | 
2577  | 0  | { | 
2578  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2579  |  | 
  | 
2580  | 0  |     if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { | 
2581  | 0  |         int num = EVP_CIPHER_CTX_get_num(ctx);  | 
2582  | 0  |         CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,  | 
2583  | 0  |                                 ctx->iv, &num,  | 
2584  | 0  |                                 EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);  | 
2585  | 0  |         EVP_CIPHER_CTX_set_num(ctx, num);  | 
2586  | 0  |         return 1;  | 
2587  | 0  |     }  | 
2588  |  |  | 
2589  | 0  |     while (len >= MAXBITCHUNK) { | 
2590  | 0  |         int num = EVP_CIPHER_CTX_get_num(ctx);  | 
2591  | 0  |         CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,  | 
2592  | 0  |                                 ctx->iv, &num,  | 
2593  | 0  |                                 EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);  | 
2594  | 0  |         EVP_CIPHER_CTX_set_num(ctx, num);  | 
2595  | 0  |         len -= MAXBITCHUNK;  | 
2596  | 0  |         out += MAXBITCHUNK;  | 
2597  | 0  |         in  += MAXBITCHUNK;  | 
2598  | 0  |     }  | 
2599  | 0  |     if (len) { | 
2600  | 0  |         int num = EVP_CIPHER_CTX_get_num(ctx);  | 
2601  | 0  |         CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,  | 
2602  | 0  |                                 ctx->iv, &num,  | 
2603  | 0  |                                 EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);  | 
2604  | 0  |         EVP_CIPHER_CTX_set_num(ctx, num);  | 
2605  | 0  |     }  | 
2606  |  | 
  | 
2607  | 0  |     return 1;  | 
2608  | 0  | }  | 
2609  |  |  | 
2610  |  | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2611  |  |                           const unsigned char *in, size_t len)  | 
2612  | 0  | { | 
2613  | 0  |     int n = EVP_CIPHER_CTX_get_num(ctx);  | 
2614  | 0  |     unsigned int num;  | 
2615  | 0  |     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);  | 
2616  |  | 
  | 
2617  | 0  |     if (n < 0)  | 
2618  | 0  |         return 0;  | 
2619  | 0  |     num = (unsigned int)n;  | 
2620  |  | 
  | 
2621  | 0  |     if (dat->stream.ctr)  | 
2622  | 0  |         CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,  | 
2623  | 0  |                                     ctx->iv,  | 
2624  | 0  |                                     EVP_CIPHER_CTX_buf_noconst(ctx),  | 
2625  | 0  |                                     &num, dat->stream.ctr);  | 
2626  | 0  |     else  | 
2627  | 0  |         CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,  | 
2628  | 0  |                               ctx->iv,  | 
2629  | 0  |                               EVP_CIPHER_CTX_buf_noconst(ctx), &num,  | 
2630  | 0  |                               dat->block);  | 
2631  | 0  |     EVP_CIPHER_CTX_set_num(ctx, num);  | 
2632  | 0  |     return 1;  | 
2633  | 0  | }  | 
2634  |  |  | 
2635  |  | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)  | 
2636  |  |     BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)  | 
2637  |  |     BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)  | 
2638  |  |  | 
2639  |  | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)  | 
2640  | 0  | { | 
2641  | 0  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);  | 
2642  | 0  |     if (gctx == NULL)  | 
2643  | 0  |         return 0;  | 
2644  | 0  |     OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));  | 
2645  | 0  |     if (gctx->iv != c->iv)  | 
2646  | 0  |         OPENSSL_free(gctx->iv);  | 
2647  | 0  |     return 1;  | 
2648  | 0  | }  | 
2649  |  |  | 
2650  |  | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)  | 
2651  | 0  | { | 
2652  | 0  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);  | 
2653  | 0  |     switch (type) { | 
2654  | 0  |     case EVP_CTRL_INIT:  | 
2655  | 0  |         gctx->key_set = 0;  | 
2656  | 0  |         gctx->iv_set = 0;  | 
2657  | 0  |         gctx->ivlen = EVP_CIPHER_get_iv_length(c->cipher);  | 
2658  | 0  |         gctx->iv = c->iv;  | 
2659  | 0  |         gctx->taglen = -1;  | 
2660  | 0  |         gctx->iv_gen = 0;  | 
2661  | 0  |         gctx->tls_aad_len = -1;  | 
2662  | 0  |         return 1;  | 
2663  |  |  | 
2664  | 0  |     case EVP_CTRL_GET_IVLEN:  | 
2665  | 0  |         *(int *)ptr = gctx->ivlen;  | 
2666  | 0  |         return 1;  | 
2667  |  |  | 
2668  | 0  |     case EVP_CTRL_AEAD_SET_IVLEN:  | 
2669  | 0  |         if (arg <= 0)  | 
2670  | 0  |             return 0;  | 
2671  |  |         /* Allocate memory for IV if needed */  | 
2672  | 0  |         if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { | 
2673  | 0  |             if (gctx->iv != c->iv)  | 
2674  | 0  |                 OPENSSL_free(gctx->iv);  | 
2675  | 0  |             if ((gctx->iv = OPENSSL_malloc(arg)) == NULL)  | 
2676  | 0  |                 return 0;  | 
2677  | 0  |         }  | 
2678  | 0  |         gctx->ivlen = arg;  | 
2679  | 0  |         return 1;  | 
2680  |  |  | 
2681  | 0  |     case EVP_CTRL_AEAD_SET_TAG:  | 
2682  | 0  |         if (arg <= 0 || arg > 16 || c->encrypt)  | 
2683  | 0  |             return 0;  | 
2684  | 0  |         memcpy(c->buf, ptr, arg);  | 
2685  | 0  |         gctx->taglen = arg;  | 
2686  | 0  |         return 1;  | 
2687  |  |  | 
2688  | 0  |     case EVP_CTRL_AEAD_GET_TAG:  | 
2689  | 0  |         if (arg <= 0 || arg > 16 || !c->encrypt  | 
2690  | 0  |             || gctx->taglen < 0)  | 
2691  | 0  |             return 0;  | 
2692  | 0  |         memcpy(ptr, c->buf, arg);  | 
2693  | 0  |         return 1;  | 
2694  |  |  | 
2695  | 0  |     case EVP_CTRL_GCM_SET_IV_FIXED:  | 
2696  |  |         /* Special case: -1 length restores whole IV */  | 
2697  | 0  |         if (arg == -1) { | 
2698  | 0  |             memcpy(gctx->iv, ptr, gctx->ivlen);  | 
2699  | 0  |             gctx->iv_gen = 1;  | 
2700  | 0  |             return 1;  | 
2701  | 0  |         }  | 
2702  |  |         /*  | 
2703  |  |          * Fixed field must be at least 4 bytes and invocation field at least  | 
2704  |  |          * 8.  | 
2705  |  |          */  | 
2706  | 0  |         if ((arg < 4) || (gctx->ivlen - arg) < 8)  | 
2707  | 0  |             return 0;  | 
2708  | 0  |         if (arg)  | 
2709  | 0  |             memcpy(gctx->iv, ptr, arg);  | 
2710  | 0  |         if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)  | 
2711  | 0  |             return 0;  | 
2712  | 0  |         gctx->iv_gen = 1;  | 
2713  | 0  |         return 1;  | 
2714  |  |  | 
2715  | 0  |     case EVP_CTRL_GCM_IV_GEN:  | 
2716  | 0  |         if (gctx->iv_gen == 0 || gctx->key_set == 0)  | 
2717  | 0  |             return 0;  | 
2718  | 0  |         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);  | 
2719  | 0  |         if (arg <= 0 || arg > gctx->ivlen)  | 
2720  | 0  |             arg = gctx->ivlen;  | 
2721  | 0  |         memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);  | 
2722  |  |         /*  | 
2723  |  |          * Invocation field will be at least 8 bytes in size and so no need  | 
2724  |  |          * to check wrap around or increment more than last 8 bytes.  | 
2725  |  |          */  | 
2726  | 0  |         ctr64_inc(gctx->iv + gctx->ivlen - 8);  | 
2727  | 0  |         gctx->iv_set = 1;  | 
2728  | 0  |         return 1;  | 
2729  |  |  | 
2730  | 0  |     case EVP_CTRL_GCM_SET_IV_INV:  | 
2731  | 0  |         if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)  | 
2732  | 0  |             return 0;  | 
2733  | 0  |         memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);  | 
2734  | 0  |         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);  | 
2735  | 0  |         gctx->iv_set = 1;  | 
2736  | 0  |         return 1;  | 
2737  |  |  | 
2738  | 0  |     case EVP_CTRL_AEAD_TLS1_AAD:  | 
2739  |  |         /* Save the AAD for later use */  | 
2740  | 0  |         if (arg != EVP_AEAD_TLS1_AAD_LEN)  | 
2741  | 0  |             return 0;  | 
2742  | 0  |         memcpy(c->buf, ptr, arg);  | 
2743  | 0  |         gctx->tls_aad_len = arg;  | 
2744  | 0  |         gctx->tls_enc_records = 0;  | 
2745  | 0  |         { | 
2746  | 0  |             unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];  | 
2747  |  |             /* Correct length for explicit IV */  | 
2748  | 0  |             if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)  | 
2749  | 0  |                 return 0;  | 
2750  | 0  |             len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;  | 
2751  |  |             /* If decrypting correct for tag too */  | 
2752  | 0  |             if (!c->encrypt) { | 
2753  | 0  |                 if (len < EVP_GCM_TLS_TAG_LEN)  | 
2754  | 0  |                     return 0;  | 
2755  | 0  |                 len -= EVP_GCM_TLS_TAG_LEN;  | 
2756  | 0  |             }  | 
2757  | 0  |             c->buf[arg - 2] = len >> 8;  | 
2758  | 0  |             c->buf[arg - 1] = len & 0xff;  | 
2759  | 0  |         }  | 
2760  |  |         /* Extra padding: tag appended to record */  | 
2761  | 0  |         return EVP_GCM_TLS_TAG_LEN;  | 
2762  |  |  | 
2763  | 0  |     case EVP_CTRL_COPY:  | 
2764  | 0  |         { | 
2765  | 0  |             EVP_CIPHER_CTX *out = ptr;  | 
2766  | 0  |             EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);  | 
2767  | 0  |             if (gctx->gcm.key) { | 
2768  | 0  |                 if (gctx->gcm.key != &gctx->ks)  | 
2769  | 0  |                     return 0;  | 
2770  | 0  |                 gctx_out->gcm.key = &gctx_out->ks;  | 
2771  | 0  |             }  | 
2772  | 0  |             if (gctx->iv == c->iv)  | 
2773  | 0  |                 gctx_out->iv = out->iv;  | 
2774  | 0  |             else { | 
2775  | 0  |                 if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL)  | 
2776  | 0  |                     return 0;  | 
2777  | 0  |                 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);  | 
2778  | 0  |             }  | 
2779  | 0  |             return 1;  | 
2780  | 0  |         }  | 
2781  |  |  | 
2782  | 0  |     default:  | 
2783  | 0  |         return -1;  | 
2784  |  | 
  | 
2785  | 0  |     }  | 
2786  | 0  | }  | 
2787  |  |  | 
2788  |  | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
2789  |  |                             const unsigned char *iv, int enc)  | 
2790  | 0  | { | 
2791  | 0  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);  | 
2792  |  | 
  | 
2793  | 0  |     if (iv == NULL && key == NULL)  | 
2794  | 0  |         return 1;  | 
2795  |  |  | 
2796  | 0  |     if (key != NULL) { | 
2797  | 0  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
2798  |  | 
  | 
2799  | 0  |         if (keylen <= 0) { | 
2800  | 0  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
2801  | 0  |             return 0;  | 
2802  | 0  |         }  | 
2803  | 0  |         do { | 
2804  |  | #ifdef HWAES_CAPABLE  | 
2805  |  |             if (HWAES_CAPABLE) { | 
2806  |  |                 HWAES_set_encrypt_key(key, keylen, &gctx->ks.ks);  | 
2807  |  |                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,  | 
2808  |  |                                    (block128_f) HWAES_encrypt);  | 
2809  |  | # ifdef HWAES_ctr32_encrypt_blocks  | 
2810  |  |                 gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;  | 
2811  |  | # else  | 
2812  |  |                 gctx->ctr = NULL;  | 
2813  |  | # endif  | 
2814  |  |                 break;  | 
2815  |  |             } else  | 
2816  |  | #endif  | 
2817  |  | #ifdef BSAES_CAPABLE  | 
2818  |  |             if (BSAES_CAPABLE) { | 
2819  |  |                 AES_set_encrypt_key(key, keylen, &gctx->ks.ks);  | 
2820  |  |                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,  | 
2821  |  |                                    (block128_f) AES_encrypt);  | 
2822  |  |                 gctx->ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;  | 
2823  |  |                 break;  | 
2824  |  |             } else  | 
2825  |  | #endif  | 
2826  |  | #ifdef VPAES_CAPABLE  | 
2827  |  |             if (VPAES_CAPABLE) { | 
2828  |  |                 vpaes_set_encrypt_key(key, keylen, &gctx->ks.ks);  | 
2829  |  |                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,  | 
2830  |  |                                    (block128_f) vpaes_encrypt);  | 
2831  |  |                 gctx->ctr = NULL;  | 
2832  |  |                 break;  | 
2833  |  |             } else  | 
2834  |  | #endif  | 
2835  | 0  |                 (void)0;        /* terminate potentially open 'else' */  | 
2836  |  | 
  | 
2837  | 0  |             AES_set_encrypt_key(key, keylen, &gctx->ks.ks);  | 
2838  | 0  |             CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,  | 
2839  | 0  |                                (block128_f) AES_encrypt);  | 
2840  |  | #ifdef AES_CTR_ASM  | 
2841  |  |             gctx->ctr = (ctr128_f) AES_ctr32_encrypt;  | 
2842  |  | #else  | 
2843  | 0  |             gctx->ctr = NULL;  | 
2844  | 0  | #endif  | 
2845  | 0  |         } while (0);  | 
2846  |  |  | 
2847  |  |         /*  | 
2848  |  |          * If we have an iv can set it directly, otherwise use saved IV.  | 
2849  |  |          */  | 
2850  | 0  |         if (iv == NULL && gctx->iv_set)  | 
2851  | 0  |             iv = gctx->iv;  | 
2852  | 0  |         if (iv) { | 
2853  | 0  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);  | 
2854  | 0  |             gctx->iv_set = 1;  | 
2855  | 0  |         }  | 
2856  | 0  |         gctx->key_set = 1;  | 
2857  | 0  |     } else { | 
2858  |  |         /* If key set use IV, otherwise copy */  | 
2859  | 0  |         if (gctx->key_set)  | 
2860  | 0  |             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);  | 
2861  | 0  |         else  | 
2862  | 0  |             memcpy(gctx->iv, iv, gctx->ivlen);  | 
2863  | 0  |         gctx->iv_set = 1;  | 
2864  | 0  |         gctx->iv_gen = 0;  | 
2865  | 0  |     }  | 
2866  | 0  |     return 1;  | 
2867  | 0  | }  | 
2868  |  |  | 
2869  |  | /*  | 
2870  |  |  * Handle TLS GCM packet format. This consists of the last portion of the IV  | 
2871  |  |  * followed by the payload and finally the tag. On encrypt generate IV,  | 
2872  |  |  * encrypt payload and write the tag. On verify retrieve IV, decrypt payload  | 
2873  |  |  * and verify tag.  | 
2874  |  |  */  | 
2875  |  |  | 
2876  |  | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
2877  |  |                               const unsigned char *in, size_t len)  | 
2878  | 0  | { | 
2879  | 0  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);  | 
2880  | 0  |     int rv = -1;  | 
2881  |  |     /* Encrypt/decrypt must be performed in place */  | 
2882  | 0  |     if (out != in  | 
2883  | 0  |         || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))  | 
2884  | 0  |         return -1;  | 
2885  |  |  | 
2886  |  |     /*  | 
2887  |  |      * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness  | 
2888  |  |      * Requirements from SP 800-38D".  The requirements is for one party to the  | 
2889  |  |      * communication to fail after 2^64 - 1 keys.  We do this on the encrypting  | 
2890  |  |      * side only.  | 
2891  |  |      */  | 
2892  | 0  |     if (EVP_CIPHER_CTX_is_encrypting(ctx) && ++gctx->tls_enc_records == 0) { | 
2893  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS);  | 
2894  | 0  |         goto err;  | 
2895  | 0  |     }  | 
2896  |  |  | 
2897  |  |     /*  | 
2898  |  |      * Set IV from start of buffer or generate IV and write to start of  | 
2899  |  |      * buffer.  | 
2900  |  |      */  | 
2901  | 0  |     if (EVP_CIPHER_CTX_ctrl(ctx,  | 
2902  | 0  |                             EVP_CIPHER_CTX_is_encrypting(ctx) ?  | 
2903  | 0  |                                 EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,  | 
2904  | 0  |                             EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)  | 
2905  | 0  |         goto err;  | 
2906  |  |     /* Use saved AAD */  | 
2907  | 0  |     if (CRYPTO_gcm128_aad(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx),  | 
2908  | 0  |                           gctx->tls_aad_len))  | 
2909  | 0  |         goto err;  | 
2910  |  |     /* Fix buffer and length to point to payload */  | 
2911  | 0  |     in += EVP_GCM_TLS_EXPLICIT_IV_LEN;  | 
2912  | 0  |     out += EVP_GCM_TLS_EXPLICIT_IV_LEN;  | 
2913  | 0  |     len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;  | 
2914  | 0  |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
2915  |  |         /* Encrypt payload */  | 
2916  | 0  |         if (gctx->ctr) { | 
2917  | 0  |             size_t bulk = 0;  | 
2918  |  | #if defined(AES_GCM_ASM)  | 
2919  |  |             if (len >= 32 && AES_GCM_ASM(gctx)) { | 
2920  |  |                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))  | 
2921  |  |                     return -1;  | 
2922  |  |  | 
2923  |  |                 bulk = AES_gcm_encrypt(in, out, len,  | 
2924  |  |                                        gctx->gcm.key,  | 
2925  |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);  | 
2926  |  |                 gctx->gcm.len.u[1] += bulk;  | 
2927  |  |             }  | 
2928  |  | #endif  | 
2929  | 0  |             if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,  | 
2930  | 0  |                                             in + bulk,  | 
2931  | 0  |                                             out + bulk,  | 
2932  | 0  |                                             len - bulk, gctx->ctr))  | 
2933  | 0  |                 goto err;  | 
2934  | 0  |         } else { | 
2935  | 0  |             size_t bulk = 0;  | 
2936  |  | #if defined(AES_GCM_ASM2)  | 
2937  |  |             if (len >= 32 && AES_GCM_ASM2(gctx)) { | 
2938  |  |                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))  | 
2939  |  |                     return -1;  | 
2940  |  |  | 
2941  |  |                 bulk = AES_gcm_encrypt(in, out, len,  | 
2942  |  |                                        gctx->gcm.key,  | 
2943  |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);  | 
2944  |  |                 gctx->gcm.len.u[1] += bulk;  | 
2945  |  |             }  | 
2946  |  | #endif  | 
2947  | 0  |             if (CRYPTO_gcm128_encrypt(&gctx->gcm,  | 
2948  | 0  |                                       in + bulk, out + bulk, len - bulk))  | 
2949  | 0  |                 goto err;  | 
2950  | 0  |         }  | 
2951  | 0  |         out += len;  | 
2952  |  |         /* Finally write tag */  | 
2953  | 0  |         CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);  | 
2954  | 0  |         rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;  | 
2955  | 0  |     } else { | 
2956  |  |         /* Decrypt */  | 
2957  | 0  |         if (gctx->ctr) { | 
2958  | 0  |             size_t bulk = 0;  | 
2959  |  | #if defined(AES_GCM_ASM)  | 
2960  |  |             if (len >= 16 && AES_GCM_ASM(gctx)) { | 
2961  |  |                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))  | 
2962  |  |                     return -1;  | 
2963  |  |  | 
2964  |  |                 bulk = AES_gcm_decrypt(in, out, len,  | 
2965  |  |                                        gctx->gcm.key,  | 
2966  |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);  | 
2967  |  |                 gctx->gcm.len.u[1] += bulk;  | 
2968  |  |             }  | 
2969  |  | #endif  | 
2970  | 0  |             if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,  | 
2971  | 0  |                                             in + bulk,  | 
2972  | 0  |                                             out + bulk,  | 
2973  | 0  |                                             len - bulk, gctx->ctr))  | 
2974  | 0  |                 goto err;  | 
2975  | 0  |         } else { | 
2976  | 0  |             size_t bulk = 0;  | 
2977  |  | #if defined(AES_GCM_ASM2)  | 
2978  |  |             if (len >= 16 && AES_GCM_ASM2(gctx)) { | 
2979  |  |                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))  | 
2980  |  |                     return -1;  | 
2981  |  |  | 
2982  |  |                 bulk = AES_gcm_decrypt(in, out, len,  | 
2983  |  |                                        gctx->gcm.key,  | 
2984  |  |                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);  | 
2985  |  |                 gctx->gcm.len.u[1] += bulk;  | 
2986  |  |             }  | 
2987  |  | #endif  | 
2988  | 0  |             if (CRYPTO_gcm128_decrypt(&gctx->gcm,  | 
2989  | 0  |                                       in + bulk, out + bulk, len - bulk))  | 
2990  | 0  |                 goto err;  | 
2991  | 0  |         }  | 
2992  |  |         /* Retrieve tag */  | 
2993  | 0  |         CRYPTO_gcm128_tag(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx),  | 
2994  | 0  |                           EVP_GCM_TLS_TAG_LEN);  | 
2995  |  |         /* If tag mismatch wipe buffer */  | 
2996  | 0  |         if (CRYPTO_memcmp(EVP_CIPHER_CTX_buf_noconst(ctx), in + len,  | 
2997  | 0  |                           EVP_GCM_TLS_TAG_LEN)) { | 
2998  | 0  |             OPENSSL_cleanse(out, len);  | 
2999  | 0  |             goto err;  | 
3000  | 0  |         }  | 
3001  | 0  |         rv = len;  | 
3002  | 0  |     }  | 
3003  |  |  | 
3004  | 0  |  err:  | 
3005  | 0  |     gctx->iv_set = 0;  | 
3006  | 0  |     gctx->tls_aad_len = -1;  | 
3007  | 0  |     return rv;  | 
3008  | 0  | }  | 
3009  |  |  | 
3010  |  | #ifdef FIPS_MODULE  | 
3011  |  | /*  | 
3012  |  |  * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys"  | 
3013  |  |  *  | 
3014  |  |  * See also 8.2.2 RBG-based construction.  | 
3015  |  |  * Random construction consists of a free field (which can be NULL) and a  | 
3016  |  |  * random field which will use a DRBG that can return at least 96 bits of  | 
3017  |  |  * entropy strength. (The DRBG must be seeded by the FIPS module).  | 
3018  |  |  */  | 
3019  |  | static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset)  | 
3020  |  | { | 
3021  |  |     int sz = gctx->ivlen - offset;  | 
3022  |  |  | 
3023  |  |     /* Must be at least 96 bits */  | 
3024  |  |     if (sz <= 0 || gctx->ivlen < 12)  | 
3025  |  |         return 0;  | 
3026  |  |  | 
3027  |  |     /* Use DRBG to generate random iv */  | 
3028  |  |     if (RAND_bytes(gctx->iv + offset, sz) <= 0)  | 
3029  |  |         return 0;  | 
3030  |  |     return 1;  | 
3031  |  | }  | 
3032  |  | #endif /* FIPS_MODULE */  | 
3033  |  |  | 
3034  |  | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
3035  |  |                           const unsigned char *in, size_t len)  | 
3036  | 0  | { | 
3037  | 0  |     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);  | 
3038  |  |  | 
3039  |  |     /* If not set up, return error */  | 
3040  | 0  |     if (!gctx->key_set)  | 
3041  | 0  |         return -1;  | 
3042  |  |  | 
3043  | 0  |     if (gctx->tls_aad_len >= 0)  | 
3044  | 0  |         return aes_gcm_tls_cipher(ctx, out, in, len);  | 
3045  |  |  | 
3046  |  | #ifdef FIPS_MODULE  | 
3047  |  |     /*  | 
3048  |  |      * FIPS requires generation of AES-GCM IV's inside the FIPS module.  | 
3049  |  |      * The IV can still be set externally (the security policy will state that  | 
3050  |  |      * this is not FIPS compliant). There are some applications  | 
3051  |  |      * where setting the IV externally is the only option available.  | 
3052  |  |      */  | 
3053  |  |     if (!gctx->iv_set) { | 
3054  |  |         if (!EVP_CIPHER_CTX_is_encrypting(ctx) || !aes_gcm_iv_generate(gctx, 0))  | 
3055  |  |             return -1;  | 
3056  |  |         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);  | 
3057  |  |         gctx->iv_set = 1;  | 
3058  |  |         gctx->iv_gen_rand = 1;  | 
3059  |  |     }  | 
3060  |  | #else  | 
3061  | 0  |     if (!gctx->iv_set)  | 
3062  | 0  |         return -1;  | 
3063  | 0  | #endif /* FIPS_MODULE */  | 
3064  |  |  | 
3065  | 0  |     if (in) { | 
3066  | 0  |         if (out == NULL) { | 
3067  | 0  |             if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))  | 
3068  | 0  |                 return -1;  | 
3069  | 0  |         } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
3070  | 0  |             if (gctx->ctr) { | 
3071  | 0  |                 size_t bulk = 0;  | 
3072  |  | #if defined(AES_GCM_ASM)  | 
3073  |  |                 if (len >= 32 && AES_GCM_ASM(gctx)) { | 
3074  |  |                     size_t res = (16 - gctx->gcm.mres) % 16;  | 
3075  |  |  | 
3076  |  |                     if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))  | 
3077  |  |                         return -1;  | 
3078  |  |  | 
3079  |  |                     bulk = AES_gcm_encrypt(in + res,  | 
3080  |  |                                            out + res, len - res,  | 
3081  |  |                                            gctx->gcm.key, gctx->gcm.Yi.c,  | 
3082  |  |                                            gctx->gcm.Xi.u);  | 
3083  |  |                     gctx->gcm.len.u[1] += bulk;  | 
3084  |  |                     bulk += res;  | 
3085  |  |                 }  | 
3086  |  | #endif  | 
3087  | 0  |                 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,  | 
3088  | 0  |                                                 in + bulk,  | 
3089  | 0  |                                                 out + bulk,  | 
3090  | 0  |                                                 len - bulk, gctx->ctr))  | 
3091  | 0  |                     return -1;  | 
3092  | 0  |             } else { | 
3093  | 0  |                 size_t bulk = 0;  | 
3094  |  | #if defined(AES_GCM_ASM2)  | 
3095  |  |                 if (len >= 32 && AES_GCM_ASM2(gctx)) { | 
3096  |  |                     size_t res = (16 - gctx->gcm.mres) % 16;  | 
3097  |  |  | 
3098  |  |                     if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))  | 
3099  |  |                         return -1;  | 
3100  |  |  | 
3101  |  |                     bulk = AES_gcm_encrypt(in + res,  | 
3102  |  |                                            out + res, len - res,  | 
3103  |  |                                            gctx->gcm.key, gctx->gcm.Yi.c,  | 
3104  |  |                                            gctx->gcm.Xi.u);  | 
3105  |  |                     gctx->gcm.len.u[1] += bulk;  | 
3106  |  |                     bulk += res;  | 
3107  |  |                 }  | 
3108  |  | #endif  | 
3109  | 0  |                 if (CRYPTO_gcm128_encrypt(&gctx->gcm,  | 
3110  | 0  |                                           in + bulk, out + bulk, len - bulk))  | 
3111  | 0  |                     return -1;  | 
3112  | 0  |             }  | 
3113  | 0  |         } else { | 
3114  | 0  |             if (gctx->ctr) { | 
3115  | 0  |                 size_t bulk = 0;  | 
3116  |  | #if defined(AES_GCM_ASM)  | 
3117  |  |                 if (len >= 16 && AES_GCM_ASM(gctx)) { | 
3118  |  |                     size_t res = (16 - gctx->gcm.mres) % 16;  | 
3119  |  |  | 
3120  |  |                     if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))  | 
3121  |  |                         return -1;  | 
3122  |  |  | 
3123  |  |                     bulk = AES_gcm_decrypt(in + res,  | 
3124  |  |                                            out + res, len - res,  | 
3125  |  |                                            gctx->gcm.key,  | 
3126  |  |                                            gctx->gcm.Yi.c, gctx->gcm.Xi.u);  | 
3127  |  |                     gctx->gcm.len.u[1] += bulk;  | 
3128  |  |                     bulk += res;  | 
3129  |  |                 }  | 
3130  |  | #endif  | 
3131  | 0  |                 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,  | 
3132  | 0  |                                                 in + bulk,  | 
3133  | 0  |                                                 out + bulk,  | 
3134  | 0  |                                                 len - bulk, gctx->ctr))  | 
3135  | 0  |                     return -1;  | 
3136  | 0  |             } else { | 
3137  | 0  |                 size_t bulk = 0;  | 
3138  |  | #if defined(AES_GCM_ASM2)  | 
3139  |  |                 if (len >= 16 && AES_GCM_ASM2(gctx)) { | 
3140  |  |                     size_t res = (16 - gctx->gcm.mres) % 16;  | 
3141  |  |  | 
3142  |  |                     if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))  | 
3143  |  |                         return -1;  | 
3144  |  |  | 
3145  |  |                     bulk = AES_gcm_decrypt(in + res,  | 
3146  |  |                                            out + res, len - res,  | 
3147  |  |                                            gctx->gcm.key,  | 
3148  |  |                                            gctx->gcm.Yi.c, gctx->gcm.Xi.u);  | 
3149  |  |                     gctx->gcm.len.u[1] += bulk;  | 
3150  |  |                     bulk += res;  | 
3151  |  |                 }  | 
3152  |  | #endif  | 
3153  | 0  |                 if (CRYPTO_gcm128_decrypt(&gctx->gcm,  | 
3154  | 0  |                                           in + bulk, out + bulk, len - bulk))  | 
3155  | 0  |                     return -1;  | 
3156  | 0  |             }  | 
3157  | 0  |         }  | 
3158  | 0  |         return len;  | 
3159  | 0  |     } else { | 
3160  | 0  |         if (!EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
3161  | 0  |             if (gctx->taglen < 0)  | 
3162  | 0  |                 return -1;  | 
3163  | 0  |             if (CRYPTO_gcm128_finish(&gctx->gcm,  | 
3164  | 0  |                                      EVP_CIPHER_CTX_buf_noconst(ctx),  | 
3165  | 0  |                                      gctx->taglen) != 0)  | 
3166  | 0  |                 return -1;  | 
3167  | 0  |             gctx->iv_set = 0;  | 
3168  | 0  |             return 0;  | 
3169  | 0  |         }  | 
3170  | 0  |         CRYPTO_gcm128_tag(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), 16);  | 
3171  | 0  |         gctx->taglen = 16;  | 
3172  |  |         /* Don't reuse the IV */  | 
3173  | 0  |         gctx->iv_set = 0;  | 
3174  | 0  |         return 0;  | 
3175  | 0  |     }  | 
3176  |  | 
  | 
3177  | 0  | }  | 
3178  |  |  | 
3179  |  | #define CUSTOM_FLAGS    (EVP_CIPH_FLAG_DEFAULT_ASN1 \  | 
3180  |  |                 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \  | 
3181  |  |                 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \  | 
3182  |  |                 | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)  | 
3183  |  |  | 
3184  |  | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,  | 
3185  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
3186  |  | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,  | 
3187  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
3188  |  | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,  | 
3189  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
3190  |  |  | 
3191  |  | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)  | 
3192  | 0  | { | 
3193  | 0  |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);  | 
3194  |  | 
  | 
3195  | 0  |     if (type == EVP_CTRL_COPY) { | 
3196  | 0  |         EVP_CIPHER_CTX *out = ptr;  | 
3197  | 0  |         EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);  | 
3198  |  | 
  | 
3199  | 0  |         if (xctx->xts.key1) { | 
3200  | 0  |             if (xctx->xts.key1 != &xctx->ks1)  | 
3201  | 0  |                 return 0;  | 
3202  | 0  |             xctx_out->xts.key1 = &xctx_out->ks1;  | 
3203  | 0  |         }  | 
3204  | 0  |         if (xctx->xts.key2) { | 
3205  | 0  |             if (xctx->xts.key2 != &xctx->ks2)  | 
3206  | 0  |                 return 0;  | 
3207  | 0  |             xctx_out->xts.key2 = &xctx_out->ks2;  | 
3208  | 0  |         }  | 
3209  | 0  |         return 1;  | 
3210  | 0  |     } else if (type != EVP_CTRL_INIT)  | 
3211  | 0  |         return -1;  | 
3212  |  |     /* key1 and key2 are used as an indicator both key and IV are set */  | 
3213  | 0  |     xctx->xts.key1 = NULL;  | 
3214  | 0  |     xctx->xts.key2 = NULL;  | 
3215  | 0  |     return 1;  | 
3216  | 0  | }  | 
3217  |  |  | 
3218  |  | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
3219  |  |                             const unsigned char *iv, int enc)  | 
3220  | 0  | { | 
3221  | 0  |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);  | 
3222  |  | 
  | 
3223  | 0  |     if (iv == NULL && key == NULL)  | 
3224  | 0  |         return 1;  | 
3225  |  |  | 
3226  | 0  |     if (key != NULL) { | 
3227  | 0  |         do { | 
3228  |  |             /* The key is two half length keys in reality */  | 
3229  | 0  |             const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);  | 
3230  | 0  |             const int bytes = keylen / 2;  | 
3231  | 0  |             const int bits = bytes * 8;  | 
3232  |  | 
  | 
3233  | 0  |             if (keylen <= 0) { | 
3234  | 0  |                 ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
3235  | 0  |                 return 0;  | 
3236  | 0  |             }  | 
3237  |  |             /*  | 
3238  |  |              * Verify that the two keys are different.  | 
3239  |  |              *  | 
3240  |  |              * This addresses the vulnerability described in Rogaway's  | 
3241  |  |              * September 2004 paper:  | 
3242  |  |              *  | 
3243  |  |              *      "Efficient Instantiations of Tweakable Blockciphers and  | 
3244  |  |              *       Refinements to Modes OCB and PMAC".  | 
3245  |  |              *      (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)  | 
3246  |  |              *  | 
3247  |  |              * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states  | 
3248  |  |              * that:  | 
3249  |  |              *      "The check for Key_1 != Key_2 shall be done at any place  | 
3250  |  |              *       BEFORE using the keys in the XTS-AES algorithm to process  | 
3251  |  |              *       data with them."  | 
3252  |  |              */  | 
3253  | 0  |             if ((!allow_insecure_decrypt || enc)  | 
3254  | 0  |                     && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { | 
3255  | 0  |                 ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);  | 
3256  | 0  |                 return 0;  | 
3257  | 0  |             }  | 
3258  |  |  | 
3259  |  | #ifdef AES_XTS_ASM  | 
3260  |  |             xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;  | 
3261  |  | #else  | 
3262  | 0  |             xctx->stream = NULL;  | 
3263  | 0  | #endif  | 
3264  |  |             /* key_len is two AES keys */  | 
3265  |  | #ifdef HWAES_CAPABLE  | 
3266  |  |             if (HWAES_CAPABLE) { | 
3267  |  |                 if (enc) { | 
3268  |  |                     HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks);  | 
3269  |  |                     xctx->xts.block1 = (block128_f) HWAES_encrypt;  | 
3270  |  | # ifdef HWAES_xts_encrypt  | 
3271  |  |                     xctx->stream = HWAES_xts_encrypt;  | 
3272  |  | # endif  | 
3273  |  |                 } else { | 
3274  |  |                     HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks);  | 
3275  |  |                     xctx->xts.block1 = (block128_f) HWAES_decrypt;  | 
3276  |  | # ifdef HWAES_xts_decrypt  | 
3277  |  |                     xctx->stream = HWAES_xts_decrypt;  | 
3278  |  | #endif  | 
3279  |  |                 }  | 
3280  |  |  | 
3281  |  |                 HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);  | 
3282  |  |                 xctx->xts.block2 = (block128_f) HWAES_encrypt;  | 
3283  |  |  | 
3284  |  |                 xctx->xts.key1 = &xctx->ks1;  | 
3285  |  |                 break;  | 
3286  |  |             } else  | 
3287  |  | #endif  | 
3288  |  | #ifdef BSAES_CAPABLE  | 
3289  |  |             if (BSAES_CAPABLE)  | 
3290  |  |                 xctx->stream = enc ? ossl_bsaes_xts_encrypt : ossl_bsaes_xts_decrypt;  | 
3291  |  |             else  | 
3292  |  | #endif  | 
3293  |  | #ifdef VPAES_CAPABLE  | 
3294  |  |             if (VPAES_CAPABLE) { | 
3295  |  |                 if (enc) { | 
3296  |  |                     vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks);  | 
3297  |  |                     xctx->xts.block1 = (block128_f) vpaes_encrypt;  | 
3298  |  |                 } else { | 
3299  |  |                     vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks);  | 
3300  |  |                     xctx->xts.block1 = (block128_f) vpaes_decrypt;  | 
3301  |  |                 }  | 
3302  |  |  | 
3303  |  |                 vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);  | 
3304  |  |                 xctx->xts.block2 = (block128_f) vpaes_encrypt;  | 
3305  |  |  | 
3306  |  |                 xctx->xts.key1 = &xctx->ks1;  | 
3307  |  |                 break;  | 
3308  |  |             } else  | 
3309  |  | #endif  | 
3310  | 0  |                 (void)0;        /* terminate potentially open 'else' */  | 
3311  |  | 
  | 
3312  | 0  |             if (enc) { | 
3313  | 0  |                 AES_set_encrypt_key(key, bits, &xctx->ks1.ks);  | 
3314  | 0  |                 xctx->xts.block1 = (block128_f) AES_encrypt;  | 
3315  | 0  |             } else { | 
3316  | 0  |                 AES_set_decrypt_key(key, bits, &xctx->ks1.ks);  | 
3317  | 0  |                 xctx->xts.block1 = (block128_f) AES_decrypt;  | 
3318  | 0  |             }  | 
3319  |  | 
  | 
3320  | 0  |             AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);  | 
3321  | 0  |             xctx->xts.block2 = (block128_f) AES_encrypt;  | 
3322  |  | 
  | 
3323  | 0  |             xctx->xts.key1 = &xctx->ks1;  | 
3324  | 0  |         } while (0);  | 
3325  | 0  |     }  | 
3326  |  |  | 
3327  | 0  |     if (iv) { | 
3328  | 0  |         xctx->xts.key2 = &xctx->ks2;  | 
3329  | 0  |         memcpy(ctx->iv, iv, 16);  | 
3330  | 0  |     }  | 
3331  |  | 
  | 
3332  | 0  |     return 1;  | 
3333  | 0  | }  | 
3334  |  |  | 
3335  |  | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
3336  |  |                           const unsigned char *in, size_t len)  | 
3337  | 0  | { | 
3338  | 0  |     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);  | 
3339  |  | 
  | 
3340  | 0  |     if (xctx->xts.key1 == NULL  | 
3341  | 0  |             || xctx->xts.key2 == NULL  | 
3342  | 0  |             || out == NULL  | 
3343  | 0  |             || in == NULL  | 
3344  | 0  |             || len < AES_BLOCK_SIZE)  | 
3345  | 0  |         return 0;  | 
3346  |  |  | 
3347  |  |     /*  | 
3348  |  |      * Impose a limit of 2^20 blocks per data unit as specified by  | 
3349  |  |      * IEEE Std 1619-2018.  The earlier and obsolete IEEE Std 1619-2007  | 
3350  |  |      * indicated that this was a SHOULD NOT rather than a MUST NOT.  | 
3351  |  |      * NIST SP 800-38E mandates the same limit.  | 
3352  |  |      */  | 
3353  | 0  |     if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) { | 
3354  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE);  | 
3355  | 0  |         return 0;  | 
3356  | 0  |     }  | 
3357  |  |  | 
3358  | 0  |     if (xctx->stream)  | 
3359  | 0  |         (*xctx->stream) (in, out, len,  | 
3360  | 0  |                          xctx->xts.key1, xctx->xts.key2,  | 
3361  | 0  |                          ctx->iv);  | 
3362  | 0  |     else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,  | 
3363  | 0  |                                    EVP_CIPHER_CTX_is_encrypting(ctx)))  | 
3364  | 0  |         return 0;  | 
3365  | 0  |     return 1;  | 
3366  | 0  | }  | 
3367  |  |  | 
3368  |  | #define aes_xts_cleanup NULL  | 
3369  |  |  | 
3370  |  | #define XTS_FLAGS       (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \  | 
3371  |  |                          | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \  | 
3372  |  |                          | EVP_CIPH_CUSTOM_COPY)  | 
3373  |  |  | 
3374  |  | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)  | 
3375  |  | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)  | 
3376  |  |  | 
3377  |  | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)  | 
3378  | 0  | { | 
3379  | 0  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);  | 
3380  | 0  |     switch (type) { | 
3381  | 0  |     case EVP_CTRL_INIT:  | 
3382  | 0  |         cctx->key_set = 0;  | 
3383  | 0  |         cctx->iv_set = 0;  | 
3384  | 0  |         cctx->L = 8;  | 
3385  | 0  |         cctx->M = 12;  | 
3386  | 0  |         cctx->tag_set = 0;  | 
3387  | 0  |         cctx->len_set = 0;  | 
3388  | 0  |         cctx->tls_aad_len = -1;  | 
3389  | 0  |         return 1;  | 
3390  |  |  | 
3391  | 0  |     case EVP_CTRL_GET_IVLEN:  | 
3392  | 0  |         *(int *)ptr = 15 - cctx->L;  | 
3393  | 0  |         return 1;  | 
3394  |  |  | 
3395  | 0  |     case EVP_CTRL_AEAD_TLS1_AAD:  | 
3396  |  |         /* Save the AAD for later use */  | 
3397  | 0  |         if (arg != EVP_AEAD_TLS1_AAD_LEN)  | 
3398  | 0  |             return 0;  | 
3399  | 0  |         memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);  | 
3400  | 0  |         cctx->tls_aad_len = arg;  | 
3401  | 0  |         { | 
3402  | 0  |             uint16_t len =  | 
3403  | 0  |                 EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8  | 
3404  | 0  |                 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];  | 
3405  |  |             /* Correct length for explicit IV */  | 
3406  | 0  |             if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)  | 
3407  | 0  |                 return 0;  | 
3408  | 0  |             len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;  | 
3409  |  |             /* If decrypting correct for tag too */  | 
3410  | 0  |             if (!EVP_CIPHER_CTX_is_encrypting(c)) { | 
3411  | 0  |                 if (len < cctx->M)  | 
3412  | 0  |                     return 0;  | 
3413  | 0  |                 len -= cctx->M;  | 
3414  | 0  |             }  | 
3415  | 0  |             EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;  | 
3416  | 0  |             EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;  | 
3417  | 0  |         }  | 
3418  |  |         /* Extra padding: tag appended to record */  | 
3419  | 0  |         return cctx->M;  | 
3420  |  |  | 
3421  | 0  |     case EVP_CTRL_CCM_SET_IV_FIXED:  | 
3422  |  |         /* Sanity check length */  | 
3423  | 0  |         if (arg != EVP_CCM_TLS_FIXED_IV_LEN)  | 
3424  | 0  |             return 0;  | 
3425  |  |         /* Just copy to first part of IV */  | 
3426  | 0  |         memcpy(c->iv, ptr, arg);  | 
3427  | 0  |         return 1;  | 
3428  |  |  | 
3429  | 0  |     case EVP_CTRL_AEAD_SET_IVLEN:  | 
3430  | 0  |         arg = 15 - arg;  | 
3431  |  |         /* fall through */  | 
3432  | 0  |     case EVP_CTRL_CCM_SET_L:  | 
3433  | 0  |         if (arg < 2 || arg > 8)  | 
3434  | 0  |             return 0;  | 
3435  | 0  |         cctx->L = arg;  | 
3436  | 0  |         return 1;  | 
3437  |  |  | 
3438  | 0  |     case EVP_CTRL_AEAD_SET_TAG:  | 
3439  | 0  |         if ((arg & 1) || arg < 4 || arg > 16)  | 
3440  | 0  |             return 0;  | 
3441  | 0  |         if (EVP_CIPHER_CTX_is_encrypting(c) && ptr)  | 
3442  | 0  |             return 0;  | 
3443  | 0  |         if (ptr) { | 
3444  | 0  |             cctx->tag_set = 1;  | 
3445  | 0  |             memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);  | 
3446  | 0  |         }  | 
3447  | 0  |         cctx->M = arg;  | 
3448  | 0  |         return 1;  | 
3449  |  |  | 
3450  | 0  |     case EVP_CTRL_AEAD_GET_TAG:  | 
3451  | 0  |         if (!EVP_CIPHER_CTX_is_encrypting(c) || !cctx->tag_set)  | 
3452  | 0  |             return 0;  | 
3453  | 0  |         if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))  | 
3454  | 0  |             return 0;  | 
3455  | 0  |         cctx->tag_set = 0;  | 
3456  | 0  |         cctx->iv_set = 0;  | 
3457  | 0  |         cctx->len_set = 0;  | 
3458  | 0  |         return 1;  | 
3459  |  |  | 
3460  | 0  |     case EVP_CTRL_COPY:  | 
3461  | 0  |         { | 
3462  | 0  |             EVP_CIPHER_CTX *out = ptr;  | 
3463  | 0  |             EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);  | 
3464  | 0  |             if (cctx->ccm.key) { | 
3465  | 0  |                 if (cctx->ccm.key != &cctx->ks)  | 
3466  | 0  |                     return 0;  | 
3467  | 0  |                 cctx_out->ccm.key = &cctx_out->ks;  | 
3468  | 0  |             }  | 
3469  | 0  |             return 1;  | 
3470  | 0  |         }  | 
3471  |  |  | 
3472  | 0  |     default:  | 
3473  | 0  |         return -1;  | 
3474  |  | 
  | 
3475  | 0  |     }  | 
3476  | 0  | }  | 
3477  |  |  | 
3478  |  | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
3479  |  |                             const unsigned char *iv, int enc)  | 
3480  | 0  | { | 
3481  | 0  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);  | 
3482  |  | 
  | 
3483  | 0  |     if (iv == NULL && key == NULL)  | 
3484  | 0  |         return 1;  | 
3485  |  |  | 
3486  | 0  |     if (key != NULL) { | 
3487  | 0  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
3488  |  | 
  | 
3489  | 0  |         if (keylen <= 0) { | 
3490  | 0  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
3491  | 0  |             return 0;  | 
3492  | 0  |         }  | 
3493  | 0  |         do { | 
3494  |  | #ifdef HWAES_CAPABLE  | 
3495  |  |             if (HWAES_CAPABLE) { | 
3496  |  |                 HWAES_set_encrypt_key(key, keylen, &cctx->ks.ks);  | 
3497  |  |  | 
3498  |  |                 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,  | 
3499  |  |                                    &cctx->ks, (block128_f) HWAES_encrypt);  | 
3500  |  |                 cctx->str = NULL;  | 
3501  |  |                 cctx->key_set = 1;  | 
3502  |  |                 break;  | 
3503  |  |             } else  | 
3504  |  | #endif  | 
3505  |  | #ifdef VPAES_CAPABLE  | 
3506  |  |             if (VPAES_CAPABLE) { | 
3507  |  |                 vpaes_set_encrypt_key(key, keylen, &cctx->ks.ks);  | 
3508  |  |                 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,  | 
3509  |  |                                    &cctx->ks, (block128_f) vpaes_encrypt);  | 
3510  |  |                 cctx->str = NULL;  | 
3511  |  |                 cctx->key_set = 1;  | 
3512  |  |                 break;  | 
3513  |  |             }  | 
3514  |  | #endif  | 
3515  | 0  |             AES_set_encrypt_key(key, keylen, &cctx->ks.ks);  | 
3516  | 0  |             CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,  | 
3517  | 0  |                                &cctx->ks, (block128_f) AES_encrypt);  | 
3518  | 0  |             cctx->str = NULL;  | 
3519  | 0  |             cctx->key_set = 1;  | 
3520  | 0  |         } while (0);  | 
3521  | 0  |     }  | 
3522  | 0  |     if (iv != NULL) { | 
3523  | 0  |         memcpy(ctx->iv, iv, 15 - cctx->L);  | 
3524  | 0  |         cctx->iv_set = 1;  | 
3525  | 0  |     }  | 
3526  | 0  |     return 1;  | 
3527  | 0  | }  | 
3528  |  |  | 
3529  |  | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
3530  |  |                               const unsigned char *in, size_t len)  | 
3531  | 0  | { | 
3532  | 0  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);  | 
3533  | 0  |     CCM128_CONTEXT *ccm = &cctx->ccm;  | 
3534  |  |     /* Encrypt/decrypt must be performed in place */  | 
3535  | 0  |     if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))  | 
3536  | 0  |         return -1;  | 
3537  |  |     /* If encrypting set explicit IV from sequence number (start of AAD) */  | 
3538  | 0  |     if (EVP_CIPHER_CTX_is_encrypting(ctx))  | 
3539  | 0  |         memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),  | 
3540  | 0  |                EVP_CCM_TLS_EXPLICIT_IV_LEN);  | 
3541  |  |     /* Get rest of IV from explicit IV */  | 
3542  | 0  |     memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in,  | 
3543  | 0  |            EVP_CCM_TLS_EXPLICIT_IV_LEN);  | 
3544  |  |     /* Correct length value */  | 
3545  | 0  |     len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;  | 
3546  | 0  |     if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,  | 
3547  | 0  |                             len))  | 
3548  | 0  |             return -1;  | 
3549  |  |     /* Use saved AAD */  | 
3550  | 0  |     CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx),  | 
3551  | 0  |                       cctx->tls_aad_len);  | 
3552  |  |     /* Fix buffer to point to payload */  | 
3553  | 0  |     in += EVP_CCM_TLS_EXPLICIT_IV_LEN;  | 
3554  | 0  |     out += EVP_CCM_TLS_EXPLICIT_IV_LEN;  | 
3555  | 0  |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
3556  | 0  |         if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,  | 
3557  | 0  |                                                     cctx->str) :  | 
3558  | 0  |             CRYPTO_ccm128_encrypt(ccm, in, out, len))  | 
3559  | 0  |             return -1;  | 
3560  | 0  |         if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))  | 
3561  | 0  |             return -1;  | 
3562  | 0  |         return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;  | 
3563  | 0  |     } else { | 
3564  | 0  |         if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,  | 
3565  | 0  |                                                      cctx->str) :  | 
3566  | 0  |             !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { | 
3567  | 0  |             unsigned char tag[16];  | 
3568  | 0  |             if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { | 
3569  | 0  |                 if (!CRYPTO_memcmp(tag, in + len, cctx->M))  | 
3570  | 0  |                     return len;  | 
3571  | 0  |             }  | 
3572  | 0  |         }  | 
3573  | 0  |         OPENSSL_cleanse(out, len);  | 
3574  | 0  |         return -1;  | 
3575  | 0  |     }  | 
3576  | 0  | }  | 
3577  |  |  | 
3578  |  | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
3579  |  |                           const unsigned char *in, size_t len)  | 
3580  | 0  | { | 
3581  | 0  |     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);  | 
3582  | 0  |     CCM128_CONTEXT *ccm = &cctx->ccm;  | 
3583  |  |     /* If not set up, return error */  | 
3584  | 0  |     if (!cctx->key_set)  | 
3585  | 0  |         return -1;  | 
3586  |  |  | 
3587  | 0  |     if (cctx->tls_aad_len >= 0)  | 
3588  | 0  |         return aes_ccm_tls_cipher(ctx, out, in, len);  | 
3589  |  |  | 
3590  |  |     /* EVP_*Final() doesn't return any data */  | 
3591  | 0  |     if (in == NULL && out != NULL)  | 
3592  | 0  |         return 0;  | 
3593  |  |  | 
3594  | 0  |     if (!cctx->iv_set)  | 
3595  | 0  |         return -1;  | 
3596  |  |  | 
3597  | 0  |     if (!out) { | 
3598  | 0  |         if (!in) { | 
3599  | 0  |             if (CRYPTO_ccm128_setiv(ccm, ctx->iv,  | 
3600  | 0  |                                     15 - cctx->L, len))  | 
3601  | 0  |                 return -1;  | 
3602  | 0  |             cctx->len_set = 1;  | 
3603  | 0  |             return len;  | 
3604  | 0  |         }  | 
3605  |  |         /* If have AAD need message length */  | 
3606  | 0  |         if (!cctx->len_set && len)  | 
3607  | 0  |             return -1;  | 
3608  | 0  |         CRYPTO_ccm128_aad(ccm, in, len);  | 
3609  | 0  |         return len;  | 
3610  | 0  |     }  | 
3611  |  |  | 
3612  |  |     /* The tag must be set before actually decrypting data */  | 
3613  | 0  |     if (!EVP_CIPHER_CTX_is_encrypting(ctx) && !cctx->tag_set)  | 
3614  | 0  |         return -1;  | 
3615  |  |  | 
3616  |  |     /* If not set length yet do it */  | 
3617  | 0  |     if (!cctx->len_set) { | 
3618  | 0  |         if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))  | 
3619  | 0  |             return -1;  | 
3620  | 0  |         cctx->len_set = 1;  | 
3621  | 0  |     }  | 
3622  | 0  |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
3623  | 0  |         if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,  | 
3624  | 0  |                                                     cctx->str) :  | 
3625  | 0  |             CRYPTO_ccm128_encrypt(ccm, in, out, len))  | 
3626  | 0  |             return -1;  | 
3627  | 0  |         cctx->tag_set = 1;  | 
3628  | 0  |         return len;  | 
3629  | 0  |     } else { | 
3630  | 0  |         int rv = -1;  | 
3631  | 0  |         if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,  | 
3632  | 0  |                                                      cctx->str) :  | 
3633  | 0  |             !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { | 
3634  | 0  |             unsigned char tag[16];  | 
3635  | 0  |             if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { | 
3636  | 0  |                 if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),  | 
3637  | 0  |                                    cctx->M))  | 
3638  | 0  |                     rv = len;  | 
3639  | 0  |             }  | 
3640  | 0  |         }  | 
3641  | 0  |         if (rv == -1)  | 
3642  | 0  |             OPENSSL_cleanse(out, len);  | 
3643  | 0  |         cctx->iv_set = 0;  | 
3644  | 0  |         cctx->tag_set = 0;  | 
3645  | 0  |         cctx->len_set = 0;  | 
3646  | 0  |         return rv;  | 
3647  | 0  |     }  | 
3648  | 0  | }  | 
3649  |  |  | 
3650  |  | #define aes_ccm_cleanup NULL  | 
3651  |  |  | 
3652  |  | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,  | 
3653  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
3654  |  | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,  | 
3655  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
3656  |  | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,  | 
3657  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
3658  |  |  | 
3659  |  | typedef struct { | 
3660  |  |     union { | 
3661  |  |         OSSL_UNION_ALIGN;  | 
3662  |  |         AES_KEY ks;  | 
3663  |  |     } ks;  | 
3664  |  |     /* Indicates if IV has been set */  | 
3665  |  |     unsigned char *iv;  | 
3666  |  | } EVP_AES_WRAP_CTX;  | 
3667  |  |  | 
3668  |  | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
3669  |  |                              const unsigned char *iv, int enc)  | 
3670  | 0  | { | 
3671  | 0  |     int len;  | 
3672  | 0  |     EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);  | 
3673  |  | 
  | 
3674  | 0  |     if (iv == NULL && key == NULL)  | 
3675  | 0  |         return 1;  | 
3676  | 0  |     if (key != NULL) { | 
3677  | 0  |         const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
3678  |  | 
  | 
3679  | 0  |         if (keylen <= 0) { | 
3680  | 0  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
3681  | 0  |             return 0;  | 
3682  | 0  |         }  | 
3683  | 0  |         if (EVP_CIPHER_CTX_is_encrypting(ctx))  | 
3684  | 0  |             AES_set_encrypt_key(key, keylen, &wctx->ks.ks);  | 
3685  | 0  |         else  | 
3686  | 0  |             AES_set_decrypt_key(key, keylen, &wctx->ks.ks);  | 
3687  | 0  |         if (iv == NULL)  | 
3688  | 0  |             wctx->iv = NULL;  | 
3689  | 0  |     }  | 
3690  | 0  |     if (iv != NULL) { | 
3691  | 0  |         if ((len = EVP_CIPHER_CTX_get_iv_length(ctx)) < 0)  | 
3692  | 0  |             return 0;  | 
3693  | 0  |         memcpy(ctx->iv, iv, len);  | 
3694  | 0  |         wctx->iv = ctx->iv;  | 
3695  | 0  |     }  | 
3696  | 0  |     return 1;  | 
3697  | 0  | }  | 
3698  |  |  | 
3699  |  | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
3700  |  |                            const unsigned char *in, size_t inlen)  | 
3701  | 0  | { | 
3702  | 0  |     EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);  | 
3703  | 0  |     size_t rv;  | 
3704  |  |     /* AES wrap with padding has IV length of 4, without padding 8 */  | 
3705  | 0  |     int pad = EVP_CIPHER_CTX_get_iv_length(ctx) == 4;  | 
3706  |  |     /* No final operation so always return zero length */  | 
3707  | 0  |     if (!in)  | 
3708  | 0  |         return 0;  | 
3709  |  |     /* Input length must always be non-zero */  | 
3710  | 0  |     if (!inlen)  | 
3711  | 0  |         return -1;  | 
3712  |  |     /* If decrypting need at least 16 bytes and multiple of 8 */  | 
3713  | 0  |     if (!EVP_CIPHER_CTX_is_encrypting(ctx) && (inlen < 16 || inlen & 0x7))  | 
3714  | 0  |         return -1;  | 
3715  |  |     /* If not padding input must be multiple of 8 */  | 
3716  | 0  |     if (!pad && inlen & 0x7)  | 
3717  | 0  |         return -1;  | 
3718  | 0  |     if (ossl_is_partially_overlapping(out, in, inlen)) { | 
3719  | 0  |         ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);  | 
3720  | 0  |         return 0;  | 
3721  | 0  |     }  | 
3722  | 0  |     if (!out) { | 
3723  | 0  |         if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
3724  |  |             /* If padding round up to multiple of 8 */  | 
3725  | 0  |             if (pad)  | 
3726  | 0  |                 inlen = (inlen + 7) / 8 * 8;  | 
3727  |  |             /* 8 byte prefix */  | 
3728  | 0  |             return inlen + 8;  | 
3729  | 0  |         } else { | 
3730  |  |             /*  | 
3731  |  |              * If not padding output will be exactly 8 bytes smaller than  | 
3732  |  |              * input. If padding it will be at least 8 bytes smaller but we  | 
3733  |  |              * don't know how much.  | 
3734  |  |              */  | 
3735  | 0  |             return inlen - 8;  | 
3736  | 0  |         }  | 
3737  | 0  |     }  | 
3738  | 0  |     if (pad) { | 
3739  | 0  |         if (EVP_CIPHER_CTX_is_encrypting(ctx))  | 
3740  | 0  |             rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,  | 
3741  | 0  |                                      out, in, inlen,  | 
3742  | 0  |                                      (block128_f) AES_encrypt);  | 
3743  | 0  |         else  | 
3744  | 0  |             rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,  | 
3745  | 0  |                                        out, in, inlen,  | 
3746  | 0  |                                        (block128_f) AES_decrypt);  | 
3747  | 0  |     } else { | 
3748  | 0  |         if (EVP_CIPHER_CTX_is_encrypting(ctx))  | 
3749  | 0  |             rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,  | 
3750  | 0  |                                  out, in, inlen, (block128_f) AES_encrypt);  | 
3751  | 0  |         else  | 
3752  | 0  |             rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,  | 
3753  | 0  |                                    out, in, inlen, (block128_f) AES_decrypt);  | 
3754  | 0  |     }  | 
3755  | 0  |     return rv ? (int)rv : -1;  | 
3756  | 0  | }  | 
3757  |  |  | 
3758  |  | #define WRAP_FLAGS      (EVP_CIPH_WRAP_MODE \  | 
3759  |  |                 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \  | 
3760  |  |                 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)  | 
3761  |  |  | 
3762  |  | static const EVP_CIPHER aes_128_wrap = { | 
3763  |  |     NID_id_aes128_wrap,  | 
3764  |  |     8, 16, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,  | 
3765  |  |     aes_wrap_init_key, aes_wrap_cipher,  | 
3766  |  |     NULL,  | 
3767  |  |     sizeof(EVP_AES_WRAP_CTX),  | 
3768  |  |     NULL, NULL, NULL, NULL  | 
3769  |  | };  | 
3770  |  |  | 
3771  |  | const EVP_CIPHER *EVP_aes_128_wrap(void)  | 
3772  | 3  | { | 
3773  | 3  |     return &aes_128_wrap;  | 
3774  | 3  | }  | 
3775  |  |  | 
3776  |  | static const EVP_CIPHER aes_192_wrap = { | 
3777  |  |     NID_id_aes192_wrap,  | 
3778  |  |     8, 24, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,  | 
3779  |  |     aes_wrap_init_key, aes_wrap_cipher,  | 
3780  |  |     NULL,  | 
3781  |  |     sizeof(EVP_AES_WRAP_CTX),  | 
3782  |  |     NULL, NULL, NULL, NULL  | 
3783  |  | };  | 
3784  |  |  | 
3785  |  | const EVP_CIPHER *EVP_aes_192_wrap(void)  | 
3786  | 3  | { | 
3787  | 3  |     return &aes_192_wrap;  | 
3788  | 3  | }  | 
3789  |  |  | 
3790  |  | static const EVP_CIPHER aes_256_wrap = { | 
3791  |  |     NID_id_aes256_wrap,  | 
3792  |  |     8, 32, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,  | 
3793  |  |     aes_wrap_init_key, aes_wrap_cipher,  | 
3794  |  |     NULL,  | 
3795  |  |     sizeof(EVP_AES_WRAP_CTX),  | 
3796  |  |     NULL, NULL, NULL, NULL  | 
3797  |  | };  | 
3798  |  |  | 
3799  |  | const EVP_CIPHER *EVP_aes_256_wrap(void)  | 
3800  | 3  | { | 
3801  | 3  |     return &aes_256_wrap;  | 
3802  | 3  | }  | 
3803  |  |  | 
3804  |  | static const EVP_CIPHER aes_128_wrap_pad = { | 
3805  |  |     NID_id_aes128_wrap_pad,  | 
3806  |  |     8, 16, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,  | 
3807  |  |     aes_wrap_init_key, aes_wrap_cipher,  | 
3808  |  |     NULL,  | 
3809  |  |     sizeof(EVP_AES_WRAP_CTX),  | 
3810  |  |     NULL, NULL, NULL, NULL  | 
3811  |  | };  | 
3812  |  |  | 
3813  |  | const EVP_CIPHER *EVP_aes_128_wrap_pad(void)  | 
3814  | 3  | { | 
3815  | 3  |     return &aes_128_wrap_pad;  | 
3816  | 3  | }  | 
3817  |  |  | 
3818  |  | static const EVP_CIPHER aes_192_wrap_pad = { | 
3819  |  |     NID_id_aes192_wrap_pad,  | 
3820  |  |     8, 24, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,  | 
3821  |  |     aes_wrap_init_key, aes_wrap_cipher,  | 
3822  |  |     NULL,  | 
3823  |  |     sizeof(EVP_AES_WRAP_CTX),  | 
3824  |  |     NULL, NULL, NULL, NULL  | 
3825  |  | };  | 
3826  |  |  | 
3827  |  | const EVP_CIPHER *EVP_aes_192_wrap_pad(void)  | 
3828  | 3  | { | 
3829  | 3  |     return &aes_192_wrap_pad;  | 
3830  | 3  | }  | 
3831  |  |  | 
3832  |  | static const EVP_CIPHER aes_256_wrap_pad = { | 
3833  |  |     NID_id_aes256_wrap_pad,  | 
3834  |  |     8, 32, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,  | 
3835  |  |     aes_wrap_init_key, aes_wrap_cipher,  | 
3836  |  |     NULL,  | 
3837  |  |     sizeof(EVP_AES_WRAP_CTX),  | 
3838  |  |     NULL, NULL, NULL, NULL  | 
3839  |  | };  | 
3840  |  |  | 
3841  |  | const EVP_CIPHER *EVP_aes_256_wrap_pad(void)  | 
3842  | 3  | { | 
3843  | 3  |     return &aes_256_wrap_pad;  | 
3844  | 3  | }  | 
3845  |  |  | 
3846  |  | #ifndef OPENSSL_NO_OCB  | 
3847  |  | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)  | 
3848  | 0  | { | 
3849  | 0  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);  | 
3850  | 0  |     EVP_CIPHER_CTX *newc;  | 
3851  | 0  |     EVP_AES_OCB_CTX *new_octx;  | 
3852  |  | 
  | 
3853  | 0  |     switch (type) { | 
3854  | 0  |     case EVP_CTRL_INIT:  | 
3855  | 0  |         octx->key_set = 0;  | 
3856  | 0  |         octx->iv_set = 0;  | 
3857  | 0  |         octx->ivlen = EVP_CIPHER_get_iv_length(c->cipher);  | 
3858  | 0  |         octx->iv = c->iv;  | 
3859  | 0  |         octx->taglen = 16;  | 
3860  | 0  |         octx->data_buf_len = 0;  | 
3861  | 0  |         octx->aad_buf_len = 0;  | 
3862  | 0  |         return 1;  | 
3863  |  |  | 
3864  | 0  |     case EVP_CTRL_GET_IVLEN:  | 
3865  | 0  |         *(int *)ptr = octx->ivlen;  | 
3866  | 0  |         return 1;  | 
3867  |  |  | 
3868  | 0  |     case EVP_CTRL_AEAD_SET_IVLEN:  | 
3869  |  |         /* IV len must be 1 to 15 */  | 
3870  | 0  |         if (arg <= 0 || arg > 15)  | 
3871  | 0  |             return 0;  | 
3872  |  |  | 
3873  | 0  |         octx->ivlen = arg;  | 
3874  | 0  |         return 1;  | 
3875  |  |  | 
3876  | 0  |     case EVP_CTRL_AEAD_SET_TAG:  | 
3877  | 0  |         if (ptr == NULL) { | 
3878  |  |             /* Tag len must be 0 to 16 */  | 
3879  | 0  |             if (arg < 0 || arg > 16)  | 
3880  | 0  |                 return 0;  | 
3881  |  |  | 
3882  | 0  |             octx->taglen = arg;  | 
3883  | 0  |             return 1;  | 
3884  | 0  |         }  | 
3885  | 0  |         if (arg != octx->taglen || EVP_CIPHER_CTX_is_encrypting(c))  | 
3886  | 0  |             return 0;  | 
3887  | 0  |         memcpy(octx->tag, ptr, arg);  | 
3888  | 0  |         return 1;  | 
3889  |  |  | 
3890  | 0  |     case EVP_CTRL_AEAD_GET_TAG:  | 
3891  | 0  |         if (arg != octx->taglen || !EVP_CIPHER_CTX_is_encrypting(c))  | 
3892  | 0  |             return 0;  | 
3893  |  |  | 
3894  | 0  |         memcpy(ptr, octx->tag, arg);  | 
3895  | 0  |         return 1;  | 
3896  |  |  | 
3897  | 0  |     case EVP_CTRL_COPY:  | 
3898  | 0  |         newc = (EVP_CIPHER_CTX *)ptr;  | 
3899  | 0  |         new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);  | 
3900  | 0  |         return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,  | 
3901  | 0  |                                       &new_octx->ksenc.ks,  | 
3902  | 0  |                                       &new_octx->ksdec.ks);  | 
3903  |  |  | 
3904  | 0  |     default:  | 
3905  | 0  |         return -1;  | 
3906  |  | 
  | 
3907  | 0  |     }  | 
3908  | 0  | }  | 
3909  |  |  | 
3910  |  | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,  | 
3911  |  |                             const unsigned char *iv, int enc)  | 
3912  | 0  | { | 
3913  | 0  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);  | 
3914  |  | 
  | 
3915  | 0  |     if (iv == NULL && key == NULL)  | 
3916  | 0  |         return 1;  | 
3917  |  |  | 
3918  | 0  |     if (key != NULL) { | 
3919  | 0  |        const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;  | 
3920  |  | 
  | 
3921  | 0  |         if (keylen <= 0) { | 
3922  | 0  |             ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);  | 
3923  | 0  |             return 0;  | 
3924  | 0  |         }  | 
3925  | 0  |         do { | 
3926  |  |             /*  | 
3927  |  |              * We set both the encrypt and decrypt key here because decrypt  | 
3928  |  |              * needs both. We could possibly optimise to remove setting the  | 
3929  |  |              * decrypt for an encryption operation.  | 
3930  |  |              */  | 
3931  |  | # ifdef HWAES_CAPABLE  | 
3932  |  |             if (HWAES_CAPABLE) { | 
3933  |  |                 HWAES_set_encrypt_key(key, keylen, &octx->ksenc.ks);  | 
3934  |  |                 HWAES_set_decrypt_key(key, keylen, &octx->ksdec.ks);  | 
3935  |  |                 if (!CRYPTO_ocb128_init(&octx->ocb,  | 
3936  |  |                                         &octx->ksenc.ks, &octx->ksdec.ks,  | 
3937  |  |                                         (block128_f) HWAES_encrypt,  | 
3938  |  |                                         (block128_f) HWAES_decrypt,  | 
3939  |  |                                         enc ? HWAES_ocb_encrypt  | 
3940  |  |                                             : HWAES_ocb_decrypt))  | 
3941  |  |                     return 0;  | 
3942  |  |                 break;  | 
3943  |  |             }  | 
3944  |  | # endif  | 
3945  |  | # ifdef VPAES_CAPABLE  | 
3946  |  |             if (VPAES_CAPABLE) { | 
3947  |  |                 vpaes_set_encrypt_key(key, keylen, &octx->ksenc.ks);  | 
3948  |  |                 vpaes_set_decrypt_key(key, keylen, &octx->ksdec.ks);  | 
3949  |  |                 if (!CRYPTO_ocb128_init(&octx->ocb,  | 
3950  |  |                                         &octx->ksenc.ks, &octx->ksdec.ks,  | 
3951  |  |                                         (block128_f) vpaes_encrypt,  | 
3952  |  |                                         (block128_f) vpaes_decrypt,  | 
3953  |  |                                         NULL))  | 
3954  |  |                     return 0;  | 
3955  |  |                 break;  | 
3956  |  |             }  | 
3957  |  | # endif  | 
3958  | 0  |             AES_set_encrypt_key(key, keylen, &octx->ksenc.ks);  | 
3959  | 0  |             AES_set_decrypt_key(key, keylen, &octx->ksdec.ks);  | 
3960  | 0  |             if (!CRYPTO_ocb128_init(&octx->ocb,  | 
3961  | 0  |                                     &octx->ksenc.ks, &octx->ksdec.ks,  | 
3962  | 0  |                                     (block128_f) AES_encrypt,  | 
3963  | 0  |                                     (block128_f) AES_decrypt,  | 
3964  | 0  |                                     NULL))  | 
3965  | 0  |                 return 0;  | 
3966  | 0  |         }  | 
3967  | 0  |         while (0);  | 
3968  |  |  | 
3969  |  |         /*  | 
3970  |  |          * If we have an iv we can set it directly, otherwise use saved IV.  | 
3971  |  |          */  | 
3972  | 0  |         if (iv == NULL && octx->iv_set)  | 
3973  | 0  |             iv = octx->iv;  | 
3974  | 0  |         if (iv) { | 
3975  | 0  |             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)  | 
3976  | 0  |                 != 1)  | 
3977  | 0  |                 return 0;  | 
3978  | 0  |             octx->iv_set = 1;  | 
3979  | 0  |         }  | 
3980  | 0  |         octx->key_set = 1;  | 
3981  | 0  |     } else { | 
3982  |  |         /* If key set use IV, otherwise copy */  | 
3983  | 0  |         if (octx->key_set)  | 
3984  | 0  |             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);  | 
3985  | 0  |         else  | 
3986  | 0  |             memcpy(octx->iv, iv, octx->ivlen);  | 
3987  | 0  |         octx->iv_set = 1;  | 
3988  | 0  |     }  | 
3989  | 0  |     return 1;  | 
3990  | 0  | }  | 
3991  |  |  | 
3992  |  | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,  | 
3993  |  |                           const unsigned char *in, size_t len)  | 
3994  | 0  | { | 
3995  | 0  |     unsigned char *buf;  | 
3996  | 0  |     int *buf_len;  | 
3997  | 0  |     int written_len = 0;  | 
3998  | 0  |     size_t trailing_len;  | 
3999  | 0  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);  | 
4000  |  |  | 
4001  |  |     /* If IV or Key not set then return error */  | 
4002  | 0  |     if (!octx->iv_set)  | 
4003  | 0  |         return -1;  | 
4004  |  |  | 
4005  | 0  |     if (!octx->key_set)  | 
4006  | 0  |         return -1;  | 
4007  |  |  | 
4008  | 0  |     if (in != NULL) { | 
4009  |  |         /*  | 
4010  |  |          * Need to ensure we are only passing full blocks to low-level OCB  | 
4011  |  |          * routines. We do it here rather than in EVP_EncryptUpdate/  | 
4012  |  |          * EVP_DecryptUpdate because we need to pass full blocks of AAD too  | 
4013  |  |          * and those routines don't support that  | 
4014  |  |          */  | 
4015  |  |  | 
4016  |  |         /* Are we dealing with AAD or normal data here? */  | 
4017  | 0  |         if (out == NULL) { | 
4018  | 0  |             buf = octx->aad_buf;  | 
4019  | 0  |             buf_len = &(octx->aad_buf_len);  | 
4020  | 0  |         } else { | 
4021  | 0  |             buf = octx->data_buf;  | 
4022  | 0  |             buf_len = &(octx->data_buf_len);  | 
4023  |  | 
  | 
4024  | 0  |             if (ossl_is_partially_overlapping(out + *buf_len, in, len)) { | 
4025  | 0  |                 ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);  | 
4026  | 0  |                 return 0;  | 
4027  | 0  |             }  | 
4028  | 0  |         }  | 
4029  |  |  | 
4030  |  |         /*  | 
4031  |  |          * If we've got a partially filled buffer from a previous call then  | 
4032  |  |          * use that data first  | 
4033  |  |          */  | 
4034  | 0  |         if (*buf_len > 0) { | 
4035  | 0  |             unsigned int remaining;  | 
4036  |  | 
  | 
4037  | 0  |             remaining = AES_BLOCK_SIZE - (*buf_len);  | 
4038  | 0  |             if (remaining > len) { | 
4039  | 0  |                 memcpy(buf + (*buf_len), in, len);  | 
4040  | 0  |                 *(buf_len) += len;  | 
4041  | 0  |                 return 0;  | 
4042  | 0  |             }  | 
4043  | 0  |             memcpy(buf + (*buf_len), in, remaining);  | 
4044  |  |  | 
4045  |  |             /*  | 
4046  |  |              * If we get here we've filled the buffer, so process it  | 
4047  |  |              */  | 
4048  | 0  |             len -= remaining;  | 
4049  | 0  |             in += remaining;  | 
4050  | 0  |             if (out == NULL) { | 
4051  | 0  |                 if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))  | 
4052  | 0  |                     return -1;  | 
4053  | 0  |             } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
4054  | 0  |                 if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,  | 
4055  | 0  |                                            AES_BLOCK_SIZE))  | 
4056  | 0  |                     return -1;  | 
4057  | 0  |             } else { | 
4058  | 0  |                 if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,  | 
4059  | 0  |                                            AES_BLOCK_SIZE))  | 
4060  | 0  |                     return -1;  | 
4061  | 0  |             }  | 
4062  | 0  |             written_len = AES_BLOCK_SIZE;  | 
4063  | 0  |             *buf_len = 0;  | 
4064  | 0  |             if (out != NULL)  | 
4065  | 0  |                 out += AES_BLOCK_SIZE;  | 
4066  | 0  |         }  | 
4067  |  |  | 
4068  |  |         /* Do we have a partial block to handle at the end? */  | 
4069  | 0  |         trailing_len = len % AES_BLOCK_SIZE;  | 
4070  |  |  | 
4071  |  |         /*  | 
4072  |  |          * If we've got some full blocks to handle, then process these first  | 
4073  |  |          */  | 
4074  | 0  |         if (len != trailing_len) { | 
4075  | 0  |             if (out == NULL) { | 
4076  | 0  |                 if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))  | 
4077  | 0  |                     return -1;  | 
4078  | 0  |             } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
4079  | 0  |                 if (!CRYPTO_ocb128_encrypt  | 
4080  | 0  |                     (&octx->ocb, in, out, len - trailing_len))  | 
4081  | 0  |                     return -1;  | 
4082  | 0  |             } else { | 
4083  | 0  |                 if (!CRYPTO_ocb128_decrypt  | 
4084  | 0  |                     (&octx->ocb, in, out, len - trailing_len))  | 
4085  | 0  |                     return -1;  | 
4086  | 0  |             }  | 
4087  | 0  |             written_len += len - trailing_len;  | 
4088  | 0  |             in += len - trailing_len;  | 
4089  | 0  |         }  | 
4090  |  |  | 
4091  |  |         /* Handle any trailing partial block */  | 
4092  | 0  |         if (trailing_len > 0) { | 
4093  | 0  |             memcpy(buf, in, trailing_len);  | 
4094  | 0  |             *buf_len = trailing_len;  | 
4095  | 0  |         }  | 
4096  |  | 
  | 
4097  | 0  |         return written_len;  | 
4098  | 0  |     } else { | 
4099  |  |         /*  | 
4100  |  |          * First of all empty the buffer of any partial block that we might  | 
4101  |  |          * have been provided - both for data and AAD  | 
4102  |  |          */  | 
4103  | 0  |         if (octx->data_buf_len > 0) { | 
4104  | 0  |             if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
4105  | 0  |                 if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,  | 
4106  | 0  |                                            octx->data_buf_len))  | 
4107  | 0  |                     return -1;  | 
4108  | 0  |             } else { | 
4109  | 0  |                 if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,  | 
4110  | 0  |                                            octx->data_buf_len))  | 
4111  | 0  |                     return -1;  | 
4112  | 0  |             }  | 
4113  | 0  |             written_len = octx->data_buf_len;  | 
4114  | 0  |             octx->data_buf_len = 0;  | 
4115  | 0  |         }  | 
4116  | 0  |         if (octx->aad_buf_len > 0) { | 
4117  | 0  |             if (!CRYPTO_ocb128_aad  | 
4118  | 0  |                 (&octx->ocb, octx->aad_buf, octx->aad_buf_len))  | 
4119  | 0  |                 return -1;  | 
4120  | 0  |             octx->aad_buf_len = 0;  | 
4121  | 0  |         }  | 
4122  |  |         /* If decrypting then verify */  | 
4123  | 0  |         if (!EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
4124  | 0  |             if (octx->taglen < 0)  | 
4125  | 0  |                 return -1;  | 
4126  | 0  |             if (CRYPTO_ocb128_finish(&octx->ocb,  | 
4127  | 0  |                                      octx->tag, octx->taglen) != 0)  | 
4128  | 0  |                 return -1;  | 
4129  | 0  |             octx->iv_set = 0;  | 
4130  | 0  |             return written_len;  | 
4131  | 0  |         }  | 
4132  |  |         /* If encrypting then just get the tag */  | 
4133  | 0  |         if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)  | 
4134  | 0  |             return -1;  | 
4135  |  |         /* Don't reuse the IV */  | 
4136  | 0  |         octx->iv_set = 0;  | 
4137  | 0  |         return written_len;  | 
4138  | 0  |     }  | 
4139  | 0  | }  | 
4140  |  |  | 
4141  |  | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)  | 
4142  | 0  | { | 
4143  | 0  |     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);  | 
4144  | 0  |     CRYPTO_ocb128_cleanup(&octx->ocb);  | 
4145  | 0  |     return 1;  | 
4146  | 0  | }  | 
4147  |  |  | 
4148  |  | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,  | 
4149  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
4150  |  | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,  | 
4151  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
4152  |  | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,  | 
4153  |  |                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)  | 
4154  |  | #endif                         /* OPENSSL_NO_OCB */  |