/src/openssl/crypto/ml_dsa/ml_dsa_sign.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <openssl/core_dispatch.h>  | 
11  |  | #include <openssl/core_names.h>  | 
12  |  | #include <openssl/params.h>  | 
13  |  | #include <openssl/rand.h>  | 
14  |  | #include <openssl/err.h>  | 
15  |  | #include <openssl/proverr.h>  | 
16  |  | #include "internal/common.h"  | 
17  |  | #include "ml_dsa_local.h"  | 
18  |  | #include "ml_dsa_key.h"  | 
19  |  | #include "ml_dsa_matrix.h"  | 
20  |  | #include "ml_dsa_sign.h"  | 
21  |  | #include "ml_dsa_hash.h"  | 
22  |  |  | 
23  |  | #define ML_DSA_MAX_LAMBDA 256 /* bit strength for ML-DSA-87 */  | 
24  |  |  | 
25  |  | /*  | 
26  |  |  * @brief Initialize a Signature object by pointing all of its objects to  | 
27  |  |  * preallocated blocks. The values passed for hint, z and  | 
28  |  |  * c_tilde values are not owned/freed by the |sig| object.  | 
29  |  |  *  | 
30  |  |  * @param sig The ML_DSA_SIG to initialize.  | 
31  |  |  * @param hint A preallocated array of |k| polynomial blocks  | 
32  |  |  * @param k The number of |hint| polynomials  | 
33  |  |  * @param z A preallocated array of |l| polynomial blocks  | 
34  |  |  * @param l The number of |z| polynomials  | 
35  |  |  * @param c_tilde A preallocated buffer  | 
36  |  |  * @param c_tilde_len The size of |c_tilde|  | 
37  |  |  */  | 
38  |  | static void signature_init(ML_DSA_SIG *sig,  | 
39  |  |                            POLY *hint, uint32_t k, POLY *z, uint32_t l,  | 
40  |  |                            uint8_t *c_tilde, size_t c_tilde_len)  | 
41  | 0  | { | 
42  | 0  |     vector_init(&sig->z, z, l);  | 
43  | 0  |     vector_init(&sig->hint, hint, k);  | 
44  | 0  |     sig->c_tilde = c_tilde;  | 
45  | 0  |     sig->c_tilde_len = c_tilde_len;  | 
46  | 0  | }  | 
47  |  |  | 
48  |  | /*  | 
49  |  |  * @brief: Auxiliary functions to compute ML-DSA's MU.  | 
50  |  |  * This combines the steps of creating M' and concatenating it  | 
51  |  |  * to the Public Key Hash to obtain MU.  | 
52  |  |  * See FIPS 204 Algorithm 2 Step 10 (and algorithm 3 Step 5) as  | 
53  |  |  * well as Algorithm 7 Step 6 (and algorithm 8 Step 7)  | 
54  |  |  *  | 
55  |  |  * ML_DSA pure signatures are encoded as M' = 00 || ctx_len || ctx || msg  | 
56  |  |  * Where ctx is the empty string by default and ctx_len <= 255.  | 
57  |  |  * The message is appended to the encoded context.  | 
58  |  |  * Finally a public key hash is prepended, and the whole is hashed  | 
59  |  |  * to derive the mu value.  | 
60  |  |  *  | 
61  |  |  * @param key: A public or private ML-DSA key;  | 
62  |  |  * @param encode: if not set, assumes that M' is provided raw and the  | 
63  |  |  * following parameters are ignored.  | 
64  |  |  * @param ctx An optional context to add to the message encoding.  | 
65  |  |  * @param ctx_len The size of |ctx|. It must be in the range 0..255  | 
66  |  |  * @returns an EVP_MD_CTX if the operation is successful, NULL otherwise.  | 
67  |  |  */  | 
68  |  |  | 
69  |  | EVP_MD_CTX *ossl_ml_dsa_mu_init(const ML_DSA_KEY *key, int encode,  | 
70  |  |                                 const uint8_t *ctx, size_t ctx_len)  | 
71  | 0  | { | 
72  | 0  |     EVP_MD_CTX *md_ctx;  | 
73  | 0  |     uint8_t itb[2];  | 
74  |  | 
  | 
75  | 0  |     if (key == NULL)  | 
76  | 0  |         return NULL;  | 
77  |  |  | 
78  | 0  |     md_ctx = EVP_MD_CTX_new();  | 
79  | 0  |     if (md_ctx == NULL)  | 
80  | 0  |         return NULL;  | 
81  |  |  | 
82  |  |     /* H(.. */  | 
83  | 0  |     if (!EVP_DigestInit_ex2(md_ctx, key->shake256_md, NULL))  | 
84  | 0  |         goto err;  | 
85  |  |     /* ..pk (= key->tr) */  | 
86  | 0  |     if (!EVP_DigestUpdate(md_ctx, key->tr, sizeof(key->tr)))  | 
87  | 0  |         goto err;  | 
88  |  |     /* M' = .. */  | 
89  | 0  |     if (encode) { | 
90  | 0  |         if (ctx_len > ML_DSA_MAX_CONTEXT_STRING_LEN)  | 
91  | 0  |             goto err;  | 
92  |  |         /* IntegerToBytes(0, 1) .. */  | 
93  | 0  |         itb[0] = 0;  | 
94  |  |         /* || IntegerToBytes(|ctx|, 1) || .. */  | 
95  | 0  |         itb[1] = (uint8_t)ctx_len;  | 
96  | 0  |         if (!EVP_DigestUpdate(md_ctx, itb, 2))  | 
97  | 0  |             goto err;  | 
98  |  |         /* ctx || .. */  | 
99  | 0  |         if (!EVP_DigestUpdate(md_ctx, ctx, ctx_len))  | 
100  | 0  |             goto err;  | 
101  |  |         /* .. msg) will follow in update and final functions */  | 
102  | 0  |     }  | 
103  |  |  | 
104  | 0  |     return md_ctx;  | 
105  |  |  | 
106  | 0  | err:  | 
107  | 0  |     EVP_MD_CTX_free(md_ctx);  | 
108  | 0  |     return NULL;  | 
109  | 0  | }  | 
110  |  |  | 
111  |  | /*  | 
112  |  |  * @brief: updates the internal ML-DSA hash with an additional message chunk.  | 
113  |  |  *  | 
114  |  |  * @param md_ctx: The hashing context  | 
115  |  |  * @param msg: The next message chunk  | 
116  |  |  * @param msg_len: The length of the msg buffer to process  | 
117  |  |  * @returns 1 on success, 0 on error  | 
118  |  |  */  | 
119  |  | int ossl_ml_dsa_mu_update(EVP_MD_CTX *md_ctx, const uint8_t *msg, size_t msg_len)  | 
120  | 0  | { | 
121  | 0  |     return EVP_DigestUpdate(md_ctx, msg, msg_len);  | 
122  | 0  | }  | 
123  |  |  | 
124  |  | /*  | 
125  |  |  * @brief: finalizes the internal ML-DSA hash  | 
126  |  |  *  | 
127  |  |  * @param md_ctx: The hashing context  | 
128  |  |  * @param mu: The output buffer for Mu  | 
129  |  |  * @param mu_len: The size of the output buffer  | 
130  |  |  * @returns 1 on success, 0 on error  | 
131  |  |  */  | 
132  |  | int ossl_ml_dsa_mu_finalize(EVP_MD_CTX *md_ctx, uint8_t *mu, size_t mu_len)  | 
133  | 0  | { | 
134  | 0  |     if (!ossl_assert(mu_len == ML_DSA_MU_BYTES)) { | 
135  | 0  |         ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);  | 
136  | 0  |         return 0;  | 
137  | 0  |     }  | 
138  | 0  |     return EVP_DigestSqueeze(md_ctx, mu, mu_len);  | 
139  | 0  | }  | 
140  |  |  | 
141  |  | /*  | 
142  |  |  * @brief FIPS 204, Algorithm 7, ML-DSA.Sign_internal()  | 
143  |  |  *  | 
144  |  |  * This algorithm is decomposed in 2 steps, a set of functions to compute mu  | 
145  |  |  * and then the actual signing function.  | 
146  |  |  *  | 
147  |  |  * @param priv: The private ML-DSA key  | 
148  |  |  * @param mu: The pre-computed mu hash  | 
149  |  |  * @param mu_len: The length of the mu buffer  | 
150  |  |  * @param rnd: The random buffer  | 
151  |  |  * @param rnd_len: The length of the random buffer  | 
152  |  |  * @param out_sig: The output signature buffer  | 
153  |  |  * @returns 1 on success, 0 on error  | 
154  |  |  */  | 
155  |  | static int ml_dsa_sign_internal(const ML_DSA_KEY *priv,  | 
156  |  |                                 const uint8_t *mu, size_t mu_len,  | 
157  |  |                                 const uint8_t *rnd, size_t rnd_len,  | 
158  |  |                                 uint8_t *out_sig)  | 
159  | 0  | { | 
160  | 0  |     int ret = 0;  | 
161  | 0  |     const ML_DSA_PARAMS *params = priv->params;  | 
162  | 0  |     EVP_MD_CTX *md_ctx = NULL;  | 
163  | 0  |     uint32_t k = params->k, l = params->l;  | 
164  | 0  |     uint32_t gamma1 = params->gamma1, gamma2 = params->gamma2;  | 
165  | 0  |     uint8_t *alloc = NULL, *w1_encoded;  | 
166  | 0  |     size_t alloc_len, w1_encoded_len;  | 
167  | 0  |     size_t num_polys_sig_k = 2 * k;  | 
168  | 0  |     size_t num_polys_k = 5 * k;  | 
169  | 0  |     size_t num_polys_l = 3 * l;  | 
170  | 0  |     size_t num_polys_k_by_l = k * l;  | 
171  | 0  |     POLY *p, *c_ntt;  | 
172  | 0  |     VECTOR s1_ntt, s2_ntt, t0_ntt, w, w1, cs1, cs2, y;  | 
173  | 0  |     MATRIX a_ntt;  | 
174  | 0  |     ML_DSA_SIG sig;  | 
175  | 0  |     uint8_t rho_prime[ML_DSA_RHO_PRIME_BYTES];  | 
176  | 0  |     uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4];  | 
177  | 0  |     size_t c_tilde_len = params->bit_strength >> 2;  | 
178  | 0  |     size_t kappa;  | 
179  |  | 
  | 
180  | 0  |     if (mu_len != ML_DSA_MU_BYTES) { | 
181  | 0  |         ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);  | 
182  | 0  |         return 0;  | 
183  | 0  |     }  | 
184  |  |  | 
185  |  |     /*  | 
186  |  |      * Allocate a single blob for most of the variable size temporary variables.  | 
187  |  |      * Mostly used for VECTOR POLYNOMIALS (every POLY is 1K).  | 
188  |  |      */  | 
189  | 0  |     w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128);  | 
190  | 0  |     alloc_len = w1_encoded_len  | 
191  | 0  |         + sizeof(*p) * (1 + num_polys_k + num_polys_l  | 
192  | 0  |                         + num_polys_k_by_l + num_polys_sig_k);  | 
193  | 0  |     alloc = OPENSSL_malloc(alloc_len);  | 
194  | 0  |     if (alloc == NULL)  | 
195  | 0  |         return 0;  | 
196  | 0  |     md_ctx = EVP_MD_CTX_new();  | 
197  | 0  |     if (md_ctx == NULL)  | 
198  | 0  |         goto err;  | 
199  |  |  | 
200  | 0  |     w1_encoded = alloc;  | 
201  |  |     /* Init the temp vectors to point to the allocated polys blob */  | 
202  | 0  |     p = (POLY *)(w1_encoded + w1_encoded_len);  | 
203  | 0  |     c_ntt = p++;  | 
204  | 0  |     matrix_init(&a_ntt, p, k, l);  | 
205  | 0  |     p += num_polys_k_by_l;  | 
206  | 0  |     vector_init(&s2_ntt, p, k);  | 
207  | 0  |     vector_init(&t0_ntt, s2_ntt.poly + k, k);  | 
208  | 0  |     vector_init(&w, t0_ntt.poly + k, k);  | 
209  | 0  |     vector_init(&w1, w.poly + k, k);  | 
210  | 0  |     vector_init(&cs2, w1.poly + k, k);  | 
211  | 0  |     p += num_polys_k;  | 
212  | 0  |     vector_init(&s1_ntt, p, l);  | 
213  | 0  |     vector_init(&y, p + l, l);  | 
214  | 0  |     vector_init(&cs1, p + 2 * l, l);  | 
215  | 0  |     p += num_polys_l;  | 
216  | 0  |     signature_init(&sig, p, k, p + k, l, c_tilde, c_tilde_len);  | 
217  |  |     /* End of the allocated blob setup */  | 
218  |  | 
  | 
219  | 0  |     if (!matrix_expand_A(md_ctx, priv->shake128_md, priv->rho, &a_ntt))  | 
220  | 0  |         goto err;  | 
221  |  |  | 
222  | 0  |     if (!shake_xof_3(md_ctx, priv->shake256_md, priv->K, sizeof(priv->K),  | 
223  | 0  |                      rnd, rnd_len, mu, mu_len,  | 
224  | 0  |                      rho_prime, sizeof(rho_prime)))  | 
225  | 0  |         goto err;  | 
226  |  |  | 
227  | 0  |     vector_copy(&s1_ntt, &priv->s1);  | 
228  | 0  |     vector_ntt(&s1_ntt);  | 
229  | 0  |     vector_copy(&s2_ntt, &priv->s2);  | 
230  | 0  |     vector_ntt(&s2_ntt);  | 
231  | 0  |     vector_copy(&t0_ntt, &priv->t0);  | 
232  | 0  |     vector_ntt(&t0_ntt);  | 
233  |  |  | 
234  |  |     /*  | 
235  |  |      * kappa must not exceed 2^16. But the probability of it  | 
236  |  |      * exceeding even 1000 iterations is vanishingly small.  | 
237  |  |      */  | 
238  | 0  |     for (kappa = 0; ; kappa += l) { | 
239  | 0  |         VECTOR *y_ntt = &cs1;  | 
240  | 0  |         VECTOR *r0 = &w1;  | 
241  | 0  |         VECTOR *ct0 = &w1;  | 
242  | 0  |         uint32_t z_max, r0_max, ct0_max, h_ones;  | 
243  |  | 
  | 
244  | 0  |         vector_expand_mask(&y, rho_prime, sizeof(rho_prime), kappa,  | 
245  | 0  |                            gamma1, md_ctx, priv->shake256_md);  | 
246  | 0  |         vector_copy(y_ntt, &y);  | 
247  | 0  |         vector_ntt(y_ntt);  | 
248  |  | 
  | 
249  | 0  |         matrix_mult_vector(&a_ntt, y_ntt, &w);  | 
250  | 0  |         vector_ntt_inverse(&w);  | 
251  |  | 
  | 
252  | 0  |         vector_high_bits(&w, gamma2, &w1);  | 
253  | 0  |         ossl_ml_dsa_w1_encode(&w1, gamma2, w1_encoded, w1_encoded_len);  | 
254  |  | 
  | 
255  | 0  |         if (!shake_xof_2(md_ctx, priv->shake256_md, mu, mu_len,  | 
256  | 0  |                          w1_encoded, w1_encoded_len, c_tilde, c_tilde_len))  | 
257  | 0  |             break;  | 
258  |  |  | 
259  | 0  |         if (!poly_sample_in_ball_ntt(c_ntt, c_tilde, c_tilde_len,  | 
260  | 0  |                                      md_ctx, priv->shake256_md, params->tau))  | 
261  | 0  |             break;  | 
262  |  |  | 
263  | 0  |         vector_mult_scalar(&s1_ntt, c_ntt, &cs1);  | 
264  | 0  |         vector_ntt_inverse(&cs1);  | 
265  | 0  |         vector_mult_scalar(&s2_ntt, c_ntt, &cs2);  | 
266  | 0  |         vector_ntt_inverse(&cs2);  | 
267  |  | 
  | 
268  | 0  |         vector_add(&y, &cs1, &sig.z);  | 
269  |  |  | 
270  |  |         /* r0 = lowbits(w - cs2) */  | 
271  | 0  |         vector_sub(&w, &cs2, r0);  | 
272  | 0  |         vector_low_bits(r0, gamma2, r0);  | 
273  |  |  | 
274  |  |         /*  | 
275  |  |          * Leaking that the signature is rejected is fine as the next attempt at a  | 
276  |  |          * signature will be (indistinguishable from) independent of this one.  | 
277  |  |          */  | 
278  | 0  |         z_max = vector_max(&sig.z);  | 
279  | 0  |         r0_max = vector_max_signed(r0);  | 
280  | 0  |         if (value_barrier_32(constant_time_ge(z_max, gamma1 - params->beta)  | 
281  | 0  |                              | constant_time_ge(r0_max, gamma2 - params->beta)))  | 
282  | 0  |             continue;  | 
283  |  |  | 
284  | 0  |         vector_mult_scalar(&t0_ntt, c_ntt, ct0);  | 
285  | 0  |         vector_ntt_inverse(ct0);  | 
286  | 0  |         vector_make_hint(ct0, &cs2, &w, gamma2, &sig.hint);  | 
287  |  | 
  | 
288  | 0  |         ct0_max = vector_max(ct0);  | 
289  | 0  |         h_ones = vector_count_ones(&sig.hint);  | 
290  |  |         /* Same reasoning applies to the leak as above */  | 
291  | 0  |         if (value_barrier_32(constant_time_ge(ct0_max, gamma2)  | 
292  | 0  |                              | constant_time_lt(params->omega, h_ones)))  | 
293  | 0  |             continue;  | 
294  | 0  |         ret = ossl_ml_dsa_sig_encode(&sig, params, out_sig);  | 
295  | 0  |         break;  | 
296  | 0  |     }  | 
297  | 0  | err:  | 
298  | 0  |     EVP_MD_CTX_free(md_ctx);  | 
299  | 0  |     OPENSSL_clear_free(alloc, alloc_len);  | 
300  | 0  |     OPENSSL_cleanse(rho_prime, sizeof(rho_prime));  | 
301  | 0  |     return ret;  | 
302  | 0  | }  | 
303  |  |  | 
304  |  | /*  | 
305  |  |  * @brief FIPS 204, Algorithm 8, ML-DSA.Verify_internal().  | 
306  |  |  *  | 
307  |  |  * This algorithm is decomposed in 2 steps, a set of functions to compute mu  | 
308  |  |  * and then the actual verification function.  | 
309  |  |  *  | 
310  |  |  * @param pub: The public ML-DSA key  | 
311  |  |  * @param mu: The pre-computed mu hash  | 
312  |  |  * @param mu_len: The length of the mu buffer  | 
313  |  |  * @param sig_enc: The encoded signature to be verified  | 
314  |  |  * @param sig_enc_len: the encoded csignature length  | 
315  |  |  * @returns 1 on success, 0 on error  | 
316  |  |  */  | 
317  |  | static int ml_dsa_verify_internal(const ML_DSA_KEY *pub,  | 
318  |  |                                   const uint8_t *mu, size_t mu_len,  | 
319  |  |                                   const uint8_t *sig_enc,  | 
320  |  |                                   size_t sig_enc_len)  | 
321  | 0  | { | 
322  | 0  |     int ret = 0;  | 
323  | 0  |     uint8_t *alloc = NULL, *w1_encoded;  | 
324  | 0  |     POLY *p, *c_ntt;  | 
325  | 0  |     MATRIX a_ntt;  | 
326  | 0  |     VECTOR az_ntt, ct1_ntt, *z_ntt, *w1, *w_approx;  | 
327  | 0  |     ML_DSA_SIG sig;  | 
328  | 0  |     const ML_DSA_PARAMS *params = pub->params;  | 
329  | 0  |     uint32_t k = pub->params->k;  | 
330  | 0  |     uint32_t l = pub->params->l;  | 
331  | 0  |     uint32_t gamma2 = params->gamma2;  | 
332  | 0  |     size_t w1_encoded_len;  | 
333  | 0  |     size_t num_polys_sig = k + l;  | 
334  | 0  |     size_t num_polys_k = 2 * k;  | 
335  | 0  |     size_t num_polys_l = 1 * l;  | 
336  | 0  |     size_t num_polys_k_by_l = k * l;  | 
337  | 0  |     uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4];  | 
338  | 0  |     uint8_t c_tilde_sig[ML_DSA_MAX_LAMBDA / 4];  | 
339  | 0  |     EVP_MD_CTX *md_ctx = NULL;  | 
340  | 0  |     size_t c_tilde_len = params->bit_strength >> 2;  | 
341  | 0  |     uint32_t z_max;  | 
342  |  | 
  | 
343  | 0  |     if (mu_len != ML_DSA_MU_BYTES) { | 
344  | 0  |         ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);  | 
345  | 0  |         return 0;  | 
346  | 0  |     }  | 
347  |  |  | 
348  |  |  | 
349  |  |     /* Allocate space for all the POLYNOMIALS used by temporary VECTORS */  | 
350  | 0  |     w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128);  | 
351  | 0  |     alloc = OPENSSL_malloc(w1_encoded_len  | 
352  | 0  |                            + sizeof(*p) * (1 + num_polys_k  | 
353  | 0  |                                            + num_polys_l  | 
354  | 0  |                                            + num_polys_k_by_l  | 
355  | 0  |                                            + num_polys_sig));  | 
356  | 0  |     if (alloc == NULL)  | 
357  | 0  |         return 0;  | 
358  | 0  |     md_ctx = EVP_MD_CTX_new();  | 
359  | 0  |     if (md_ctx == NULL)  | 
360  | 0  |         goto err;  | 
361  |  |  | 
362  | 0  |     w1_encoded = alloc;  | 
363  |  |     /* Init the temp vectors to point to the allocated polys blob */  | 
364  | 0  |     p = (POLY *)(w1_encoded + w1_encoded_len);  | 
365  | 0  |     c_ntt = p++;  | 
366  | 0  |     matrix_init(&a_ntt, p, k, l);  | 
367  | 0  |     p += num_polys_k_by_l;  | 
368  | 0  |     signature_init(&sig, p, k, p + k, l, c_tilde_sig, c_tilde_len);  | 
369  | 0  |     p += num_polys_sig;  | 
370  | 0  |     vector_init(&az_ntt, p, k);  | 
371  | 0  |     vector_init(&ct1_ntt, p + k, k);  | 
372  |  | 
  | 
373  | 0  |     if (!ossl_ml_dsa_sig_decode(&sig, sig_enc, sig_enc_len, pub->params)  | 
374  | 0  |             || !matrix_expand_A(md_ctx, pub->shake128_md, pub->rho, &a_ntt))  | 
375  | 0  |         goto err;  | 
376  |  |  | 
377  |  |     /* Compute verifiers challenge c_ntt = NTT(SampleInBall(c_tilde)) */  | 
378  | 0  |     if (!poly_sample_in_ball_ntt(c_ntt, c_tilde_sig, c_tilde_len,  | 
379  | 0  |                                  md_ctx, pub->shake256_md, params->tau))  | 
380  | 0  |         goto err;  | 
381  |  |  | 
382  |  |     /* ct1_ntt = NTT(c) * NTT(t1 * 2^d) */  | 
383  | 0  |     vector_scale_power2_round_ntt(&pub->t1, &ct1_ntt);  | 
384  | 0  |     vector_mult_scalar(&ct1_ntt, c_ntt, &ct1_ntt);  | 
385  |  |  | 
386  |  |     /* compute z_max early in order to reuse sig.z */  | 
387  | 0  |     z_max = vector_max(&sig.z);  | 
388  |  |  | 
389  |  |     /* w_approx = NTT_inverse(A * NTT(z) - ct1_ntt) */  | 
390  | 0  |     z_ntt = &sig.z;  | 
391  | 0  |     vector_ntt(z_ntt);  | 
392  | 0  |     matrix_mult_vector(&a_ntt, z_ntt, &az_ntt);  | 
393  | 0  |     w_approx = &az_ntt;  | 
394  | 0  |     vector_sub(&az_ntt, &ct1_ntt, w_approx);  | 
395  | 0  |     vector_ntt_inverse(w_approx);  | 
396  |  |  | 
397  |  |     /* compute w1_encoded */  | 
398  | 0  |     w1 = w_approx;  | 
399  | 0  |     vector_use_hint(&sig.hint, w_approx, gamma2, w1);  | 
400  | 0  |     ossl_ml_dsa_w1_encode(w1, gamma2, w1_encoded, w1_encoded_len);  | 
401  |  | 
  | 
402  | 0  |     if (!shake_xof_3(md_ctx, pub->shake256_md, mu, mu_len,  | 
403  | 0  |                      w1_encoded, w1_encoded_len, NULL, 0, c_tilde, c_tilde_len))  | 
404  | 0  |         goto err;  | 
405  |  |  | 
406  | 0  |     ret = (z_max < (uint32_t)(params->gamma1 - params->beta))  | 
407  | 0  |         && memcmp(c_tilde, sig.c_tilde, c_tilde_len) == 0;  | 
408  | 0  | err:  | 
409  | 0  |     OPENSSL_free(alloc);  | 
410  | 0  |     EVP_MD_CTX_free(md_ctx);  | 
411  | 0  |     return ret;  | 
412  | 0  | }  | 
413  |  |  | 
414  |  | /**  | 
415  |  |  * See FIPS 204 Section 5.2 Algorithm 2 ML-DSA.Sign()  | 
416  |  |  *  | 
417  |  |  * @returns 1 on success, or 0 on error.  | 
418  |  |  */  | 
419  |  | int ossl_ml_dsa_sign(const ML_DSA_KEY *priv, int msg_is_mu,  | 
420  |  |                      const uint8_t *msg, size_t msg_len,  | 
421  |  |                      const uint8_t *context, size_t context_len,  | 
422  |  |                      const uint8_t *rand, size_t rand_len, int encode,  | 
423  |  |                      unsigned char *sig, size_t *sig_len, size_t sig_size)  | 
424  | 0  | { | 
425  | 0  |     EVP_MD_CTX *md_ctx = NULL;  | 
426  | 0  |     uint8_t mu[ML_DSA_MU_BYTES];  | 
427  | 0  |     const uint8_t *mu_ptr = mu;  | 
428  | 0  |     size_t mu_len = sizeof(mu);  | 
429  | 0  |     int ret = 0;  | 
430  |  | 
  | 
431  | 0  |     if (ossl_ml_dsa_key_get_priv(priv) == NULL)  | 
432  | 0  |         return 0;  | 
433  |  |  | 
434  | 0  |     if (sig_len != NULL)  | 
435  | 0  |         *sig_len = priv->params->sig_len;  | 
436  |  | 
  | 
437  | 0  |     if (sig == NULL)  | 
438  | 0  |         return (sig_len != NULL) ? 1 : 0;  | 
439  |  |  | 
440  | 0  |     if (sig_size < priv->params->sig_len)  | 
441  | 0  |         return 0;  | 
442  |  |  | 
443  | 0  |     if (msg_is_mu) { | 
444  | 0  |         mu_ptr = msg;  | 
445  | 0  |         mu_len = msg_len;  | 
446  | 0  |     } else { | 
447  | 0  |         md_ctx = ossl_ml_dsa_mu_init(priv, encode, context, context_len);  | 
448  | 0  |         if (md_ctx == NULL)  | 
449  | 0  |             return 0;  | 
450  |  |  | 
451  | 0  |         if (!ossl_ml_dsa_mu_update(md_ctx, msg, msg_len))  | 
452  | 0  |             goto err;  | 
453  |  |  | 
454  | 0  |         if (!ossl_ml_dsa_mu_finalize(md_ctx, mu, mu_len))  | 
455  | 0  |             goto err;  | 
456  | 0  |     }  | 
457  |  |  | 
458  | 0  |     ret = ml_dsa_sign_internal(priv, mu_ptr, mu_len, rand, rand_len, sig);  | 
459  |  | 
  | 
460  | 0  | err:  | 
461  | 0  |     EVP_MD_CTX_free(md_ctx);  | 
462  | 0  |     return ret;  | 
463  | 0  | }  | 
464  |  |  | 
465  |  | /**  | 
466  |  |  * See FIPS 203 Section 5.3 Algorithm 3 ML-DSA.Verify()  | 
467  |  |  * @returns 1 on success, or 0 on error.  | 
468  |  |  */  | 
469  |  | int ossl_ml_dsa_verify(const ML_DSA_KEY *pub, int msg_is_mu,  | 
470  |  |                        const uint8_t *msg, size_t msg_len,  | 
471  |  |                        const uint8_t *context, size_t context_len, int encode,  | 
472  |  |                        const uint8_t *sig, size_t sig_len)  | 
473  | 0  | { | 
474  | 0  |     EVP_MD_CTX *md_ctx = NULL;  | 
475  | 0  |     uint8_t mu[ML_DSA_MU_BYTES];  | 
476  | 0  |     const uint8_t *mu_ptr = mu;  | 
477  | 0  |     size_t mu_len = sizeof(mu);  | 
478  | 0  |     int ret = 0;  | 
479  |  | 
  | 
480  | 0  |     if (ossl_ml_dsa_key_get_pub(pub) == NULL)  | 
481  | 0  |         return 0;  | 
482  |  |  | 
483  | 0  |     if (msg_is_mu) { | 
484  | 0  |         mu_ptr = msg;  | 
485  | 0  |         mu_len = msg_len;  | 
486  | 0  |     } else { | 
487  | 0  |         md_ctx = ossl_ml_dsa_mu_init(pub, encode, context, context_len);  | 
488  | 0  |         if (md_ctx == NULL)  | 
489  | 0  |             return 0;  | 
490  |  |  | 
491  | 0  |         if (!ossl_ml_dsa_mu_update(md_ctx, msg, msg_len))  | 
492  | 0  |             goto err;  | 
493  |  |  | 
494  | 0  |         if (!ossl_ml_dsa_mu_finalize(md_ctx, mu, mu_len))  | 
495  | 0  |             goto err;  | 
496  | 0  |     }  | 
497  |  |  | 
498  | 0  |     ret = ml_dsa_verify_internal(pub, mu_ptr, mu_len, sig, sig_len);  | 
499  | 0  | err:  | 
500  | 0  |     EVP_MD_CTX_free(md_ctx);  | 
501  | 0  |     return ret;  | 
502  | 0  | }  |