Coverage Report

Created: 2025-06-13 06:36

/src/openssl/crypto/sha/sha256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2004-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * SHA256 low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <openssl/opensslconf.h>
17
18
#include <stdlib.h>
19
#include <string.h>
20
21
#include <openssl/crypto.h>
22
#include <openssl/sha.h>
23
#include <openssl/opensslv.h>
24
#include "internal/endian.h"
25
#include "crypto/sha.h"
26
27
int SHA224_Init(SHA256_CTX *c)
28
62
{
29
62
    memset(c, 0, sizeof(*c));
30
62
    c->h[0] = 0xc1059ed8UL;
31
62
    c->h[1] = 0x367cd507UL;
32
62
    c->h[2] = 0x3070dd17UL;
33
62
    c->h[3] = 0xf70e5939UL;
34
62
    c->h[4] = 0xffc00b31UL;
35
62
    c->h[5] = 0x68581511UL;
36
62
    c->h[6] = 0x64f98fa7UL;
37
62
    c->h[7] = 0xbefa4fa4UL;
38
62
    c->md_len = SHA224_DIGEST_LENGTH;
39
62
    return 1;
40
62
}
41
42
int SHA256_Init(SHA256_CTX *c)
43
29.7k
{
44
29.7k
    memset(c, 0, sizeof(*c));
45
29.7k
    c->h[0] = 0x6a09e667UL;
46
29.7k
    c->h[1] = 0xbb67ae85UL;
47
29.7k
    c->h[2] = 0x3c6ef372UL;
48
29.7k
    c->h[3] = 0xa54ff53aUL;
49
29.7k
    c->h[4] = 0x510e527fUL;
50
29.7k
    c->h[5] = 0x9b05688cUL;
51
29.7k
    c->h[6] = 0x1f83d9abUL;
52
29.7k
    c->h[7] = 0x5be0cd19UL;
53
29.7k
    c->md_len = SHA256_DIGEST_LENGTH;
54
29.7k
    return 1;
55
29.7k
}
56
57
int ossl_sha256_192_init(SHA256_CTX *c)
58
2
{
59
2
    SHA256_Init(c);
60
2
    c->md_len = SHA256_192_DIGEST_LENGTH;
61
2
    return 1;
62
2
}
63
64
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
65
62
{
66
62
    return SHA256_Update(c, data, len);
67
62
}
68
69
int SHA224_Final(unsigned char *md, SHA256_CTX *c)
70
31
{
71
31
    return SHA256_Final(md, c);
72
31
}
73
74
#define DATA_ORDER_IS_BIG_ENDIAN
75
76
182M
#define HASH_LONG               SHA_LONG
77
#define HASH_CTX                SHA256_CTX
78
373M
#define HASH_CBLOCK             SHA_CBLOCK
79
80
/*
81
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
82
 * default: case below covers for it. It's not clear however if it's
83
 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
84
 * but if it is, then default: case shall be extended. For reference.
85
 * Idea behind separate cases for pre-defined lengths is to let the
86
 * compiler decide if it's appropriate to unroll small loops.
87
 */
88
14.6k
#define HASH_MAKE_STRING(c,s)   do {    \
89
14.6k
        unsigned long ll;               \
90
14.6k
        unsigned int  nn;               \
91
14.6k
        switch ((c)->md_len) {          \
92
1
            case SHA256_192_DIGEST_LENGTH: \
93
7
                for (nn=0;nn<SHA256_192_DIGEST_LENGTH/4;nn++) { \
94
6
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
95
6
                }                       \
96
1
                break;                  \
97
31
            case SHA224_DIGEST_LENGTH:  \
98
248
                for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) {     \
99
217
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
100
217
                }                       \
101
31
                break;                  \
102
14.6k
            case SHA256_DIGEST_LENGTH:  \
103
131k
                for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) {     \
104
117k
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
105
117k
                }                       \
106
14.6k
                break;                  \
107
0
            default:                    \
108
0
                if ((c)->md_len > SHA256_DIGEST_LENGTH) \
109
0
                    return 0;                           \
110
0
                for (nn=0;nn<(c)->md_len/4;nn++) {              \
111
0
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
112
0
                }                       \
113
0
                break;                  \
114
14.6k
        }                               \
115
14.6k
    } while (0)
116
117
#define HASH_UPDATE             SHA256_Update
118
#define HASH_TRANSFORM          SHA256_Transform
119
#define HASH_FINAL              SHA256_Final
120
2.89M
#define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
121
#ifndef SHA256_ASM
122
static
123
#else
124
# ifdef INCLUDE_C_SHA256
125
void sha256_block_data_order_c(SHA256_CTX *ctx, const void *in, size_t num);
126
# endif /* INCLUDE_C_SHA256 */
127
#endif /* SHA256_ASM */
128
void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
129
130
#include "crypto/md32_common.h"
131
132
#if !defined(SHA256_ASM) || defined(INCLUDE_C_SHA256)
133
static const SHA_LONG K256[64] = {
134
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
135
    0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
136
    0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
137
    0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
138
    0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
139
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
140
    0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
141
    0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
142
    0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
143
    0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
144
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
145
    0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
146
    0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
147
    0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
148
    0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
149
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
150
};
151
152
# ifndef PEDANTIC
153
#  if defined(__GNUC__) && __GNUC__>=2 && \
154
      !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
155
#   if defined(__riscv_zknh)
156
#    define Sigma0(x) ({ MD32_REG_T ret;            \
157
                        asm ("sha256sum0 %0, %1"    \
158
                        : "=r"(ret)                 \
159
                        : "r"(x)); ret;             })
160
#    define Sigma1(x) ({ MD32_REG_T ret;            \
161
                        asm ("sha256sum1 %0, %1"    \
162
                        : "=r"(ret)                 \
163
                        : "r"(x)); ret;             })
164
#    define sigma0(x) ({ MD32_REG_T ret;            \
165
                        asm ("sha256sig0 %0, %1"    \
166
                        : "=r"(ret)                 \
167
                        : "r"(x)); ret;             })
168
#    define sigma1(x) ({ MD32_REG_T ret;            \
169
                        asm ("sha256sig1 %0, %1"    \
170
                        : "=r"(ret)                 \
171
                        : "r"(x)); ret;             })
172
#   endif
173
#   if defined(__riscv_zbt) || defined(__riscv_zpn)
174
#    define Ch(x,y,z) ({  MD32_REG_T ret;                           \
175
                        asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
176
                        : "=r"(ret)                                 \
177
                        : "r"(x), "r"(y), "r"(z)); ret;             })
178
#    define Maj(x,y,z) ({ MD32_REG_T ret;                           \
179
                        asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
180
                        : "=r"(ret)                                 \
181
                        : "r"(x^z), "r"(y), "r"(x)); ret;           })
182
#   endif
183
#  endif
184
# endif
185
186
/*
187
 * FIPS specification refers to right rotations, while our ROTATE macro
188
 * is left one. This is why you might notice that rotation coefficients
189
 * differ from those observed in FIPS document by 32-N...
190
 */
191
# ifndef Sigma0
192
840M
#  define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
193
# endif
194
# ifndef Sigma1
195
840M
#  define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
196
# endif
197
# ifndef sigma0
198
630M
#  define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
199
# endif
200
# ifndef sigma1
201
630M
#  define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
202
# endif
203
# ifndef Ch
204
840M
#  define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
205
# endif
206
# ifndef Maj
207
840M
#  define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
208
# endif
209
210
# ifdef OPENSSL_SMALL_FOOTPRINT
211
212
static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
213
                                    size_t num)
214
{
215
    unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
216
    SHA_LONG X[16], l;
217
    int i;
218
    const unsigned char *data = in;
219
220
    while (num--) {
221
222
        a = ctx->h[0];
223
        b = ctx->h[1];
224
        c = ctx->h[2];
225
        d = ctx->h[3];
226
        e = ctx->h[4];
227
        f = ctx->h[5];
228
        g = ctx->h[6];
229
        h = ctx->h[7];
230
231
        for (i = 0; i < 16; i++) {
232
            (void)HOST_c2l(data, l);
233
            T1 = X[i] = l;
234
            T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
235
            T2 = Sigma0(a) + Maj(a, b, c);
236
            h = g;
237
            g = f;
238
            f = e;
239
            e = d + T1;
240
            d = c;
241
            c = b;
242
            b = a;
243
            a = T1 + T2;
244
        }
245
246
        for (; i < 64; i++) {
247
            s0 = X[(i + 1) & 0x0f];
248
            s0 = sigma0(s0);
249
            s1 = X[(i + 14) & 0x0f];
250
            s1 = sigma1(s1);
251
252
            T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
253
            T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
254
            T2 = Sigma0(a) + Maj(a, b, c);
255
            h = g;
256
            g = f;
257
            f = e;
258
            e = d + T1;
259
            d = c;
260
            c = b;
261
            b = a;
262
            a = T1 + T2;
263
        }
264
265
        ctx->h[0] += a;
266
        ctx->h[1] += b;
267
        ctx->h[2] += c;
268
        ctx->h[3] += d;
269
        ctx->h[4] += e;
270
        ctx->h[5] += f;
271
        ctx->h[6] += g;
272
        ctx->h[7] += h;
273
274
    }
275
}
276
277
# else
278
279
840M
#  define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
280
840M
        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
281
840M
        h = Sigma0(a) + Maj(a,b,c);                     \
282
840M
        d += T1;        h += T1;                } while (0)
283
284
630M
#  define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
285
630M
        s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
286
630M
        s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
287
630M
        T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
288
630M
        ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
289
290
#ifdef INCLUDE_C_SHA256
291
void sha256_block_data_order_c(SHA256_CTX *ctx, const void *in, size_t num)
292
#else
293
static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
294
                                    size_t num)
295
#endif
296
2.89M
{
297
2.89M
    unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
298
2.89M
    SHA_LONG X[16];
299
2.89M
    int i;
300
2.89M
    const unsigned char *data = in;
301
2.89M
    DECLARE_IS_ENDIAN;
302
303
16.0M
    while (num--) {
304
305
13.1M
        a = ctx->h[0];
306
13.1M
        b = ctx->h[1];
307
13.1M
        c = ctx->h[2];
308
13.1M
        d = ctx->h[3];
309
13.1M
        e = ctx->h[4];
310
13.1M
        f = ctx->h[5];
311
13.1M
        g = ctx->h[6];
312
13.1M
        h = ctx->h[7];
313
314
13.1M
        if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
315
13.1M
            && ((size_t)in % 4) == 0) {
316
0
            const SHA_LONG *W = (const SHA_LONG *)data;
317
318
0
            T1 = X[0] = W[0];
319
0
            ROUND_00_15(0, a, b, c, d, e, f, g, h);
320
0
            T1 = X[1] = W[1];
321
0
            ROUND_00_15(1, h, a, b, c, d, e, f, g);
322
0
            T1 = X[2] = W[2];
323
0
            ROUND_00_15(2, g, h, a, b, c, d, e, f);
324
0
            T1 = X[3] = W[3];
325
0
            ROUND_00_15(3, f, g, h, a, b, c, d, e);
326
0
            T1 = X[4] = W[4];
327
0
            ROUND_00_15(4, e, f, g, h, a, b, c, d);
328
0
            T1 = X[5] = W[5];
329
0
            ROUND_00_15(5, d, e, f, g, h, a, b, c);
330
0
            T1 = X[6] = W[6];
331
0
            ROUND_00_15(6, c, d, e, f, g, h, a, b);
332
0
            T1 = X[7] = W[7];
333
0
            ROUND_00_15(7, b, c, d, e, f, g, h, a);
334
0
            T1 = X[8] = W[8];
335
0
            ROUND_00_15(8, a, b, c, d, e, f, g, h);
336
0
            T1 = X[9] = W[9];
337
0
            ROUND_00_15(9, h, a, b, c, d, e, f, g);
338
0
            T1 = X[10] = W[10];
339
0
            ROUND_00_15(10, g, h, a, b, c, d, e, f);
340
0
            T1 = X[11] = W[11];
341
0
            ROUND_00_15(11, f, g, h, a, b, c, d, e);
342
0
            T1 = X[12] = W[12];
343
0
            ROUND_00_15(12, e, f, g, h, a, b, c, d);
344
0
            T1 = X[13] = W[13];
345
0
            ROUND_00_15(13, d, e, f, g, h, a, b, c);
346
0
            T1 = X[14] = W[14];
347
0
            ROUND_00_15(14, c, d, e, f, g, h, a, b);
348
0
            T1 = X[15] = W[15];
349
0
            ROUND_00_15(15, b, c, d, e, f, g, h, a);
350
351
0
            data += SHA256_CBLOCK;
352
13.1M
        } else {
353
13.1M
            SHA_LONG l;
354
355
13.1M
            (void)HOST_c2l(data, l);
356
13.1M
            T1 = X[0] = l;
357
13.1M
            ROUND_00_15(0, a, b, c, d, e, f, g, h);
358
13.1M
            (void)HOST_c2l(data, l);
359
13.1M
            T1 = X[1] = l;
360
13.1M
            ROUND_00_15(1, h, a, b, c, d, e, f, g);
361
13.1M
            (void)HOST_c2l(data, l);
362
13.1M
            T1 = X[2] = l;
363
13.1M
            ROUND_00_15(2, g, h, a, b, c, d, e, f);
364
13.1M
            (void)HOST_c2l(data, l);
365
13.1M
            T1 = X[3] = l;
366
13.1M
            ROUND_00_15(3, f, g, h, a, b, c, d, e);
367
13.1M
            (void)HOST_c2l(data, l);
368
13.1M
            T1 = X[4] = l;
369
13.1M
            ROUND_00_15(4, e, f, g, h, a, b, c, d);
370
13.1M
            (void)HOST_c2l(data, l);
371
13.1M
            T1 = X[5] = l;
372
13.1M
            ROUND_00_15(5, d, e, f, g, h, a, b, c);
373
13.1M
            (void)HOST_c2l(data, l);
374
13.1M
            T1 = X[6] = l;
375
13.1M
            ROUND_00_15(6, c, d, e, f, g, h, a, b);
376
13.1M
            (void)HOST_c2l(data, l);
377
13.1M
            T1 = X[7] = l;
378
13.1M
            ROUND_00_15(7, b, c, d, e, f, g, h, a);
379
13.1M
            (void)HOST_c2l(data, l);
380
13.1M
            T1 = X[8] = l;
381
13.1M
            ROUND_00_15(8, a, b, c, d, e, f, g, h);
382
13.1M
            (void)HOST_c2l(data, l);
383
13.1M
            T1 = X[9] = l;
384
13.1M
            ROUND_00_15(9, h, a, b, c, d, e, f, g);
385
13.1M
            (void)HOST_c2l(data, l);
386
13.1M
            T1 = X[10] = l;
387
13.1M
            ROUND_00_15(10, g, h, a, b, c, d, e, f);
388
13.1M
            (void)HOST_c2l(data, l);
389
13.1M
            T1 = X[11] = l;
390
13.1M
            ROUND_00_15(11, f, g, h, a, b, c, d, e);
391
13.1M
            (void)HOST_c2l(data, l);
392
13.1M
            T1 = X[12] = l;
393
13.1M
            ROUND_00_15(12, e, f, g, h, a, b, c, d);
394
13.1M
            (void)HOST_c2l(data, l);
395
13.1M
            T1 = X[13] = l;
396
13.1M
            ROUND_00_15(13, d, e, f, g, h, a, b, c);
397
13.1M
            (void)HOST_c2l(data, l);
398
13.1M
            T1 = X[14] = l;
399
13.1M
            ROUND_00_15(14, c, d, e, f, g, h, a, b);
400
13.1M
            (void)HOST_c2l(data, l);
401
13.1M
            T1 = X[15] = l;
402
13.1M
            ROUND_00_15(15, b, c, d, e, f, g, h, a);
403
13.1M
        }
404
405
91.9M
        for (i = 16; i < 64; i += 8) {
406
78.7M
            ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
407
78.7M
            ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
408
78.7M
            ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
409
78.7M
            ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
410
78.7M
            ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
411
78.7M
            ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
412
78.7M
            ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
413
78.7M
            ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
414
78.7M
        }
415
416
13.1M
        ctx->h[0] += a;
417
13.1M
        ctx->h[1] += b;
418
13.1M
        ctx->h[2] += c;
419
13.1M
        ctx->h[3] += d;
420
13.1M
        ctx->h[4] += e;
421
13.1M
        ctx->h[5] += f;
422
13.1M
        ctx->h[6] += g;
423
13.1M
        ctx->h[7] += h;
424
425
13.1M
    }
426
2.89M
}
427
428
# endif
429
#endif                         /* SHA256_ASM */