/src/openssl/crypto/x509/v3_addr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2006-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * Implementation of RFC 3779 section 2.2. |
12 | | */ |
13 | | |
14 | | #include <stdio.h> |
15 | | #include <stdlib.h> |
16 | | #include <assert.h> |
17 | | #include <string.h> |
18 | | |
19 | | #include <openssl/conf.h> |
20 | | #include <openssl/asn1.h> |
21 | | #include <openssl/asn1t.h> |
22 | | #include <openssl/buffer.h> |
23 | | #include <openssl/x509v3.h> |
24 | | #include "internal/cryptlib.h" |
25 | | #include "crypto/asn1.h" |
26 | | #include "crypto/x509.h" |
27 | | #include "ext_dat.h" |
28 | | #include "x509_local.h" |
29 | | |
30 | | #ifndef OPENSSL_NO_RFC3779 |
31 | | |
32 | | /* |
33 | | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. |
34 | | */ |
35 | | |
36 | | ASN1_SEQUENCE(IPAddressRange) = { |
37 | | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), |
38 | | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) |
39 | | } ASN1_SEQUENCE_END(IPAddressRange) |
40 | | |
41 | | ASN1_CHOICE(IPAddressOrRange) = { |
42 | | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), |
43 | | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) |
44 | | } ASN1_CHOICE_END(IPAddressOrRange) |
45 | | |
46 | | ASN1_CHOICE(IPAddressChoice) = { |
47 | | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), |
48 | | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) |
49 | | } ASN1_CHOICE_END(IPAddressChoice) |
50 | | |
51 | | ASN1_SEQUENCE(IPAddressFamily) = { |
52 | | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), |
53 | | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) |
54 | | } ASN1_SEQUENCE_END(IPAddressFamily) |
55 | | |
56 | | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = |
57 | | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, |
58 | | IPAddrBlocks, IPAddressFamily) |
59 | | static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) |
60 | | |
61 | | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) |
62 | | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) |
63 | | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) |
64 | | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) |
65 | | |
66 | | /* |
67 | | * How much buffer space do we need for a raw address? |
68 | | */ |
69 | | # define ADDR_RAW_BUF_LEN 16 |
70 | | |
71 | | /* |
72 | | * What's the address length associated with this AFI? |
73 | | */ |
74 | | static int length_from_afi(const unsigned afi) |
75 | 0 | { |
76 | 0 | switch (afi) { |
77 | 0 | case IANA_AFI_IPV4: |
78 | 0 | return 4; |
79 | 0 | case IANA_AFI_IPV6: |
80 | 0 | return 16; |
81 | 0 | default: |
82 | 0 | return 0; |
83 | 0 | } |
84 | 0 | } |
85 | | |
86 | | /* |
87 | | * Extract the AFI from an IPAddressFamily. |
88 | | */ |
89 | | unsigned int X509v3_addr_get_afi(const IPAddressFamily *f) |
90 | 0 | { |
91 | 0 | if (f == NULL |
92 | 0 | || f->addressFamily == NULL |
93 | 0 | || f->addressFamily->data == NULL |
94 | 0 | || f->addressFamily->length < 2) |
95 | 0 | return 0; |
96 | 0 | return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1]; |
97 | 0 | } |
98 | | |
99 | | /* |
100 | | * Expand the bitstring form of an address into a raw byte array. |
101 | | * At the moment this is coded for simplicity, not speed. |
102 | | */ |
103 | | static int addr_expand(unsigned char *addr, |
104 | | const ASN1_BIT_STRING *bs, |
105 | | const int length, const unsigned char fill) |
106 | 0 | { |
107 | 0 | if (bs->length < 0 || bs->length > length) |
108 | 0 | return 0; |
109 | 0 | if (bs->length > 0) { |
110 | 0 | memcpy(addr, bs->data, bs->length); |
111 | 0 | if ((bs->flags & 7) != 0) { |
112 | 0 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); |
113 | |
|
114 | 0 | if (fill == 0) |
115 | 0 | addr[bs->length - 1] &= ~mask; |
116 | 0 | else |
117 | 0 | addr[bs->length - 1] |= mask; |
118 | 0 | } |
119 | 0 | } |
120 | 0 | memset(addr + bs->length, fill, length - bs->length); |
121 | 0 | return 1; |
122 | 0 | } |
123 | | |
124 | | /* |
125 | | * Extract the prefix length from a bitstring. |
126 | | */ |
127 | 0 | # define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7))) |
128 | | |
129 | | /* |
130 | | * i2r handler for one address bitstring. |
131 | | */ |
132 | | static int i2r_address(BIO *out, |
133 | | const unsigned afi, |
134 | | const unsigned char fill, const ASN1_BIT_STRING *bs) |
135 | 0 | { |
136 | 0 | unsigned char addr[ADDR_RAW_BUF_LEN]; |
137 | 0 | int i, n; |
138 | |
|
139 | 0 | if (bs->length < 0) |
140 | 0 | return 0; |
141 | 0 | switch (afi) { |
142 | 0 | case IANA_AFI_IPV4: |
143 | 0 | if (!addr_expand(addr, bs, 4, fill)) |
144 | 0 | return 0; |
145 | 0 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); |
146 | 0 | break; |
147 | 0 | case IANA_AFI_IPV6: |
148 | 0 | if (!addr_expand(addr, bs, 16, fill)) |
149 | 0 | return 0; |
150 | 0 | for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; |
151 | 0 | n -= 2) ; |
152 | 0 | for (i = 0; i < n; i += 2) |
153 | 0 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], |
154 | 0 | (i < 14 ? ":" : "")); |
155 | 0 | if (i < 16) |
156 | 0 | BIO_puts(out, ":"); |
157 | 0 | if (i == 0) |
158 | 0 | BIO_puts(out, ":"); |
159 | 0 | break; |
160 | 0 | default: |
161 | 0 | for (i = 0; i < bs->length; i++) |
162 | 0 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); |
163 | 0 | BIO_printf(out, "[%d]", (int)(bs->flags & 7)); |
164 | 0 | break; |
165 | 0 | } |
166 | 0 | return 1; |
167 | 0 | } |
168 | | |
169 | | /* |
170 | | * i2r handler for a sequence of addresses and ranges. |
171 | | */ |
172 | | static int i2r_IPAddressOrRanges(BIO *out, |
173 | | const int indent, |
174 | | const IPAddressOrRanges *aors, |
175 | | const unsigned afi) |
176 | 0 | { |
177 | 0 | int i; |
178 | |
|
179 | 0 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { |
180 | 0 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); |
181 | |
|
182 | 0 | BIO_printf(out, "%*s", indent, ""); |
183 | 0 | switch (aor->type) { |
184 | 0 | case IPAddressOrRange_addressPrefix: |
185 | 0 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) |
186 | 0 | return 0; |
187 | 0 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); |
188 | 0 | continue; |
189 | 0 | case IPAddressOrRange_addressRange: |
190 | 0 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) |
191 | 0 | return 0; |
192 | 0 | BIO_puts(out, "-"); |
193 | 0 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) |
194 | 0 | return 0; |
195 | 0 | BIO_puts(out, "\n"); |
196 | 0 | continue; |
197 | 0 | } |
198 | 0 | } |
199 | 0 | return 1; |
200 | 0 | } |
201 | | |
202 | | /* |
203 | | * i2r handler for an IPAddrBlocks extension. |
204 | | */ |
205 | | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, |
206 | | void *ext, BIO *out, int indent) |
207 | 0 | { |
208 | 0 | const IPAddrBlocks *addr = ext; |
209 | 0 | int i; |
210 | |
|
211 | 0 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
212 | 0 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
213 | 0 | const unsigned int afi = X509v3_addr_get_afi(f); |
214 | |
|
215 | 0 | switch (afi) { |
216 | 0 | case IANA_AFI_IPV4: |
217 | 0 | BIO_printf(out, "%*sIPv4", indent, ""); |
218 | 0 | break; |
219 | 0 | case IANA_AFI_IPV6: |
220 | 0 | BIO_printf(out, "%*sIPv6", indent, ""); |
221 | 0 | break; |
222 | 0 | default: |
223 | 0 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); |
224 | 0 | break; |
225 | 0 | } |
226 | 0 | if (f->addressFamily->length > 2) { |
227 | 0 | switch (f->addressFamily->data[2]) { |
228 | 0 | case 1: |
229 | 0 | BIO_puts(out, " (Unicast)"); |
230 | 0 | break; |
231 | 0 | case 2: |
232 | 0 | BIO_puts(out, " (Multicast)"); |
233 | 0 | break; |
234 | 0 | case 3: |
235 | 0 | BIO_puts(out, " (Unicast/Multicast)"); |
236 | 0 | break; |
237 | 0 | case 4: |
238 | 0 | BIO_puts(out, " (MPLS)"); |
239 | 0 | break; |
240 | 0 | case 64: |
241 | 0 | BIO_puts(out, " (Tunnel)"); |
242 | 0 | break; |
243 | 0 | case 65: |
244 | 0 | BIO_puts(out, " (VPLS)"); |
245 | 0 | break; |
246 | 0 | case 66: |
247 | 0 | BIO_puts(out, " (BGP MDT)"); |
248 | 0 | break; |
249 | 0 | case 128: |
250 | 0 | BIO_puts(out, " (MPLS-labeled VPN)"); |
251 | 0 | break; |
252 | 0 | default: |
253 | 0 | BIO_printf(out, " (Unknown SAFI %u)", |
254 | 0 | (unsigned)f->addressFamily->data[2]); |
255 | 0 | break; |
256 | 0 | } |
257 | 0 | } |
258 | 0 | switch (f->ipAddressChoice->type) { |
259 | 0 | case IPAddressChoice_inherit: |
260 | 0 | BIO_puts(out, ": inherit\n"); |
261 | 0 | break; |
262 | 0 | case IPAddressChoice_addressesOrRanges: |
263 | 0 | BIO_puts(out, ":\n"); |
264 | 0 | if (!i2r_IPAddressOrRanges(out, |
265 | 0 | indent + 2, |
266 | 0 | f->ipAddressChoice-> |
267 | 0 | u.addressesOrRanges, afi)) |
268 | 0 | return 0; |
269 | 0 | break; |
270 | 0 | } |
271 | 0 | } |
272 | 0 | return 1; |
273 | 0 | } |
274 | | |
275 | | /* |
276 | | * Sort comparison function for a sequence of IPAddressOrRange |
277 | | * elements. |
278 | | * |
279 | | * There's no sane answer we can give if addr_expand() fails, and an |
280 | | * assertion failure on externally supplied data is seriously uncool, |
281 | | * so we just arbitrarily declare that if given invalid inputs this |
282 | | * function returns -1. If this messes up your preferred sort order |
283 | | * for garbage input, tough noogies. |
284 | | */ |
285 | | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, |
286 | | const IPAddressOrRange *b, const int length) |
287 | 0 | { |
288 | 0 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; |
289 | 0 | int prefixlen_a = 0, prefixlen_b = 0; |
290 | 0 | int r; |
291 | |
|
292 | 0 | switch (a->type) { |
293 | 0 | case IPAddressOrRange_addressPrefix: |
294 | 0 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) |
295 | 0 | return -1; |
296 | 0 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); |
297 | 0 | break; |
298 | 0 | case IPAddressOrRange_addressRange: |
299 | 0 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) |
300 | 0 | return -1; |
301 | 0 | prefixlen_a = length * 8; |
302 | 0 | break; |
303 | 0 | default: |
304 | 0 | return -1; |
305 | 0 | } |
306 | | |
307 | 0 | switch (b->type) { |
308 | 0 | case IPAddressOrRange_addressPrefix: |
309 | 0 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) |
310 | 0 | return -1; |
311 | 0 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); |
312 | 0 | break; |
313 | 0 | case IPAddressOrRange_addressRange: |
314 | 0 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) |
315 | 0 | return -1; |
316 | 0 | prefixlen_b = length * 8; |
317 | 0 | break; |
318 | 0 | default: |
319 | 0 | return -1; |
320 | 0 | } |
321 | | |
322 | 0 | if ((r = memcmp(addr_a, addr_b, length)) != 0) |
323 | 0 | return r; |
324 | 0 | else |
325 | 0 | return prefixlen_a - prefixlen_b; |
326 | 0 | } |
327 | | |
328 | | /* |
329 | | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() |
330 | | * comparison routines are only allowed two arguments. |
331 | | */ |
332 | | static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, |
333 | | const IPAddressOrRange *const *b) |
334 | 0 | { |
335 | 0 | return IPAddressOrRange_cmp(*a, *b, 4); |
336 | 0 | } |
337 | | |
338 | | /* |
339 | | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() |
340 | | * comparison routines are only allowed two arguments. |
341 | | */ |
342 | | static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, |
343 | | const IPAddressOrRange *const *b) |
344 | 0 | { |
345 | 0 | return IPAddressOrRange_cmp(*a, *b, 16); |
346 | 0 | } |
347 | | |
348 | | /* |
349 | | * Calculate whether a range collapses to a prefix. |
350 | | * See last paragraph of RFC 3779 2.2.3.7. |
351 | | */ |
352 | | static int range_should_be_prefix(const unsigned char *min, |
353 | | const unsigned char *max, const int length) |
354 | 0 | { |
355 | 0 | unsigned char mask; |
356 | 0 | int i, j; |
357 | | |
358 | | /* |
359 | | * It is the responsibility of the caller to confirm min <= max. We don't |
360 | | * use ossl_assert() here since we have no way of signalling an error from |
361 | | * this function - so we just use a plain assert instead. |
362 | | */ |
363 | 0 | assert(memcmp(min, max, length) <= 0); |
364 | |
|
365 | 0 | for (i = 0; i < length && min[i] == max[i]; i++) ; |
366 | 0 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ; |
367 | 0 | if (i < j) |
368 | 0 | return -1; |
369 | 0 | if (i > j) |
370 | 0 | return i * 8; |
371 | 0 | mask = min[i] ^ max[i]; |
372 | 0 | switch (mask) { |
373 | 0 | case 0x01: |
374 | 0 | j = 7; |
375 | 0 | break; |
376 | 0 | case 0x03: |
377 | 0 | j = 6; |
378 | 0 | break; |
379 | 0 | case 0x07: |
380 | 0 | j = 5; |
381 | 0 | break; |
382 | 0 | case 0x0F: |
383 | 0 | j = 4; |
384 | 0 | break; |
385 | 0 | case 0x1F: |
386 | 0 | j = 3; |
387 | 0 | break; |
388 | 0 | case 0x3F: |
389 | 0 | j = 2; |
390 | 0 | break; |
391 | 0 | case 0x7F: |
392 | 0 | j = 1; |
393 | 0 | break; |
394 | 0 | default: |
395 | 0 | return -1; |
396 | 0 | } |
397 | 0 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) |
398 | 0 | return -1; |
399 | 0 | else |
400 | 0 | return i * 8 + j; |
401 | 0 | } |
402 | | |
403 | | /* |
404 | | * Construct a prefix. |
405 | | */ |
406 | | static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, |
407 | | const int prefixlen, const int afilen) |
408 | 0 | { |
409 | 0 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; |
410 | 0 | IPAddressOrRange *aor; |
411 | |
|
412 | 0 | if (prefixlen < 0 || prefixlen > (afilen * 8)) |
413 | 0 | return 0; |
414 | 0 | if ((aor = IPAddressOrRange_new()) == NULL) |
415 | 0 | return 0; |
416 | 0 | aor->type = IPAddressOrRange_addressPrefix; |
417 | 0 | if (aor->u.addressPrefix == NULL && |
418 | 0 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) |
419 | 0 | goto err; |
420 | 0 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) |
421 | 0 | goto err; |
422 | 0 | if (bitlen > 0) |
423 | 0 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); |
424 | 0 | ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen); |
425 | |
|
426 | 0 | *result = aor; |
427 | 0 | return 1; |
428 | | |
429 | 0 | err: |
430 | 0 | IPAddressOrRange_free(aor); |
431 | 0 | return 0; |
432 | 0 | } |
433 | | |
434 | | /* |
435 | | * Construct a range. If it can be expressed as a prefix, |
436 | | * return a prefix instead. Doing this here simplifies |
437 | | * the rest of the code considerably. |
438 | | */ |
439 | | static int make_addressRange(IPAddressOrRange **result, |
440 | | unsigned char *min, |
441 | | unsigned char *max, const int length) |
442 | 0 | { |
443 | 0 | IPAddressOrRange *aor; |
444 | 0 | int i, prefixlen; |
445 | |
|
446 | 0 | if (memcmp(min, max, length) > 0) |
447 | 0 | return 0; |
448 | | |
449 | 0 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) |
450 | 0 | return make_addressPrefix(result, min, prefixlen, length); |
451 | | |
452 | 0 | if ((aor = IPAddressOrRange_new()) == NULL) |
453 | 0 | return 0; |
454 | 0 | aor->type = IPAddressOrRange_addressRange; |
455 | 0 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) |
456 | 0 | goto err; |
457 | 0 | if (aor->u.addressRange->min == NULL && |
458 | 0 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) |
459 | 0 | goto err; |
460 | 0 | if (aor->u.addressRange->max == NULL && |
461 | 0 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) |
462 | 0 | goto err; |
463 | | |
464 | 0 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) ; |
465 | 0 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) |
466 | 0 | goto err; |
467 | 0 | ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0); |
468 | 0 | if (i > 0) { |
469 | 0 | unsigned char b = min[i - 1]; |
470 | 0 | int j = 1; |
471 | |
|
472 | 0 | while ((b & (0xFFU >> j)) != 0) |
473 | 0 | ++j; |
474 | 0 | aor->u.addressRange->min->flags |= 8 - j; |
475 | 0 | } |
476 | |
|
477 | 0 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ; |
478 | 0 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) |
479 | 0 | goto err; |
480 | 0 | ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0); |
481 | 0 | if (i > 0) { |
482 | 0 | unsigned char b = max[i - 1]; |
483 | 0 | int j = 1; |
484 | |
|
485 | 0 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) |
486 | 0 | ++j; |
487 | 0 | aor->u.addressRange->max->flags |= 8 - j; |
488 | 0 | } |
489 | |
|
490 | 0 | *result = aor; |
491 | 0 | return 1; |
492 | | |
493 | 0 | err: |
494 | 0 | IPAddressOrRange_free(aor); |
495 | 0 | return 0; |
496 | 0 | } |
497 | | |
498 | | /* |
499 | | * Construct a new address family or find an existing one. |
500 | | */ |
501 | | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, |
502 | | const unsigned afi, |
503 | | const unsigned *safi) |
504 | 0 | { |
505 | 0 | IPAddressFamily *f; |
506 | 0 | unsigned char key[3]; |
507 | 0 | int keylen; |
508 | 0 | int i; |
509 | |
|
510 | 0 | key[0] = (afi >> 8) & 0xFF; |
511 | 0 | key[1] = afi & 0xFF; |
512 | 0 | if (safi != NULL) { |
513 | 0 | key[2] = *safi & 0xFF; |
514 | 0 | keylen = 3; |
515 | 0 | } else { |
516 | 0 | keylen = 2; |
517 | 0 | } |
518 | |
|
519 | 0 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
520 | 0 | f = sk_IPAddressFamily_value(addr, i); |
521 | 0 | if (f->addressFamily->length == keylen && |
522 | 0 | !memcmp(f->addressFamily->data, key, keylen)) |
523 | 0 | return f; |
524 | 0 | } |
525 | | |
526 | 0 | if ((f = IPAddressFamily_new()) == NULL) |
527 | 0 | goto err; |
528 | 0 | if (f->ipAddressChoice == NULL && |
529 | 0 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) |
530 | 0 | goto err; |
531 | 0 | if (f->addressFamily == NULL && |
532 | 0 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) |
533 | 0 | goto err; |
534 | 0 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) |
535 | 0 | goto err; |
536 | 0 | if (!sk_IPAddressFamily_push(addr, f)) |
537 | 0 | goto err; |
538 | | |
539 | 0 | return f; |
540 | | |
541 | 0 | err: |
542 | 0 | IPAddressFamily_free(f); |
543 | 0 | return NULL; |
544 | 0 | } |
545 | | |
546 | | /* |
547 | | * Add an inheritance element. |
548 | | */ |
549 | | int X509v3_addr_add_inherit(IPAddrBlocks *addr, |
550 | | const unsigned afi, const unsigned *safi) |
551 | 0 | { |
552 | 0 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
553 | |
|
554 | 0 | if (f == NULL || |
555 | 0 | f->ipAddressChoice == NULL || |
556 | 0 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
557 | 0 | f->ipAddressChoice->u.addressesOrRanges != NULL)) |
558 | 0 | return 0; |
559 | 0 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && |
560 | 0 | f->ipAddressChoice->u.inherit != NULL) |
561 | 0 | return 1; |
562 | 0 | if (f->ipAddressChoice->u.inherit == NULL && |
563 | 0 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) |
564 | 0 | return 0; |
565 | 0 | f->ipAddressChoice->type = IPAddressChoice_inherit; |
566 | 0 | return 1; |
567 | 0 | } |
568 | | |
569 | | /* |
570 | | * Construct an IPAddressOrRange sequence, or return an existing one. |
571 | | */ |
572 | | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, |
573 | | const unsigned afi, |
574 | | const unsigned *safi) |
575 | 0 | { |
576 | 0 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
577 | 0 | IPAddressOrRanges *aors = NULL; |
578 | |
|
579 | 0 | if (f == NULL || |
580 | 0 | f->ipAddressChoice == NULL || |
581 | 0 | (f->ipAddressChoice->type == IPAddressChoice_inherit && |
582 | 0 | f->ipAddressChoice->u.inherit != NULL)) |
583 | 0 | return NULL; |
584 | 0 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) |
585 | 0 | aors = f->ipAddressChoice->u.addressesOrRanges; |
586 | 0 | if (aors != NULL) |
587 | 0 | return aors; |
588 | 0 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) |
589 | 0 | return NULL; |
590 | 0 | switch (afi) { |
591 | 0 | case IANA_AFI_IPV4: |
592 | 0 | (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); |
593 | 0 | break; |
594 | 0 | case IANA_AFI_IPV6: |
595 | 0 | (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); |
596 | 0 | break; |
597 | 0 | } |
598 | 0 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; |
599 | 0 | f->ipAddressChoice->u.addressesOrRanges = aors; |
600 | 0 | return aors; |
601 | 0 | } |
602 | | |
603 | | /* |
604 | | * Add a prefix. |
605 | | */ |
606 | | int X509v3_addr_add_prefix(IPAddrBlocks *addr, |
607 | | const unsigned afi, |
608 | | const unsigned *safi, |
609 | | unsigned char *a, const int prefixlen) |
610 | 0 | { |
611 | 0 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
612 | 0 | IPAddressOrRange *aor; |
613 | |
|
614 | 0 | if (aors == NULL |
615 | 0 | || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi))) |
616 | 0 | return 0; |
617 | 0 | if (sk_IPAddressOrRange_push(aors, aor)) |
618 | 0 | return 1; |
619 | 0 | IPAddressOrRange_free(aor); |
620 | 0 | return 0; |
621 | 0 | } |
622 | | |
623 | | /* |
624 | | * Add a range. |
625 | | */ |
626 | | int X509v3_addr_add_range(IPAddrBlocks *addr, |
627 | | const unsigned afi, |
628 | | const unsigned *safi, |
629 | | unsigned char *min, unsigned char *max) |
630 | 0 | { |
631 | 0 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
632 | 0 | IPAddressOrRange *aor; |
633 | 0 | int length = length_from_afi(afi); |
634 | |
|
635 | 0 | if (aors == NULL) |
636 | 0 | return 0; |
637 | 0 | if (!make_addressRange(&aor, min, max, length)) |
638 | 0 | return 0; |
639 | 0 | if (sk_IPAddressOrRange_push(aors, aor)) |
640 | 0 | return 1; |
641 | 0 | IPAddressOrRange_free(aor); |
642 | 0 | return 0; |
643 | 0 | } |
644 | | |
645 | | /* |
646 | | * Extract min and max values from an IPAddressOrRange. |
647 | | */ |
648 | | static int extract_min_max(IPAddressOrRange *aor, |
649 | | unsigned char *min, unsigned char *max, int length) |
650 | 0 | { |
651 | 0 | if (aor == NULL || min == NULL || max == NULL) |
652 | 0 | return 0; |
653 | 0 | switch (aor->type) { |
654 | 0 | case IPAddressOrRange_addressPrefix: |
655 | 0 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && |
656 | 0 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); |
657 | 0 | case IPAddressOrRange_addressRange: |
658 | 0 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && |
659 | 0 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); |
660 | 0 | } |
661 | 0 | return 0; |
662 | 0 | } |
663 | | |
664 | | /* |
665 | | * Public wrapper for extract_min_max(). |
666 | | */ |
667 | | int X509v3_addr_get_range(IPAddressOrRange *aor, |
668 | | const unsigned afi, |
669 | | unsigned char *min, |
670 | | unsigned char *max, const int length) |
671 | 0 | { |
672 | 0 | int afi_length = length_from_afi(afi); |
673 | |
|
674 | 0 | if (aor == NULL || min == NULL || max == NULL || |
675 | 0 | afi_length == 0 || length < afi_length || |
676 | 0 | (aor->type != IPAddressOrRange_addressPrefix && |
677 | 0 | aor->type != IPAddressOrRange_addressRange) || |
678 | 0 | !extract_min_max(aor, min, max, afi_length)) |
679 | 0 | return 0; |
680 | | |
681 | 0 | return afi_length; |
682 | 0 | } |
683 | | |
684 | | /* |
685 | | * Sort comparison function for a sequence of IPAddressFamily. |
686 | | * |
687 | | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about |
688 | | * the ordering: I can read it as meaning that IPv6 without a SAFI |
689 | | * comes before IPv4 with a SAFI, which seems pretty weird. The |
690 | | * examples in appendix B suggest that the author intended the |
691 | | * null-SAFI rule to apply only within a single AFI, which is what I |
692 | | * would have expected and is what the following code implements. |
693 | | */ |
694 | | static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, |
695 | | const IPAddressFamily *const *b_) |
696 | 0 | { |
697 | 0 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; |
698 | 0 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; |
699 | 0 | int len = ((a->length <= b->length) ? a->length : b->length); |
700 | 0 | int cmp = memcmp(a->data, b->data, len); |
701 | |
|
702 | 0 | return cmp ? cmp : a->length - b->length; |
703 | 0 | } |
704 | | |
705 | | static int IPAddressFamily_check_len(const IPAddressFamily *f) |
706 | 0 | { |
707 | 0 | if (f->addressFamily->length < 2 || f->addressFamily->length > 3) |
708 | 0 | return 0; |
709 | 0 | else |
710 | 0 | return 1; |
711 | 0 | } |
712 | | |
713 | | /* |
714 | | * Check whether an IPAddrBLocks is in canonical form. |
715 | | */ |
716 | | int X509v3_addr_is_canonical(IPAddrBlocks *addr) |
717 | 0 | { |
718 | 0 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
719 | 0 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
720 | 0 | IPAddressOrRanges *aors; |
721 | 0 | int i, j, k; |
722 | | |
723 | | /* |
724 | | * Empty extension is canonical. |
725 | | */ |
726 | 0 | if (addr == NULL) |
727 | 0 | return 1; |
728 | | |
729 | | /* |
730 | | * Check whether the top-level list is in order. |
731 | | */ |
732 | 0 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { |
733 | 0 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); |
734 | 0 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); |
735 | |
|
736 | 0 | if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b)) |
737 | 0 | return 0; |
738 | | |
739 | 0 | if (IPAddressFamily_cmp(&a, &b) >= 0) |
740 | 0 | return 0; |
741 | 0 | } |
742 | | |
743 | | /* |
744 | | * Top level's ok, now check each address family. |
745 | | */ |
746 | 0 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
747 | 0 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
748 | 0 | int length = length_from_afi(X509v3_addr_get_afi(f)); |
749 | | |
750 | | /* |
751 | | * Inheritance is canonical. Anything other than inheritance or |
752 | | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. |
753 | | */ |
754 | 0 | if (f == NULL || f->ipAddressChoice == NULL) |
755 | 0 | return 0; |
756 | 0 | switch (f->ipAddressChoice->type) { |
757 | 0 | case IPAddressChoice_inherit: |
758 | 0 | continue; |
759 | 0 | case IPAddressChoice_addressesOrRanges: |
760 | 0 | break; |
761 | 0 | default: |
762 | 0 | return 0; |
763 | 0 | } |
764 | | |
765 | 0 | if (!IPAddressFamily_check_len(f)) |
766 | 0 | return 0; |
767 | | |
768 | | /* |
769 | | * It's an IPAddressOrRanges sequence, check it. |
770 | | */ |
771 | 0 | aors = f->ipAddressChoice->u.addressesOrRanges; |
772 | 0 | if (sk_IPAddressOrRange_num(aors) == 0) |
773 | 0 | return 0; |
774 | 0 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { |
775 | 0 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
776 | 0 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); |
777 | |
|
778 | 0 | if (!extract_min_max(a, a_min, a_max, length) || |
779 | 0 | !extract_min_max(b, b_min, b_max, length)) |
780 | 0 | return 0; |
781 | | |
782 | | /* |
783 | | * Punt misordered list, overlapping start, or inverted range. |
784 | | */ |
785 | 0 | if (memcmp(a_min, b_min, length) >= 0 || |
786 | 0 | memcmp(a_min, a_max, length) > 0 || |
787 | 0 | memcmp(b_min, b_max, length) > 0) |
788 | 0 | return 0; |
789 | | |
790 | | /* |
791 | | * Punt if adjacent or overlapping. Check for adjacency by |
792 | | * subtracting one from b_min first. |
793 | | */ |
794 | 0 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ; |
795 | 0 | if (memcmp(a_max, b_min, length) >= 0) |
796 | 0 | return 0; |
797 | | |
798 | | /* |
799 | | * Check for range that should be expressed as a prefix. |
800 | | */ |
801 | 0 | if (a->type == IPAddressOrRange_addressRange && |
802 | 0 | range_should_be_prefix(a_min, a_max, length) >= 0) |
803 | 0 | return 0; |
804 | 0 | } |
805 | | |
806 | | /* |
807 | | * Check range to see if it's inverted or should be a |
808 | | * prefix. |
809 | | */ |
810 | 0 | j = sk_IPAddressOrRange_num(aors) - 1; |
811 | 0 | { |
812 | 0 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
813 | |
|
814 | 0 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
815 | 0 | if (!extract_min_max(a, a_min, a_max, length)) |
816 | 0 | return 0; |
817 | 0 | if (memcmp(a_min, a_max, length) > 0 || |
818 | 0 | range_should_be_prefix(a_min, a_max, length) >= 0) |
819 | 0 | return 0; |
820 | 0 | } |
821 | 0 | } |
822 | 0 | } |
823 | | |
824 | | /* |
825 | | * If we made it through all that, we're happy. |
826 | | */ |
827 | 0 | return 1; |
828 | 0 | } |
829 | | |
830 | | /* |
831 | | * Whack an IPAddressOrRanges into canonical form. |
832 | | */ |
833 | | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, |
834 | | const unsigned afi) |
835 | 0 | { |
836 | 0 | int i, j, length = length_from_afi(afi); |
837 | | |
838 | | /* |
839 | | * Sort the IPAddressOrRanges sequence. |
840 | | */ |
841 | 0 | sk_IPAddressOrRange_sort(aors); |
842 | | |
843 | | /* |
844 | | * Clean up representation issues, punt on duplicates or overlaps. |
845 | | */ |
846 | 0 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { |
847 | 0 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); |
848 | 0 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); |
849 | 0 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
850 | 0 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
851 | |
|
852 | 0 | if (!extract_min_max(a, a_min, a_max, length) || |
853 | 0 | !extract_min_max(b, b_min, b_max, length)) |
854 | 0 | return 0; |
855 | | |
856 | | /* |
857 | | * Punt inverted ranges. |
858 | | */ |
859 | 0 | if (memcmp(a_min, a_max, length) > 0 || |
860 | 0 | memcmp(b_min, b_max, length) > 0) |
861 | 0 | return 0; |
862 | | |
863 | | /* |
864 | | * Punt overlaps. |
865 | | */ |
866 | 0 | if (memcmp(a_max, b_min, length) >= 0) |
867 | 0 | return 0; |
868 | | |
869 | | /* |
870 | | * Merge if a and b are adjacent. We check for |
871 | | * adjacency by subtracting one from b_min first. |
872 | | */ |
873 | 0 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ; |
874 | 0 | if (memcmp(a_max, b_min, length) == 0) { |
875 | 0 | IPAddressOrRange *merged; |
876 | |
|
877 | 0 | if (!make_addressRange(&merged, a_min, b_max, length)) |
878 | 0 | return 0; |
879 | 0 | (void)sk_IPAddressOrRange_set(aors, i, merged); |
880 | 0 | (void)sk_IPAddressOrRange_delete(aors, i + 1); |
881 | 0 | IPAddressOrRange_free(a); |
882 | 0 | IPAddressOrRange_free(b); |
883 | 0 | --i; |
884 | 0 | continue; |
885 | 0 | } |
886 | 0 | } |
887 | | |
888 | | /* |
889 | | * Check for inverted final range. |
890 | | */ |
891 | 0 | j = sk_IPAddressOrRange_num(aors) - 1; |
892 | 0 | { |
893 | 0 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
894 | |
|
895 | 0 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
896 | 0 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
897 | |
|
898 | 0 | if (!extract_min_max(a, a_min, a_max, length)) |
899 | 0 | return 0; |
900 | 0 | if (memcmp(a_min, a_max, length) > 0) |
901 | 0 | return 0; |
902 | 0 | } |
903 | 0 | } |
904 | | |
905 | 0 | return 1; |
906 | 0 | } |
907 | | |
908 | | /* |
909 | | * Whack an IPAddrBlocks extension into canonical form. |
910 | | */ |
911 | | int X509v3_addr_canonize(IPAddrBlocks *addr) |
912 | 0 | { |
913 | 0 | int i; |
914 | |
|
915 | 0 | if (addr == NULL) { |
916 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT); |
917 | 0 | return 0; |
918 | 0 | } |
919 | | |
920 | 0 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
921 | 0 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
922 | |
|
923 | 0 | if (!IPAddressFamily_check_len(f)) |
924 | 0 | return 0; |
925 | | |
926 | 0 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
927 | 0 | !IPAddressOrRanges_canonize(f->ipAddressChoice-> |
928 | 0 | u.addressesOrRanges, |
929 | 0 | X509v3_addr_get_afi(f))) |
930 | 0 | return 0; |
931 | 0 | } |
932 | 0 | (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); |
933 | 0 | sk_IPAddressFamily_sort(addr); |
934 | 0 | if (!ossl_assert(X509v3_addr_is_canonical(addr))) |
935 | 0 | return 0; |
936 | 0 | return 1; |
937 | 0 | } |
938 | | |
939 | | /* |
940 | | * v2i handler for the IPAddrBlocks extension. |
941 | | */ |
942 | | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, |
943 | | struct v3_ext_ctx *ctx, |
944 | | STACK_OF(CONF_VALUE) *values) |
945 | 0 | { |
946 | 0 | static const char v4addr_chars[] = "0123456789."; |
947 | 0 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; |
948 | 0 | IPAddrBlocks *addr = NULL; |
949 | 0 | char *s = NULL, *t; |
950 | 0 | int i; |
951 | |
|
952 | 0 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { |
953 | 0 | ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); |
954 | 0 | return NULL; |
955 | 0 | } |
956 | | |
957 | 0 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { |
958 | 0 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); |
959 | 0 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; |
960 | 0 | unsigned afi, *safi = NULL, safi_; |
961 | 0 | const char *addr_chars = NULL; |
962 | 0 | int prefixlen, i1, i2, delim, length; |
963 | |
|
964 | 0 | if (!ossl_v3_name_cmp(val->name, "IPv4")) { |
965 | 0 | afi = IANA_AFI_IPV4; |
966 | 0 | } else if (!ossl_v3_name_cmp(val->name, "IPv6")) { |
967 | 0 | afi = IANA_AFI_IPV6; |
968 | 0 | } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) { |
969 | 0 | afi = IANA_AFI_IPV4; |
970 | 0 | safi = &safi_; |
971 | 0 | } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) { |
972 | 0 | afi = IANA_AFI_IPV6; |
973 | 0 | safi = &safi_; |
974 | 0 | } else { |
975 | 0 | ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR, |
976 | 0 | "%s", val->name); |
977 | 0 | goto err; |
978 | 0 | } |
979 | | |
980 | 0 | switch (afi) { |
981 | 0 | case IANA_AFI_IPV4: |
982 | 0 | addr_chars = v4addr_chars; |
983 | 0 | break; |
984 | 0 | case IANA_AFI_IPV6: |
985 | 0 | addr_chars = v6addr_chars; |
986 | 0 | break; |
987 | 0 | } |
988 | | |
989 | 0 | length = length_from_afi(afi); |
990 | | |
991 | | /* |
992 | | * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate |
993 | | * the other input values. |
994 | | */ |
995 | 0 | if (safi != NULL) { |
996 | 0 | if (val->value == NULL) { |
997 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE); |
998 | 0 | goto err; |
999 | 0 | } |
1000 | 0 | *safi = strtoul(val->value, &t, 0); |
1001 | 0 | t += strspn(t, " \t"); |
1002 | 0 | if (*safi > 0xFF || *t++ != ':') { |
1003 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI); |
1004 | 0 | X509V3_conf_add_error_name_value(val); |
1005 | 0 | goto err; |
1006 | 0 | } |
1007 | 0 | t += strspn(t, " \t"); |
1008 | 0 | s = OPENSSL_strdup(t); |
1009 | 0 | } else { |
1010 | 0 | s = OPENSSL_strdup(val->value); |
1011 | 0 | } |
1012 | 0 | if (s == NULL) |
1013 | 0 | goto err; |
1014 | | |
1015 | | /* |
1016 | | * Check for inheritance. Not worth additional complexity to |
1017 | | * optimize this (seldom-used) case. |
1018 | | */ |
1019 | 0 | if (strcmp(s, "inherit") == 0) { |
1020 | 0 | if (!X509v3_addr_add_inherit(addr, afi, safi)) { |
1021 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE); |
1022 | 0 | X509V3_conf_add_error_name_value(val); |
1023 | 0 | goto err; |
1024 | 0 | } |
1025 | 0 | OPENSSL_free(s); |
1026 | 0 | s = NULL; |
1027 | 0 | continue; |
1028 | 0 | } |
1029 | | |
1030 | 0 | i1 = strspn(s, addr_chars); |
1031 | 0 | i2 = i1 + strspn(s + i1, " \t"); |
1032 | 0 | delim = s[i2++]; |
1033 | 0 | s[i1] = '\0'; |
1034 | |
|
1035 | 0 | if (ossl_a2i_ipadd(min, s) != length) { |
1036 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS); |
1037 | 0 | X509V3_conf_add_error_name_value(val); |
1038 | 0 | goto err; |
1039 | 0 | } |
1040 | | |
1041 | 0 | switch (delim) { |
1042 | 0 | case '/': |
1043 | 0 | prefixlen = (int)strtoul(s + i2, &t, 10); |
1044 | 0 | if (t == s + i2 |
1045 | 0 | || *t != '\0' |
1046 | 0 | || prefixlen > (length * 8) |
1047 | 0 | || prefixlen < 0) { |
1048 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); |
1049 | 0 | X509V3_conf_add_error_name_value(val); |
1050 | 0 | goto err; |
1051 | 0 | } |
1052 | 0 | if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { |
1053 | 0 | ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); |
1054 | 0 | goto err; |
1055 | 0 | } |
1056 | 0 | break; |
1057 | 0 | case '-': |
1058 | 0 | i1 = i2 + strspn(s + i2, " \t"); |
1059 | 0 | i2 = i1 + strspn(s + i1, addr_chars); |
1060 | 0 | if (i1 == i2 || s[i2] != '\0') { |
1061 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); |
1062 | 0 | X509V3_conf_add_error_name_value(val); |
1063 | 0 | goto err; |
1064 | 0 | } |
1065 | 0 | if (ossl_a2i_ipadd(max, s + i1) != length) { |
1066 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS); |
1067 | 0 | X509V3_conf_add_error_name_value(val); |
1068 | 0 | goto err; |
1069 | 0 | } |
1070 | 0 | if (memcmp(min, max, length_from_afi(afi)) > 0) { |
1071 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); |
1072 | 0 | X509V3_conf_add_error_name_value(val); |
1073 | 0 | goto err; |
1074 | 0 | } |
1075 | 0 | if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { |
1076 | 0 | ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); |
1077 | 0 | goto err; |
1078 | 0 | } |
1079 | 0 | break; |
1080 | 0 | case '\0': |
1081 | 0 | if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { |
1082 | 0 | ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); |
1083 | 0 | goto err; |
1084 | 0 | } |
1085 | 0 | break; |
1086 | 0 | default: |
1087 | 0 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); |
1088 | 0 | X509V3_conf_add_error_name_value(val); |
1089 | 0 | goto err; |
1090 | 0 | } |
1091 | | |
1092 | 0 | OPENSSL_free(s); |
1093 | 0 | s = NULL; |
1094 | 0 | } |
1095 | | |
1096 | | /* |
1097 | | * Canonize the result, then we're done. |
1098 | | */ |
1099 | 0 | if (!X509v3_addr_canonize(addr)) |
1100 | 0 | goto err; |
1101 | 0 | return addr; |
1102 | | |
1103 | 0 | err: |
1104 | 0 | OPENSSL_free(s); |
1105 | 0 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); |
1106 | 0 | return NULL; |
1107 | 0 | } |
1108 | | |
1109 | | /* |
1110 | | * OpenSSL dispatch |
1111 | | */ |
1112 | | const X509V3_EXT_METHOD ossl_v3_addr = { |
1113 | | NID_sbgp_ipAddrBlock, /* nid */ |
1114 | | 0, /* flags */ |
1115 | | ASN1_ITEM_ref(IPAddrBlocks), /* template */ |
1116 | | 0, 0, 0, 0, /* old functions, ignored */ |
1117 | | 0, /* i2s */ |
1118 | | 0, /* s2i */ |
1119 | | 0, /* i2v */ |
1120 | | v2i_IPAddrBlocks, /* v2i */ |
1121 | | i2r_IPAddrBlocks, /* i2r */ |
1122 | | 0, /* r2i */ |
1123 | | NULL /* extension-specific data */ |
1124 | | }; |
1125 | | |
1126 | | /* |
1127 | | * Figure out whether extension sues inheritance. |
1128 | | */ |
1129 | | int X509v3_addr_inherits(IPAddrBlocks *addr) |
1130 | 0 | { |
1131 | 0 | int i; |
1132 | |
|
1133 | 0 | if (addr == NULL) |
1134 | 0 | return 0; |
1135 | 0 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
1136 | 0 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
1137 | |
|
1138 | 0 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) |
1139 | 0 | return 1; |
1140 | 0 | } |
1141 | 0 | return 0; |
1142 | 0 | } |
1143 | | |
1144 | | /* |
1145 | | * Figure out whether parent contains child. |
1146 | | */ |
1147 | | static int addr_contains(IPAddressOrRanges *parent, |
1148 | | IPAddressOrRanges *child, int length) |
1149 | 0 | { |
1150 | 0 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; |
1151 | 0 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; |
1152 | 0 | int p, c; |
1153 | |
|
1154 | 0 | if (child == NULL || parent == child) |
1155 | 0 | return 1; |
1156 | 0 | if (parent == NULL) |
1157 | 0 | return 0; |
1158 | | |
1159 | 0 | p = 0; |
1160 | 0 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { |
1161 | 0 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), |
1162 | 0 | c_min, c_max, length)) |
1163 | 0 | return 0; |
1164 | 0 | for (;; p++) { |
1165 | 0 | if (p >= sk_IPAddressOrRange_num(parent)) |
1166 | 0 | return 0; |
1167 | 0 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), |
1168 | 0 | p_min, p_max, length)) |
1169 | 0 | return 0; |
1170 | 0 | if (memcmp(p_max, c_max, length) < 0) |
1171 | 0 | continue; |
1172 | 0 | if (memcmp(p_min, c_min, length) > 0) |
1173 | 0 | return 0; |
1174 | 0 | break; |
1175 | 0 | } |
1176 | 0 | } |
1177 | | |
1178 | 0 | return 1; |
1179 | 0 | } |
1180 | | |
1181 | | /* |
1182 | | * Test whether a is a subset of b. |
1183 | | */ |
1184 | | int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) |
1185 | 0 | { |
1186 | 0 | int i; |
1187 | |
|
1188 | 0 | if (a == NULL || a == b) |
1189 | 0 | return 1; |
1190 | 0 | if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b)) |
1191 | 0 | return 0; |
1192 | 0 | (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); |
1193 | 0 | sk_IPAddressFamily_sort(b); |
1194 | | /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */ |
1195 | 0 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { |
1196 | 0 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); |
1197 | 0 | int j = sk_IPAddressFamily_find(b, fa); |
1198 | 0 | IPAddressFamily *fb = sk_IPAddressFamily_value(b, j); |
1199 | |
|
1200 | 0 | if (fb == NULL) |
1201 | 0 | return 0; |
1202 | 0 | if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb)) |
1203 | 0 | return 0; |
1204 | 0 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, |
1205 | 0 | fa->ipAddressChoice->u.addressesOrRanges, |
1206 | 0 | length_from_afi(X509v3_addr_get_afi(fb)))) |
1207 | 0 | return 0; |
1208 | 0 | } |
1209 | 0 | return 1; |
1210 | 0 | } |
1211 | | |
1212 | | /* |
1213 | | * Validation error handling via callback. |
1214 | | */ |
1215 | | # define validation_err(_err_) \ |
1216 | 0 | do { \ |
1217 | 0 | if (ctx != NULL) { \ |
1218 | 0 | ctx->error = _err_; \ |
1219 | 0 | ctx->error_depth = i; \ |
1220 | 0 | ctx->current_cert = x; \ |
1221 | 0 | rv = ctx->verify_cb(0, ctx); \ |
1222 | 0 | } else { \ |
1223 | 0 | rv = 0; \ |
1224 | 0 | } \ |
1225 | 0 | if (rv == 0) \ |
1226 | 0 | goto done; \ |
1227 | 0 | } while (0) |
1228 | | |
1229 | | /* |
1230 | | * Core code for RFC 3779 2.3 path validation. |
1231 | | * |
1232 | | * Returns 1 for success, 0 on error. |
1233 | | * |
1234 | | * When returning 0, ctx->error MUST be set to an appropriate value other than |
1235 | | * X509_V_OK. |
1236 | | */ |
1237 | | static int addr_validate_path_internal(X509_STORE_CTX *ctx, |
1238 | | STACK_OF(X509) *chain, |
1239 | | IPAddrBlocks *ext) |
1240 | 0 | { |
1241 | 0 | IPAddrBlocks *child = NULL; |
1242 | 0 | int i, j, ret = 0, rv; |
1243 | 0 | X509 *x; |
1244 | |
|
1245 | 0 | if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) |
1246 | 0 | || !ossl_assert(ctx != NULL || ext != NULL) |
1247 | 0 | || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { |
1248 | 0 | if (ctx != NULL) |
1249 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
1250 | 0 | return 0; |
1251 | 0 | } |
1252 | | |
1253 | | /* |
1254 | | * Figure out where to start. If we don't have an extension to |
1255 | | * check, we're done. Otherwise, check canonical form and |
1256 | | * set up for walking up the chain. |
1257 | | */ |
1258 | 0 | if (ext != NULL) { |
1259 | 0 | i = -1; |
1260 | 0 | x = NULL; |
1261 | 0 | } else { |
1262 | 0 | i = 0; |
1263 | 0 | x = sk_X509_value(chain, i); |
1264 | 0 | if ((ext = x->rfc3779_addr) == NULL) |
1265 | 0 | return 1; /* Return success */ |
1266 | 0 | } |
1267 | 0 | if (!X509v3_addr_is_canonical(ext)) |
1268 | 0 | validation_err(X509_V_ERR_INVALID_EXTENSION); |
1269 | 0 | (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); |
1270 | 0 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { |
1271 | 0 | ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); |
1272 | 0 | if (ctx != NULL) |
1273 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
1274 | 0 | goto done; |
1275 | 0 | } |
1276 | 0 | sk_IPAddressFamily_sort(child); |
1277 | | |
1278 | | /* |
1279 | | * Now walk up the chain. No cert may list resources that its |
1280 | | * parent doesn't list. |
1281 | | */ |
1282 | 0 | for (i++; i < sk_X509_num(chain); i++) { |
1283 | 0 | x = sk_X509_value(chain, i); |
1284 | 0 | if (!X509v3_addr_is_canonical(x->rfc3779_addr)) |
1285 | 0 | validation_err(X509_V_ERR_INVALID_EXTENSION); |
1286 | 0 | if (x->rfc3779_addr == NULL) { |
1287 | 0 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
1288 | 0 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); |
1289 | |
|
1290 | 0 | if (!IPAddressFamily_check_len(fc)) |
1291 | 0 | goto done; |
1292 | | |
1293 | 0 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { |
1294 | 0 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
1295 | 0 | break; |
1296 | 0 | } |
1297 | 0 | } |
1298 | 0 | continue; |
1299 | 0 | } |
1300 | 0 | (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, |
1301 | 0 | IPAddressFamily_cmp); |
1302 | 0 | sk_IPAddressFamily_sort(x->rfc3779_addr); |
1303 | 0 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
1304 | 0 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); |
1305 | 0 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); |
1306 | 0 | IPAddressFamily *fp = |
1307 | 0 | sk_IPAddressFamily_value(x->rfc3779_addr, k); |
1308 | |
|
1309 | 0 | if (fp == NULL) { |
1310 | 0 | if (fc->ipAddressChoice->type == |
1311 | 0 | IPAddressChoice_addressesOrRanges) { |
1312 | 0 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
1313 | 0 | break; |
1314 | 0 | } |
1315 | 0 | continue; |
1316 | 0 | } |
1317 | | |
1318 | 0 | if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp)) |
1319 | 0 | goto done; |
1320 | | |
1321 | 0 | if (fp->ipAddressChoice->type == |
1322 | 0 | IPAddressChoice_addressesOrRanges) { |
1323 | 0 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit |
1324 | 0 | || addr_contains(fp->ipAddressChoice->u.addressesOrRanges, |
1325 | 0 | fc->ipAddressChoice->u.addressesOrRanges, |
1326 | 0 | length_from_afi(X509v3_addr_get_afi(fc)))) |
1327 | 0 | (void)sk_IPAddressFamily_set(child, j, fp); |
1328 | 0 | else |
1329 | 0 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
1330 | 0 | } |
1331 | 0 | } |
1332 | 0 | } |
1333 | | |
1334 | | /* |
1335 | | * Trust anchor can't inherit. |
1336 | | */ |
1337 | 0 | if (x->rfc3779_addr != NULL) { |
1338 | 0 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { |
1339 | 0 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); |
1340 | |
|
1341 | 0 | if (!IPAddressFamily_check_len(fp)) |
1342 | 0 | goto done; |
1343 | | |
1344 | 0 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit |
1345 | 0 | && sk_IPAddressFamily_find(child, fp) >= 0) |
1346 | 0 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
1347 | 0 | } |
1348 | 0 | } |
1349 | 0 | ret = 1; |
1350 | 0 | done: |
1351 | 0 | sk_IPAddressFamily_free(child); |
1352 | 0 | return ret; |
1353 | 0 | } |
1354 | | |
1355 | | # undef validation_err |
1356 | | |
1357 | | /* |
1358 | | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). |
1359 | | */ |
1360 | | int X509v3_addr_validate_path(X509_STORE_CTX *ctx) |
1361 | 0 | { |
1362 | 0 | if (ctx->chain == NULL |
1363 | 0 | || sk_X509_num(ctx->chain) == 0 |
1364 | 0 | || ctx->verify_cb == NULL) { |
1365 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
1366 | 0 | return 0; |
1367 | 0 | } |
1368 | 0 | return addr_validate_path_internal(ctx, ctx->chain, NULL); |
1369 | 0 | } |
1370 | | |
1371 | | /* |
1372 | | * RFC 3779 2.3 path validation of an extension. |
1373 | | * Test whether chain covers extension. |
1374 | | */ |
1375 | | int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, |
1376 | | IPAddrBlocks *ext, int allow_inheritance) |
1377 | 0 | { |
1378 | 0 | if (ext == NULL) |
1379 | 0 | return 1; |
1380 | 0 | if (chain == NULL || sk_X509_num(chain) == 0) |
1381 | 0 | return 0; |
1382 | 0 | if (!allow_inheritance && X509v3_addr_inherits(ext)) |
1383 | 0 | return 0; |
1384 | 0 | return addr_validate_path_internal(NULL, chain, ext); |
1385 | 0 | } |
1386 | | |
1387 | | #endif /* OPENSSL_NO_RFC3779 */ |