Coverage Report

Created: 2025-06-13 06:36

/src/openssl/crypto/x509/v3_addr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include <openssl/conf.h>
20
#include <openssl/asn1.h>
21
#include <openssl/asn1t.h>
22
#include <openssl/buffer.h>
23
#include <openssl/x509v3.h>
24
#include "internal/cryptlib.h"
25
#include "crypto/asn1.h"
26
#include "crypto/x509.h"
27
#include "ext_dat.h"
28
#include "x509_local.h"
29
30
#ifndef OPENSSL_NO_RFC3779
31
32
/*
33
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
34
 */
35
36
ASN1_SEQUENCE(IPAddressRange) = {
37
    ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
38
    ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
39
} ASN1_SEQUENCE_END(IPAddressRange)
40
41
ASN1_CHOICE(IPAddressOrRange) = {
42
    ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
43
    ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
44
} ASN1_CHOICE_END(IPAddressOrRange)
45
46
ASN1_CHOICE(IPAddressChoice) = {
47
    ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
48
    ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
49
} ASN1_CHOICE_END(IPAddressChoice)
50
51
ASN1_SEQUENCE(IPAddressFamily) = {
52
    ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
53
    ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
54
} ASN1_SEQUENCE_END(IPAddressFamily)
55
56
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
57
    ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
58
                          IPAddrBlocks, IPAddressFamily)
59
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
60
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
63
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
64
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
65
66
/*
67
 * How much buffer space do we need for a raw address?
68
 */
69
# define ADDR_RAW_BUF_LEN 16
70
71
/*
72
 * What's the address length associated with this AFI?
73
 */
74
static int length_from_afi(const unsigned afi)
75
0
{
76
0
    switch (afi) {
77
0
    case IANA_AFI_IPV4:
78
0
        return 4;
79
0
    case IANA_AFI_IPV6:
80
0
        return 16;
81
0
    default:
82
0
        return 0;
83
0
    }
84
0
}
85
86
/*
87
 * Extract the AFI from an IPAddressFamily.
88
 */
89
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
90
0
{
91
0
    if (f == NULL
92
0
            || f->addressFamily == NULL
93
0
            || f->addressFamily->data == NULL
94
0
            || f->addressFamily->length < 2)
95
0
        return 0;
96
0
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
97
0
}
98
99
/*
100
 * Expand the bitstring form of an address into a raw byte array.
101
 * At the moment this is coded for simplicity, not speed.
102
 */
103
static int addr_expand(unsigned char *addr,
104
                       const ASN1_BIT_STRING *bs,
105
                       const int length, const unsigned char fill)
106
0
{
107
0
    if (bs->length < 0 || bs->length > length)
108
0
        return 0;
109
0
    if (bs->length > 0) {
110
0
        memcpy(addr, bs->data, bs->length);
111
0
        if ((bs->flags & 7) != 0) {
112
0
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
113
114
0
            if (fill == 0)
115
0
                addr[bs->length - 1] &= ~mask;
116
0
            else
117
0
                addr[bs->length - 1] |= mask;
118
0
        }
119
0
    }
120
0
    memset(addr + bs->length, fill, length - bs->length);
121
0
    return 1;
122
0
}
123
124
/*
125
 * Extract the prefix length from a bitstring.
126
 */
127
0
# define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))
128
129
/*
130
 * i2r handler for one address bitstring.
131
 */
132
static int i2r_address(BIO *out,
133
                       const unsigned afi,
134
                       const unsigned char fill, const ASN1_BIT_STRING *bs)
135
0
{
136
0
    unsigned char addr[ADDR_RAW_BUF_LEN];
137
0
    int i, n;
138
139
0
    if (bs->length < 0)
140
0
        return 0;
141
0
    switch (afi) {
142
0
    case IANA_AFI_IPV4:
143
0
        if (!addr_expand(addr, bs, 4, fill))
144
0
            return 0;
145
0
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
146
0
        break;
147
0
    case IANA_AFI_IPV6:
148
0
        if (!addr_expand(addr, bs, 16, fill))
149
0
            return 0;
150
0
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
151
0
             n -= 2) ;
152
0
        for (i = 0; i < n; i += 2)
153
0
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
154
0
                       (i < 14 ? ":" : ""));
155
0
        if (i < 16)
156
0
            BIO_puts(out, ":");
157
0
        if (i == 0)
158
0
            BIO_puts(out, ":");
159
0
        break;
160
0
    default:
161
0
        for (i = 0; i < bs->length; i++)
162
0
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
163
0
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
164
0
        break;
165
0
    }
166
0
    return 1;
167
0
}
168
169
/*
170
 * i2r handler for a sequence of addresses and ranges.
171
 */
172
static int i2r_IPAddressOrRanges(BIO *out,
173
                                 const int indent,
174
                                 const IPAddressOrRanges *aors,
175
                                 const unsigned afi)
176
0
{
177
0
    int i;
178
179
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
180
0
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
181
182
0
        BIO_printf(out, "%*s", indent, "");
183
0
        switch (aor->type) {
184
0
        case IPAddressOrRange_addressPrefix:
185
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
186
0
                return 0;
187
0
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
188
0
            continue;
189
0
        case IPAddressOrRange_addressRange:
190
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
191
0
                return 0;
192
0
            BIO_puts(out, "-");
193
0
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
194
0
                return 0;
195
0
            BIO_puts(out, "\n");
196
0
            continue;
197
0
        }
198
0
    }
199
0
    return 1;
200
0
}
201
202
/*
203
 * i2r handler for an IPAddrBlocks extension.
204
 */
205
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
206
                            void *ext, BIO *out, int indent)
207
0
{
208
0
    const IPAddrBlocks *addr = ext;
209
0
    int i;
210
211
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
212
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
213
0
        const unsigned int afi = X509v3_addr_get_afi(f);
214
215
0
        switch (afi) {
216
0
        case IANA_AFI_IPV4:
217
0
            BIO_printf(out, "%*sIPv4", indent, "");
218
0
            break;
219
0
        case IANA_AFI_IPV6:
220
0
            BIO_printf(out, "%*sIPv6", indent, "");
221
0
            break;
222
0
        default:
223
0
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
224
0
            break;
225
0
        }
226
0
        if (f->addressFamily->length > 2) {
227
0
            switch (f->addressFamily->data[2]) {
228
0
            case 1:
229
0
                BIO_puts(out, " (Unicast)");
230
0
                break;
231
0
            case 2:
232
0
                BIO_puts(out, " (Multicast)");
233
0
                break;
234
0
            case 3:
235
0
                BIO_puts(out, " (Unicast/Multicast)");
236
0
                break;
237
0
            case 4:
238
0
                BIO_puts(out, " (MPLS)");
239
0
                break;
240
0
            case 64:
241
0
                BIO_puts(out, " (Tunnel)");
242
0
                break;
243
0
            case 65:
244
0
                BIO_puts(out, " (VPLS)");
245
0
                break;
246
0
            case 66:
247
0
                BIO_puts(out, " (BGP MDT)");
248
0
                break;
249
0
            case 128:
250
0
                BIO_puts(out, " (MPLS-labeled VPN)");
251
0
                break;
252
0
            default:
253
0
                BIO_printf(out, " (Unknown SAFI %u)",
254
0
                           (unsigned)f->addressFamily->data[2]);
255
0
                break;
256
0
            }
257
0
        }
258
0
        switch (f->ipAddressChoice->type) {
259
0
        case IPAddressChoice_inherit:
260
0
            BIO_puts(out, ": inherit\n");
261
0
            break;
262
0
        case IPAddressChoice_addressesOrRanges:
263
0
            BIO_puts(out, ":\n");
264
0
            if (!i2r_IPAddressOrRanges(out,
265
0
                                       indent + 2,
266
0
                                       f->ipAddressChoice->
267
0
                                       u.addressesOrRanges, afi))
268
0
                return 0;
269
0
            break;
270
0
        }
271
0
    }
272
0
    return 1;
273
0
}
274
275
/*
276
 * Sort comparison function for a sequence of IPAddressOrRange
277
 * elements.
278
 *
279
 * There's no sane answer we can give if addr_expand() fails, and an
280
 * assertion failure on externally supplied data is seriously uncool,
281
 * so we just arbitrarily declare that if given invalid inputs this
282
 * function returns -1.  If this messes up your preferred sort order
283
 * for garbage input, tough noogies.
284
 */
285
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
286
                                const IPAddressOrRange *b, const int length)
287
0
{
288
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
289
0
    int prefixlen_a = 0, prefixlen_b = 0;
290
0
    int r;
291
292
0
    switch (a->type) {
293
0
    case IPAddressOrRange_addressPrefix:
294
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
295
0
            return -1;
296
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
297
0
        break;
298
0
    case IPAddressOrRange_addressRange:
299
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
300
0
            return -1;
301
0
        prefixlen_a = length * 8;
302
0
        break;
303
0
    default:
304
0
        return -1;
305
0
    }
306
307
0
    switch (b->type) {
308
0
    case IPAddressOrRange_addressPrefix:
309
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
310
0
            return -1;
311
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
312
0
        break;
313
0
    case IPAddressOrRange_addressRange:
314
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
315
0
            return -1;
316
0
        prefixlen_b = length * 8;
317
0
        break;
318
0
    default:
319
0
        return -1;
320
0
    }
321
322
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
323
0
        return r;
324
0
    else
325
0
        return prefixlen_a - prefixlen_b;
326
0
}
327
328
/*
329
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
330
 * comparison routines are only allowed two arguments.
331
 */
332
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
333
                                  const IPAddressOrRange *const *b)
334
0
{
335
0
    return IPAddressOrRange_cmp(*a, *b, 4);
336
0
}
337
338
/*
339
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
340
 * comparison routines are only allowed two arguments.
341
 */
342
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
343
                                  const IPAddressOrRange *const *b)
344
0
{
345
0
    return IPAddressOrRange_cmp(*a, *b, 16);
346
0
}
347
348
/*
349
 * Calculate whether a range collapses to a prefix.
350
 * See last paragraph of RFC 3779 2.2.3.7.
351
 */
352
static int range_should_be_prefix(const unsigned char *min,
353
                                  const unsigned char *max, const int length)
354
0
{
355
0
    unsigned char mask;
356
0
    int i, j;
357
358
    /*
359
     * It is the responsibility of the caller to confirm min <= max. We don't
360
     * use ossl_assert() here since we have no way of signalling an error from
361
     * this function - so we just use a plain assert instead.
362
     */
363
0
    assert(memcmp(min, max, length) <= 0);
364
365
0
    for (i = 0; i < length && min[i] == max[i]; i++) ;
366
0
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
367
0
    if (i < j)
368
0
        return -1;
369
0
    if (i > j)
370
0
        return i * 8;
371
0
    mask = min[i] ^ max[i];
372
0
    switch (mask) {
373
0
    case 0x01:
374
0
        j = 7;
375
0
        break;
376
0
    case 0x03:
377
0
        j = 6;
378
0
        break;
379
0
    case 0x07:
380
0
        j = 5;
381
0
        break;
382
0
    case 0x0F:
383
0
        j = 4;
384
0
        break;
385
0
    case 0x1F:
386
0
        j = 3;
387
0
        break;
388
0
    case 0x3F:
389
0
        j = 2;
390
0
        break;
391
0
    case 0x7F:
392
0
        j = 1;
393
0
        break;
394
0
    default:
395
0
        return -1;
396
0
    }
397
0
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
398
0
        return -1;
399
0
    else
400
0
        return i * 8 + j;
401
0
}
402
403
/*
404
 * Construct a prefix.
405
 */
406
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
407
                              const int prefixlen, const int afilen)
408
0
{
409
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
410
0
    IPAddressOrRange *aor;
411
412
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
413
0
        return 0;
414
0
    if ((aor = IPAddressOrRange_new()) == NULL)
415
0
        return 0;
416
0
    aor->type = IPAddressOrRange_addressPrefix;
417
0
    if (aor->u.addressPrefix == NULL &&
418
0
        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
419
0
        goto err;
420
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
421
0
        goto err;
422
0
    if (bitlen > 0)
423
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
424
0
    ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen);
425
426
0
    *result = aor;
427
0
    return 1;
428
429
0
 err:
430
0
    IPAddressOrRange_free(aor);
431
0
    return 0;
432
0
}
433
434
/*
435
 * Construct a range.  If it can be expressed as a prefix,
436
 * return a prefix instead.  Doing this here simplifies
437
 * the rest of the code considerably.
438
 */
439
static int make_addressRange(IPAddressOrRange **result,
440
                             unsigned char *min,
441
                             unsigned char *max, const int length)
442
0
{
443
0
    IPAddressOrRange *aor;
444
0
    int i, prefixlen;
445
446
0
    if (memcmp(min, max, length) > 0)
447
0
        return 0;
448
449
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
450
0
        return make_addressPrefix(result, min, prefixlen, length);
451
452
0
    if ((aor = IPAddressOrRange_new()) == NULL)
453
0
        return 0;
454
0
    aor->type = IPAddressOrRange_addressRange;
455
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
456
0
        goto err;
457
0
    if (aor->u.addressRange->min == NULL &&
458
0
        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
459
0
        goto err;
460
0
    if (aor->u.addressRange->max == NULL &&
461
0
        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
462
0
        goto err;
463
464
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
465
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
466
0
        goto err;
467
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0);
468
0
    if (i > 0) {
469
0
        unsigned char b = min[i - 1];
470
0
        int j = 1;
471
472
0
        while ((b & (0xFFU >> j)) != 0)
473
0
            ++j;
474
0
        aor->u.addressRange->min->flags |= 8 - j;
475
0
    }
476
477
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
478
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
479
0
        goto err;
480
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0);
481
0
    if (i > 0) {
482
0
        unsigned char b = max[i - 1];
483
0
        int j = 1;
484
485
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
486
0
            ++j;
487
0
        aor->u.addressRange->max->flags |= 8 - j;
488
0
    }
489
490
0
    *result = aor;
491
0
    return 1;
492
493
0
 err:
494
0
    IPAddressOrRange_free(aor);
495
0
    return 0;
496
0
}
497
498
/*
499
 * Construct a new address family or find an existing one.
500
 */
501
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
502
                                             const unsigned afi,
503
                                             const unsigned *safi)
504
0
{
505
0
    IPAddressFamily *f;
506
0
    unsigned char key[3];
507
0
    int keylen;
508
0
    int i;
509
510
0
    key[0] = (afi >> 8) & 0xFF;
511
0
    key[1] = afi & 0xFF;
512
0
    if (safi != NULL) {
513
0
        key[2] = *safi & 0xFF;
514
0
        keylen = 3;
515
0
    } else {
516
0
        keylen = 2;
517
0
    }
518
519
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
520
0
        f = sk_IPAddressFamily_value(addr, i);
521
0
        if (f->addressFamily->length == keylen &&
522
0
            !memcmp(f->addressFamily->data, key, keylen))
523
0
            return f;
524
0
    }
525
526
0
    if ((f = IPAddressFamily_new()) == NULL)
527
0
        goto err;
528
0
    if (f->ipAddressChoice == NULL &&
529
0
        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
530
0
        goto err;
531
0
    if (f->addressFamily == NULL &&
532
0
        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
533
0
        goto err;
534
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
535
0
        goto err;
536
0
    if (!sk_IPAddressFamily_push(addr, f))
537
0
        goto err;
538
539
0
    return f;
540
541
0
 err:
542
0
    IPAddressFamily_free(f);
543
0
    return NULL;
544
0
}
545
546
/*
547
 * Add an inheritance element.
548
 */
549
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
550
                            const unsigned afi, const unsigned *safi)
551
0
{
552
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
553
554
0
    if (f == NULL ||
555
0
        f->ipAddressChoice == NULL ||
556
0
        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
557
0
         f->ipAddressChoice->u.addressesOrRanges != NULL))
558
0
        return 0;
559
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
560
0
        f->ipAddressChoice->u.inherit != NULL)
561
0
        return 1;
562
0
    if (f->ipAddressChoice->u.inherit == NULL &&
563
0
        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
564
0
        return 0;
565
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
566
0
    return 1;
567
0
}
568
569
/*
570
 * Construct an IPAddressOrRange sequence, or return an existing one.
571
 */
572
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
573
                                               const unsigned afi,
574
                                               const unsigned *safi)
575
0
{
576
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
577
0
    IPAddressOrRanges *aors = NULL;
578
579
0
    if (f == NULL ||
580
0
        f->ipAddressChoice == NULL ||
581
0
        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
582
0
         f->ipAddressChoice->u.inherit != NULL))
583
0
        return NULL;
584
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
585
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
586
0
    if (aors != NULL)
587
0
        return aors;
588
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
589
0
        return NULL;
590
0
    switch (afi) {
591
0
    case IANA_AFI_IPV4:
592
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
593
0
        break;
594
0
    case IANA_AFI_IPV6:
595
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
596
0
        break;
597
0
    }
598
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
599
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
600
0
    return aors;
601
0
}
602
603
/*
604
 * Add a prefix.
605
 */
606
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
607
                           const unsigned afi,
608
                           const unsigned *safi,
609
                           unsigned char *a, const int prefixlen)
610
0
{
611
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
612
0
    IPAddressOrRange *aor;
613
614
0
    if (aors == NULL
615
0
            || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
616
0
        return 0;
617
0
    if (sk_IPAddressOrRange_push(aors, aor))
618
0
        return 1;
619
0
    IPAddressOrRange_free(aor);
620
0
    return 0;
621
0
}
622
623
/*
624
 * Add a range.
625
 */
626
int X509v3_addr_add_range(IPAddrBlocks *addr,
627
                          const unsigned afi,
628
                          const unsigned *safi,
629
                          unsigned char *min, unsigned char *max)
630
0
{
631
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
632
0
    IPAddressOrRange *aor;
633
0
    int length = length_from_afi(afi);
634
635
0
    if (aors == NULL)
636
0
        return 0;
637
0
    if (!make_addressRange(&aor, min, max, length))
638
0
        return 0;
639
0
    if (sk_IPAddressOrRange_push(aors, aor))
640
0
        return 1;
641
0
    IPAddressOrRange_free(aor);
642
0
    return 0;
643
0
}
644
645
/*
646
 * Extract min and max values from an IPAddressOrRange.
647
 */
648
static int extract_min_max(IPAddressOrRange *aor,
649
                           unsigned char *min, unsigned char *max, int length)
650
0
{
651
0
    if (aor == NULL || min == NULL || max == NULL)
652
0
        return 0;
653
0
    switch (aor->type) {
654
0
    case IPAddressOrRange_addressPrefix:
655
0
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
656
0
                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
657
0
    case IPAddressOrRange_addressRange:
658
0
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
659
0
                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
660
0
    }
661
0
    return 0;
662
0
}
663
664
/*
665
 * Public wrapper for extract_min_max().
666
 */
667
int X509v3_addr_get_range(IPAddressOrRange *aor,
668
                          const unsigned afi,
669
                          unsigned char *min,
670
                          unsigned char *max, const int length)
671
0
{
672
0
    int afi_length = length_from_afi(afi);
673
674
0
    if (aor == NULL || min == NULL || max == NULL ||
675
0
        afi_length == 0 || length < afi_length ||
676
0
        (aor->type != IPAddressOrRange_addressPrefix &&
677
0
         aor->type != IPAddressOrRange_addressRange) ||
678
0
        !extract_min_max(aor, min, max, afi_length))
679
0
        return 0;
680
681
0
    return afi_length;
682
0
}
683
684
/*
685
 * Sort comparison function for a sequence of IPAddressFamily.
686
 *
687
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
688
 * the ordering: I can read it as meaning that IPv6 without a SAFI
689
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
690
 * examples in appendix B suggest that the author intended the
691
 * null-SAFI rule to apply only within a single AFI, which is what I
692
 * would have expected and is what the following code implements.
693
 */
694
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
695
                               const IPAddressFamily *const *b_)
696
0
{
697
0
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
698
0
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
699
0
    int len = ((a->length <= b->length) ? a->length : b->length);
700
0
    int cmp = memcmp(a->data, b->data, len);
701
702
0
    return cmp ? cmp : a->length - b->length;
703
0
}
704
705
static int IPAddressFamily_check_len(const IPAddressFamily *f)
706
0
{
707
0
    if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
708
0
        return 0;
709
0
    else
710
0
        return 1;
711
0
}
712
713
/*
714
 * Check whether an IPAddrBLocks is in canonical form.
715
 */
716
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
717
0
{
718
0
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
719
0
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
720
0
    IPAddressOrRanges *aors;
721
0
    int i, j, k;
722
723
    /*
724
     * Empty extension is canonical.
725
     */
726
0
    if (addr == NULL)
727
0
        return 1;
728
729
    /*
730
     * Check whether the top-level list is in order.
731
     */
732
0
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
733
0
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
734
0
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
735
736
0
        if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
737
0
            return 0;
738
739
0
        if (IPAddressFamily_cmp(&a, &b) >= 0)
740
0
            return 0;
741
0
    }
742
743
    /*
744
     * Top level's ok, now check each address family.
745
     */
746
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
747
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
748
0
        int length = length_from_afi(X509v3_addr_get_afi(f));
749
750
        /*
751
         * Inheritance is canonical.  Anything other than inheritance or
752
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
753
         */
754
0
        if (f == NULL || f->ipAddressChoice == NULL)
755
0
            return 0;
756
0
        switch (f->ipAddressChoice->type) {
757
0
        case IPAddressChoice_inherit:
758
0
            continue;
759
0
        case IPAddressChoice_addressesOrRanges:
760
0
            break;
761
0
        default:
762
0
            return 0;
763
0
        }
764
765
0
        if (!IPAddressFamily_check_len(f))
766
0
            return 0;
767
768
        /*
769
         * It's an IPAddressOrRanges sequence, check it.
770
         */
771
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
772
0
        if (sk_IPAddressOrRange_num(aors) == 0)
773
0
            return 0;
774
0
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
775
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
776
0
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
777
778
0
            if (!extract_min_max(a, a_min, a_max, length) ||
779
0
                !extract_min_max(b, b_min, b_max, length))
780
0
                return 0;
781
782
            /*
783
             * Punt misordered list, overlapping start, or inverted range.
784
             */
785
0
            if (memcmp(a_min, b_min, length) >= 0 ||
786
0
                memcmp(a_min, a_max, length) > 0 ||
787
0
                memcmp(b_min, b_max, length) > 0)
788
0
                return 0;
789
790
            /*
791
             * Punt if adjacent or overlapping.  Check for adjacency by
792
             * subtracting one from b_min first.
793
             */
794
0
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
795
0
            if (memcmp(a_max, b_min, length) >= 0)
796
0
                return 0;
797
798
            /*
799
             * Check for range that should be expressed as a prefix.
800
             */
801
0
            if (a->type == IPAddressOrRange_addressRange &&
802
0
                range_should_be_prefix(a_min, a_max, length) >= 0)
803
0
                return 0;
804
0
        }
805
806
        /*
807
         * Check range to see if it's inverted or should be a
808
         * prefix.
809
         */
810
0
        j = sk_IPAddressOrRange_num(aors) - 1;
811
0
        {
812
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
813
814
0
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
815
0
                if (!extract_min_max(a, a_min, a_max, length))
816
0
                    return 0;
817
0
                if (memcmp(a_min, a_max, length) > 0 ||
818
0
                    range_should_be_prefix(a_min, a_max, length) >= 0)
819
0
                    return 0;
820
0
            }
821
0
        }
822
0
    }
823
824
    /*
825
     * If we made it through all that, we're happy.
826
     */
827
0
    return 1;
828
0
}
829
830
/*
831
 * Whack an IPAddressOrRanges into canonical form.
832
 */
833
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
834
                                      const unsigned afi)
835
0
{
836
0
    int i, j, length = length_from_afi(afi);
837
838
    /*
839
     * Sort the IPAddressOrRanges sequence.
840
     */
841
0
    sk_IPAddressOrRange_sort(aors);
842
843
    /*
844
     * Clean up representation issues, punt on duplicates or overlaps.
845
     */
846
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
847
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
848
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
849
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
850
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
851
852
0
        if (!extract_min_max(a, a_min, a_max, length) ||
853
0
            !extract_min_max(b, b_min, b_max, length))
854
0
            return 0;
855
856
        /*
857
         * Punt inverted ranges.
858
         */
859
0
        if (memcmp(a_min, a_max, length) > 0 ||
860
0
            memcmp(b_min, b_max, length) > 0)
861
0
            return 0;
862
863
        /*
864
         * Punt overlaps.
865
         */
866
0
        if (memcmp(a_max, b_min, length) >= 0)
867
0
            return 0;
868
869
        /*
870
         * Merge if a and b are adjacent.  We check for
871
         * adjacency by subtracting one from b_min first.
872
         */
873
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
874
0
        if (memcmp(a_max, b_min, length) == 0) {
875
0
            IPAddressOrRange *merged;
876
877
0
            if (!make_addressRange(&merged, a_min, b_max, length))
878
0
                return 0;
879
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
880
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
881
0
            IPAddressOrRange_free(a);
882
0
            IPAddressOrRange_free(b);
883
0
            --i;
884
0
            continue;
885
0
        }
886
0
    }
887
888
    /*
889
     * Check for inverted final range.
890
     */
891
0
    j = sk_IPAddressOrRange_num(aors) - 1;
892
0
    {
893
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
894
895
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
896
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
897
898
0
            if (!extract_min_max(a, a_min, a_max, length))
899
0
                return 0;
900
0
            if (memcmp(a_min, a_max, length) > 0)
901
0
                return 0;
902
0
        }
903
0
    }
904
905
0
    return 1;
906
0
}
907
908
/*
909
 * Whack an IPAddrBlocks extension into canonical form.
910
 */
911
int X509v3_addr_canonize(IPAddrBlocks *addr)
912
0
{
913
0
    int i;
914
915
0
    if (addr == NULL) {
916
0
        ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT);
917
0
        return 0;
918
0
    }
919
920
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
921
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
922
923
0
        if (!IPAddressFamily_check_len(f))
924
0
            return 0;
925
926
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
927
0
            !IPAddressOrRanges_canonize(f->ipAddressChoice->
928
0
                                        u.addressesOrRanges,
929
0
                                        X509v3_addr_get_afi(f)))
930
0
            return 0;
931
0
    }
932
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
933
0
    sk_IPAddressFamily_sort(addr);
934
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
935
0
        return 0;
936
0
    return 1;
937
0
}
938
939
/*
940
 * v2i handler for the IPAddrBlocks extension.
941
 */
942
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
943
                              struct v3_ext_ctx *ctx,
944
                              STACK_OF(CONF_VALUE) *values)
945
0
{
946
0
    static const char v4addr_chars[] = "0123456789.";
947
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
948
0
    IPAddrBlocks *addr = NULL;
949
0
    char *s = NULL, *t;
950
0
    int i;
951
952
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
953
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
954
0
        return NULL;
955
0
    }
956
957
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
958
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
959
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
960
0
        unsigned afi, *safi = NULL, safi_;
961
0
        const char *addr_chars = NULL;
962
0
        int prefixlen, i1, i2, delim, length;
963
964
0
        if (!ossl_v3_name_cmp(val->name, "IPv4")) {
965
0
            afi = IANA_AFI_IPV4;
966
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
967
0
            afi = IANA_AFI_IPV6;
968
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
969
0
            afi = IANA_AFI_IPV4;
970
0
            safi = &safi_;
971
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
972
0
            afi = IANA_AFI_IPV6;
973
0
            safi = &safi_;
974
0
        } else {
975
0
            ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
976
0
                           "%s", val->name);
977
0
            goto err;
978
0
        }
979
980
0
        switch (afi) {
981
0
        case IANA_AFI_IPV4:
982
0
            addr_chars = v4addr_chars;
983
0
            break;
984
0
        case IANA_AFI_IPV6:
985
0
            addr_chars = v6addr_chars;
986
0
            break;
987
0
        }
988
989
0
        length = length_from_afi(afi);
990
991
        /*
992
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
993
         * the other input values.
994
         */
995
0
        if (safi != NULL) {
996
0
            if (val->value == NULL) {
997
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);
998
0
                goto err;
999
0
            }
1000
0
            *safi = strtoul(val->value, &t, 0);
1001
0
            t += strspn(t, " \t");
1002
0
            if (*safi > 0xFF || *t++ != ':') {
1003
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
1004
0
                X509V3_conf_add_error_name_value(val);
1005
0
                goto err;
1006
0
            }
1007
0
            t += strspn(t, " \t");
1008
0
            s = OPENSSL_strdup(t);
1009
0
        } else {
1010
0
            s = OPENSSL_strdup(val->value);
1011
0
        }
1012
0
        if (s == NULL)
1013
0
            goto err;
1014
1015
        /*
1016
         * Check for inheritance.  Not worth additional complexity to
1017
         * optimize this (seldom-used) case.
1018
         */
1019
0
        if (strcmp(s, "inherit") == 0) {
1020
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
1021
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
1022
0
                X509V3_conf_add_error_name_value(val);
1023
0
                goto err;
1024
0
            }
1025
0
            OPENSSL_free(s);
1026
0
            s = NULL;
1027
0
            continue;
1028
0
        }
1029
1030
0
        i1 = strspn(s, addr_chars);
1031
0
        i2 = i1 + strspn(s + i1, " \t");
1032
0
        delim = s[i2++];
1033
0
        s[i1] = '\0';
1034
1035
0
        if (ossl_a2i_ipadd(min, s) != length) {
1036
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1037
0
            X509V3_conf_add_error_name_value(val);
1038
0
            goto err;
1039
0
        }
1040
1041
0
        switch (delim) {
1042
0
        case '/':
1043
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1044
0
            if (t == s + i2
1045
0
                    || *t != '\0'
1046
0
                    || prefixlen > (length * 8)
1047
0
                    || prefixlen < 0) {
1048
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1049
0
                X509V3_conf_add_error_name_value(val);
1050
0
                goto err;
1051
0
            }
1052
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1053
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1054
0
                goto err;
1055
0
            }
1056
0
            break;
1057
0
        case '-':
1058
0
            i1 = i2 + strspn(s + i2, " \t");
1059
0
            i2 = i1 + strspn(s + i1, addr_chars);
1060
0
            if (i1 == i2 || s[i2] != '\0') {
1061
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1062
0
                X509V3_conf_add_error_name_value(val);
1063
0
                goto err;
1064
0
            }
1065
0
            if (ossl_a2i_ipadd(max, s + i1) != length) {
1066
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1067
0
                X509V3_conf_add_error_name_value(val);
1068
0
                goto err;
1069
0
            }
1070
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1071
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1072
0
                X509V3_conf_add_error_name_value(val);
1073
0
                goto err;
1074
0
            }
1075
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1076
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1077
0
                goto err;
1078
0
            }
1079
0
            break;
1080
0
        case '\0':
1081
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1082
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1083
0
                goto err;
1084
0
            }
1085
0
            break;
1086
0
        default:
1087
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1088
0
            X509V3_conf_add_error_name_value(val);
1089
0
            goto err;
1090
0
        }
1091
1092
0
        OPENSSL_free(s);
1093
0
        s = NULL;
1094
0
    }
1095
1096
    /*
1097
     * Canonize the result, then we're done.
1098
     */
1099
0
    if (!X509v3_addr_canonize(addr))
1100
0
        goto err;
1101
0
    return addr;
1102
1103
0
 err:
1104
0
    OPENSSL_free(s);
1105
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1106
0
    return NULL;
1107
0
}
1108
1109
/*
1110
 * OpenSSL dispatch
1111
 */
1112
const X509V3_EXT_METHOD ossl_v3_addr = {
1113
    NID_sbgp_ipAddrBlock,       /* nid */
1114
    0,                          /* flags */
1115
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1116
    0, 0, 0, 0,                 /* old functions, ignored */
1117
    0,                          /* i2s */
1118
    0,                          /* s2i */
1119
    0,                          /* i2v */
1120
    v2i_IPAddrBlocks,           /* v2i */
1121
    i2r_IPAddrBlocks,           /* i2r */
1122
    0,                          /* r2i */
1123
    NULL                        /* extension-specific data */
1124
};
1125
1126
/*
1127
 * Figure out whether extension sues inheritance.
1128
 */
1129
int X509v3_addr_inherits(IPAddrBlocks *addr)
1130
0
{
1131
0
    int i;
1132
1133
0
    if (addr == NULL)
1134
0
        return 0;
1135
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1136
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1137
1138
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1139
0
            return 1;
1140
0
    }
1141
0
    return 0;
1142
0
}
1143
1144
/*
1145
 * Figure out whether parent contains child.
1146
 */
1147
static int addr_contains(IPAddressOrRanges *parent,
1148
                         IPAddressOrRanges *child, int length)
1149
0
{
1150
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1151
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1152
0
    int p, c;
1153
1154
0
    if (child == NULL || parent == child)
1155
0
        return 1;
1156
0
    if (parent == NULL)
1157
0
        return 0;
1158
1159
0
    p = 0;
1160
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1161
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1162
0
                             c_min, c_max, length))
1163
0
            return 0;
1164
0
        for (;; p++) {
1165
0
            if (p >= sk_IPAddressOrRange_num(parent))
1166
0
                return 0;
1167
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1168
0
                                 p_min, p_max, length))
1169
0
                return 0;
1170
0
            if (memcmp(p_max, c_max, length) < 0)
1171
0
                continue;
1172
0
            if (memcmp(p_min, c_min, length) > 0)
1173
0
                return 0;
1174
0
            break;
1175
0
        }
1176
0
    }
1177
1178
0
    return 1;
1179
0
}
1180
1181
/*
1182
 * Test whether a is a subset of b.
1183
 */
1184
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1185
0
{
1186
0
    int i;
1187
1188
0
    if (a == NULL || a == b)
1189
0
        return 1;
1190
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1191
0
        return 0;
1192
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1193
0
    sk_IPAddressFamily_sort(b);
1194
    /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */
1195
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1196
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1197
0
        int j = sk_IPAddressFamily_find(b, fa);
1198
0
        IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1199
1200
0
        if (fb == NULL)
1201
0
            return 0;
1202
0
        if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1203
0
            return 0;
1204
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1205
0
                           fa->ipAddressChoice->u.addressesOrRanges,
1206
0
                           length_from_afi(X509v3_addr_get_afi(fb))))
1207
0
            return 0;
1208
0
    }
1209
0
    return 1;
1210
0
}
1211
1212
/*
1213
 * Validation error handling via callback.
1214
 */
1215
# define validation_err(_err_)            \
1216
0
    do {                                  \
1217
0
        if (ctx != NULL) {                \
1218
0
            ctx->error = _err_;           \
1219
0
            ctx->error_depth = i;         \
1220
0
            ctx->current_cert = x;        \
1221
0
            rv = ctx->verify_cb(0, ctx);  \
1222
0
        } else {                          \
1223
0
            rv = 0;                       \
1224
0
        }                                 \
1225
0
        if (rv == 0)                      \
1226
0
            goto done;                    \
1227
0
    } while (0)
1228
1229
/*
1230
 * Core code for RFC 3779 2.3 path validation.
1231
 *
1232
 * Returns 1 for success, 0 on error.
1233
 *
1234
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1235
 * X509_V_OK.
1236
 */
1237
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1238
                                       STACK_OF(X509) *chain,
1239
                                       IPAddrBlocks *ext)
1240
0
{
1241
0
    IPAddrBlocks *child = NULL;
1242
0
    int i, j, ret = 0, rv;
1243
0
    X509 *x;
1244
1245
0
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1246
0
            || !ossl_assert(ctx != NULL || ext != NULL)
1247
0
            || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1248
0
        if (ctx != NULL)
1249
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1250
0
        return 0;
1251
0
    }
1252
1253
    /*
1254
     * Figure out where to start.  If we don't have an extension to
1255
     * check, we're done.  Otherwise, check canonical form and
1256
     * set up for walking up the chain.
1257
     */
1258
0
    if (ext != NULL) {
1259
0
        i = -1;
1260
0
        x = NULL;
1261
0
    } else {
1262
0
        i = 0;
1263
0
        x = sk_X509_value(chain, i);
1264
0
        if ((ext = x->rfc3779_addr) == NULL)
1265
0
            return 1; /* Return success */
1266
0
    }
1267
0
    if (!X509v3_addr_is_canonical(ext))
1268
0
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1269
0
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1270
0
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1271
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
1272
0
        if (ctx != NULL)
1273
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1274
0
        goto done;
1275
0
    }
1276
0
    sk_IPAddressFamily_sort(child);
1277
1278
    /*
1279
     * Now walk up the chain.  No cert may list resources that its
1280
     * parent doesn't list.
1281
     */
1282
0
    for (i++; i < sk_X509_num(chain); i++) {
1283
0
        x = sk_X509_value(chain, i);
1284
0
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1285
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1286
0
        if (x->rfc3779_addr == NULL) {
1287
0
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1288
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1289
1290
0
                if (!IPAddressFamily_check_len(fc))
1291
0
                    goto done;
1292
1293
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1294
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1295
0
                    break;
1296
0
                }
1297
0
            }
1298
0
            continue;
1299
0
        }
1300
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1301
0
                                              IPAddressFamily_cmp);
1302
0
        sk_IPAddressFamily_sort(x->rfc3779_addr);
1303
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1304
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1305
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1306
0
            IPAddressFamily *fp =
1307
0
                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1308
1309
0
            if (fp == NULL) {
1310
0
                if (fc->ipAddressChoice->type ==
1311
0
                    IPAddressChoice_addressesOrRanges) {
1312
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1313
0
                    break;
1314
0
                }
1315
0
                continue;
1316
0
            }
1317
1318
0
            if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1319
0
                goto done;
1320
1321
0
            if (fp->ipAddressChoice->type ==
1322
0
                IPAddressChoice_addressesOrRanges) {
1323
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1324
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1325
0
                                     fc->ipAddressChoice->u.addressesOrRanges,
1326
0
                                     length_from_afi(X509v3_addr_get_afi(fc))))
1327
0
                    (void)sk_IPAddressFamily_set(child, j, fp);
1328
0
                else
1329
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1330
0
            }
1331
0
        }
1332
0
    }
1333
1334
    /*
1335
     * Trust anchor can't inherit.
1336
     */
1337
0
    if (x->rfc3779_addr != NULL) {
1338
0
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1339
0
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1340
1341
0
            if (!IPAddressFamily_check_len(fp))
1342
0
                goto done;
1343
1344
0
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1345
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1346
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1347
0
        }
1348
0
    }
1349
0
    ret = 1;
1350
0
 done:
1351
0
    sk_IPAddressFamily_free(child);
1352
0
    return ret;
1353
0
}
1354
1355
# undef validation_err
1356
1357
/*
1358
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1359
 */
1360
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1361
0
{
1362
0
    if (ctx->chain == NULL
1363
0
            || sk_X509_num(ctx->chain) == 0
1364
0
            || ctx->verify_cb == NULL) {
1365
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1366
0
        return 0;
1367
0
    }
1368
0
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1369
0
}
1370
1371
/*
1372
 * RFC 3779 2.3 path validation of an extension.
1373
 * Test whether chain covers extension.
1374
 */
1375
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1376
                                      IPAddrBlocks *ext, int allow_inheritance)
1377
0
{
1378
0
    if (ext == NULL)
1379
0
        return 1;
1380
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1381
0
        return 0;
1382
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1383
0
        return 0;
1384
0
    return addr_validate_path_internal(NULL, chain, ext);
1385
0
}
1386
1387
#endif /* OPENSSL_NO_RFC3779 */