/src/openssl/providers/implementations/ciphers/cipher_cts.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2020-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * Helper functions for 128 bit CBC CTS ciphers (Currently AES and Camellia).  | 
12  |  |  *  | 
13  |  |  * The function dispatch tables are embedded into cipher_aes.c  | 
14  |  |  * and cipher_camellia.c using cipher_aes_cts.inc and cipher_camellia_cts.inc  | 
15  |  |  */  | 
16  |  |  | 
17  |  | /*  | 
18  |  |  * Refer to SP800-38A-Addendum  | 
19  |  |  *  | 
20  |  |  * Ciphertext stealing encrypts plaintext using a block cipher, without padding  | 
21  |  |  * the message to a multiple of the block size, so the ciphertext is the same  | 
22  |  |  * size as the plaintext.  | 
23  |  |  * It does this by altering processing of the last two blocks of the message.  | 
24  |  |  * The processing of all but the last two blocks is unchanged, but a portion of  | 
25  |  |  * the second-last block's ciphertext is "stolen" to pad the last plaintext  | 
26  |  |  * block. The padded final block is then encrypted as usual.  | 
27  |  |  * The final ciphertext for the last two blocks, consists of the partial block  | 
28  |  |  * (with the "stolen" portion omitted) plus the full final block,  | 
29  |  |  * which are the same size as the original plaintext.  | 
30  |  |  * Decryption requires decrypting the final block first, then restoring the  | 
31  |  |  * stolen ciphertext to the partial block, which can then be decrypted as usual.  | 
32  |  |  | 
33  |  |  * AES_CBC_CTS has 3 variants:  | 
34  |  |  *  (1) CS1 The NIST variant.  | 
35  |  |  *      If the length is a multiple of the blocksize it is the same as CBC mode.  | 
36  |  |  *      otherwise it produces C1||C2||(C(n-1))*||Cn.  | 
37  |  |  *      Where C(n-1)* is a partial block.  | 
38  |  |  *  (2) CS2  | 
39  |  |  *      If the length is a multiple of the blocksize it is the same as CBC mode.  | 
40  |  |  *      otherwise it produces C1||C2||Cn||(C(n-1))*.  | 
41  |  |  *      Where C(n-1)* is a partial block.  | 
42  |  |  *  (3) CS3 The Kerberos5 variant.  | 
43  |  |  *      Produces C1||C2||Cn||(C(n-1))* regardless of the length.  | 
44  |  |  *      If the length is a multiple of the blocksize it looks similar to CBC mode  | 
45  |  |  *      with the last 2 blocks swapped.  | 
46  |  |  *      Otherwise it is the same as CS2.  | 
47  |  |  */  | 
48  |  |  | 
49  |  | #include <openssl/core_names.h>  | 
50  |  | #include "prov/ciphercommon.h"  | 
51  |  | #include "internal/nelem.h"  | 
52  |  | #include "cipher_cts.h"  | 
53  |  |  | 
54  |  | /* The value assigned to 0 is the default */  | 
55  | 0  | #define CTS_CS1 0  | 
56  | 0  | #define CTS_CS2 1  | 
57  | 0  | #define CTS_CS3 2  | 
58  |  |  | 
59  | 0  | #define CTS_BLOCK_SIZE 16  | 
60  |  |  | 
61  |  | typedef union { | 
62  |  |     size_t align;  | 
63  |  |     unsigned char c[CTS_BLOCK_SIZE];  | 
64  |  | } aligned_16bytes;  | 
65  |  |  | 
66  |  | typedef struct cts_mode_name2id_st { | 
67  |  |     unsigned int id;  | 
68  |  |     const char *name;  | 
69  |  | } CTS_MODE_NAME2ID;  | 
70  |  |  | 
71  |  | static CTS_MODE_NAME2ID cts_modes[] = { | 
72  |  |     { CTS_CS1, OSSL_CIPHER_CTS_MODE_CS1 }, | 
73  |  |     { CTS_CS2, OSSL_CIPHER_CTS_MODE_CS2 }, | 
74  |  |     { CTS_CS3, OSSL_CIPHER_CTS_MODE_CS3 }, | 
75  |  | };  | 
76  |  |  | 
77  |  | const char *ossl_cipher_cbc_cts_mode_id2name(unsigned int id)  | 
78  | 0  | { | 
79  | 0  |     size_t i;  | 
80  |  | 
  | 
81  | 0  |     for (i = 0; i < OSSL_NELEM(cts_modes); ++i) { | 
82  | 0  |         if (cts_modes[i].id == id)  | 
83  | 0  |             return cts_modes[i].name;  | 
84  | 0  |     }  | 
85  | 0  |     return NULL;  | 
86  | 0  | }  | 
87  |  |  | 
88  |  | int ossl_cipher_cbc_cts_mode_name2id(const char *name)  | 
89  | 0  | { | 
90  | 0  |     size_t i;  | 
91  |  | 
  | 
92  | 0  |     for (i = 0; i < OSSL_NELEM(cts_modes); ++i) { | 
93  | 0  |         if (OPENSSL_strcasecmp(name, cts_modes[i].name) == 0)  | 
94  | 0  |             return (int)cts_modes[i].id;  | 
95  | 0  |     }  | 
96  | 0  |     return -1;  | 
97  | 0  | }  | 
98  |  |  | 
99  |  | static size_t cts128_cs1_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,  | 
100  |  |                                  unsigned char *out, size_t len)  | 
101  | 0  | { | 
102  | 0  |     aligned_16bytes tmp_in;  | 
103  | 0  |     size_t residue;  | 
104  |  | 
  | 
105  | 0  |     residue = len % CTS_BLOCK_SIZE;  | 
106  | 0  |     len -= residue;  | 
107  | 0  |     if (!ctx->hw->cipher(ctx, out, in, len))  | 
108  | 0  |         return 0;  | 
109  |  |  | 
110  | 0  |     if (residue == 0)  | 
111  | 0  |         return len;  | 
112  |  |  | 
113  | 0  |     in += len;  | 
114  | 0  |     out += len;  | 
115  |  | 
  | 
116  | 0  |     memset(tmp_in.c, 0, sizeof(tmp_in));  | 
117  | 0  |     memcpy(tmp_in.c, in, residue);  | 
118  | 0  |     if (!ctx->hw->cipher(ctx, out - CTS_BLOCK_SIZE + residue, tmp_in.c,  | 
119  | 0  |                          CTS_BLOCK_SIZE))  | 
120  | 0  |         return 0;  | 
121  | 0  |     return len + residue;  | 
122  | 0  | }  | 
123  |  |  | 
124  |  | static void do_xor(const unsigned char *in1, const unsigned char *in2,  | 
125  |  |                    size_t len, unsigned char *out)  | 
126  | 0  | { | 
127  | 0  |     size_t i;  | 
128  |  | 
  | 
129  | 0  |     for (i = 0; i < len; ++i)  | 
130  | 0  |         out[i] = in1[i] ^ in2[i];  | 
131  | 0  | }  | 
132  |  |  | 
133  |  | static size_t cts128_cs1_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,  | 
134  |  |                                  unsigned char *out, size_t len)  | 
135  | 0  | { | 
136  | 0  |     aligned_16bytes mid_iv, ct_mid, cn, pt_last;  | 
137  | 0  |     size_t residue;  | 
138  |  | 
  | 
139  | 0  |     residue = len % CTS_BLOCK_SIZE;  | 
140  | 0  |     if (residue == 0) { | 
141  |  |         /* If there are no partial blocks then it is the same as CBC mode */  | 
142  | 0  |         if (!ctx->hw->cipher(ctx, out, in, len))  | 
143  | 0  |             return 0;  | 
144  | 0  |         return len;  | 
145  | 0  |     }  | 
146  |  |     /* Process blocks at the start - but leave the last 2 blocks */  | 
147  | 0  |     len -= CTS_BLOCK_SIZE + residue;  | 
148  | 0  |     if (len > 0) { | 
149  | 0  |         if (!ctx->hw->cipher(ctx, out, in, len))  | 
150  | 0  |             return 0;  | 
151  | 0  |         in += len;  | 
152  | 0  |         out += len;  | 
153  | 0  |     }  | 
154  |  |     /* Save the iv that will be used by the second last block */  | 
155  | 0  |     memcpy(mid_iv.c, ctx->iv, CTS_BLOCK_SIZE);  | 
156  |  |     /* Save the C(n) block */  | 
157  | 0  |     memcpy(cn.c, in + residue, CTS_BLOCK_SIZE);  | 
158  |  |  | 
159  |  |     /* Decrypt the last block first using an iv of zero */  | 
160  | 0  |     memset(ctx->iv, 0, CTS_BLOCK_SIZE);  | 
161  | 0  |     if (!ctx->hw->cipher(ctx, pt_last.c, in + residue, CTS_BLOCK_SIZE))  | 
162  | 0  |         return 0;  | 
163  |  |  | 
164  |  |     /*  | 
165  |  |      * Rebuild the ciphertext of the second last block as a combination of  | 
166  |  |      * the decrypted last block + replace the start with the ciphertext bytes  | 
167  |  |      * of the partial second last block.  | 
168  |  |      */  | 
169  | 0  |     memcpy(ct_mid.c, in, residue);  | 
170  | 0  |     memcpy(ct_mid.c + residue, pt_last.c + residue, CTS_BLOCK_SIZE - residue);  | 
171  |  |     /*  | 
172  |  |      * Restore the last partial ciphertext block.  | 
173  |  |      * Now that we have the cipher text of the second last block, apply  | 
174  |  |      * that to the partial plaintext end block. We have already decrypted the  | 
175  |  |      * block using an IV of zero. For decryption the IV is just XORed after  | 
176  |  |      * doing an Cipher CBC block - so just XOR in the cipher text.  | 
177  |  |      */  | 
178  | 0  |     do_xor(ct_mid.c, pt_last.c, residue, out + CTS_BLOCK_SIZE);  | 
179  |  |  | 
180  |  |     /* Restore the iv needed by the second last block */  | 
181  | 0  |     memcpy(ctx->iv, mid_iv.c, CTS_BLOCK_SIZE);  | 
182  |  |  | 
183  |  |     /*  | 
184  |  |      * Decrypt the second last plaintext block now that we have rebuilt the  | 
185  |  |      * ciphertext.  | 
186  |  |      */  | 
187  | 0  |     if (!ctx->hw->cipher(ctx, out, ct_mid.c, CTS_BLOCK_SIZE))  | 
188  | 0  |         return 0;  | 
189  |  |  | 
190  |  |     /* The returned iv is the C(n) block */  | 
191  | 0  |     memcpy(ctx->iv, cn.c, CTS_BLOCK_SIZE);  | 
192  | 0  |     return len + CTS_BLOCK_SIZE + residue;  | 
193  | 0  | }  | 
194  |  |  | 
195  |  | static size_t cts128_cs3_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,  | 
196  |  |                                  unsigned char *out, size_t len)  | 
197  | 0  | { | 
198  | 0  |     aligned_16bytes tmp_in;  | 
199  | 0  |     size_t residue;  | 
200  |  | 
  | 
201  | 0  |     if (len < CTS_BLOCK_SIZE)  /* CS3 requires at least one block */  | 
202  | 0  |         return 0;  | 
203  |  |  | 
204  |  |     /* If we only have one block then just process the aligned block */  | 
205  | 0  |     if (len == CTS_BLOCK_SIZE)  | 
206  | 0  |         return ctx->hw->cipher(ctx, out, in, len) ? len : 0;  | 
207  |  |  | 
208  | 0  |     residue = len % CTS_BLOCK_SIZE;  | 
209  | 0  |     if (residue == 0)  | 
210  | 0  |         residue = CTS_BLOCK_SIZE;  | 
211  | 0  |     len -= residue;  | 
212  |  | 
  | 
213  | 0  |     if (!ctx->hw->cipher(ctx, out, in, len))  | 
214  | 0  |         return 0;  | 
215  |  |  | 
216  | 0  |     in += len;  | 
217  | 0  |     out += len;  | 
218  |  | 
  | 
219  | 0  |     memset(tmp_in.c, 0, sizeof(tmp_in));  | 
220  | 0  |     memcpy(tmp_in.c, in, residue);  | 
221  | 0  |     memcpy(out, out - CTS_BLOCK_SIZE, residue);  | 
222  | 0  |     if (!ctx->hw->cipher(ctx, out - CTS_BLOCK_SIZE, tmp_in.c, CTS_BLOCK_SIZE))  | 
223  | 0  |         return 0;  | 
224  | 0  |     return len + residue;  | 
225  | 0  | }  | 
226  |  |  | 
227  |  | /*  | 
228  |  |  * Note:  | 
229  |  |  *  The cipher text (in) is of the form C(0), C(1), ., C(n), C(n-1)* where  | 
230  |  |  *  C(n) is a full block and C(n-1)* can be a partial block  | 
231  |  |  *  (but could be a full block).  | 
232  |  |  *  This means that the output plaintext (out) needs to swap the plaintext of  | 
233  |  |  *  the last two decoded ciphertext blocks.  | 
234  |  |  */  | 
235  |  | static size_t cts128_cs3_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,  | 
236  |  |                                  unsigned char *out, size_t len)  | 
237  | 0  | { | 
238  | 0  |     aligned_16bytes mid_iv, ct_mid, cn, pt_last;  | 
239  | 0  |     size_t residue;  | 
240  |  | 
  | 
241  | 0  |     if (len < CTS_BLOCK_SIZE) /* CS3 requires at least one block */  | 
242  | 0  |         return 0;  | 
243  |  |  | 
244  |  |     /* If we only have one block then just process the aligned block */  | 
245  | 0  |     if (len == CTS_BLOCK_SIZE)  | 
246  | 0  |         return ctx->hw->cipher(ctx, out, in, len) ? len : 0;  | 
247  |  |  | 
248  |  |     /* Process blocks at the start - but leave the last 2 blocks */  | 
249  | 0  |     residue = len % CTS_BLOCK_SIZE;  | 
250  | 0  |     if (residue == 0)  | 
251  | 0  |         residue = CTS_BLOCK_SIZE;  | 
252  | 0  |     len -= CTS_BLOCK_SIZE + residue;  | 
253  |  | 
  | 
254  | 0  |     if (len > 0) { | 
255  | 0  |         if (!ctx->hw->cipher(ctx, out, in, len))  | 
256  | 0  |             return 0;  | 
257  | 0  |         in += len;  | 
258  | 0  |         out += len;  | 
259  | 0  |     }  | 
260  |  |     /* Save the iv that will be used by the second last block */  | 
261  | 0  |     memcpy(mid_iv.c, ctx->iv, CTS_BLOCK_SIZE);  | 
262  |  |     /* Save the C(n) block : For CS3 it is C(1)||...||C(n-2)||C(n)||C(n-1)* */  | 
263  | 0  |     memcpy(cn.c, in, CTS_BLOCK_SIZE);  | 
264  |  |  | 
265  |  |     /* Decrypt the C(n) block first using an iv of zero */  | 
266  | 0  |     memset(ctx->iv, 0, CTS_BLOCK_SIZE);  | 
267  | 0  |     if (!ctx->hw->cipher(ctx, pt_last.c, in, CTS_BLOCK_SIZE))  | 
268  | 0  |         return 0;  | 
269  |  |  | 
270  |  |     /*  | 
271  |  |      * Rebuild the ciphertext of C(n-1) as a combination of  | 
272  |  |      * the decrypted C(n) block + replace the start with the ciphertext bytes  | 
273  |  |      * of the partial last block.  | 
274  |  |      */  | 
275  | 0  |     memcpy(ct_mid.c, in + CTS_BLOCK_SIZE, residue);  | 
276  | 0  |     if (residue != CTS_BLOCK_SIZE)  | 
277  | 0  |         memcpy(ct_mid.c + residue, pt_last.c + residue, CTS_BLOCK_SIZE - residue);  | 
278  |  |     /*  | 
279  |  |      * Restore the last partial ciphertext block.  | 
280  |  |      * Now that we have the cipher text of the second last block, apply  | 
281  |  |      * that to the partial plaintext end block. We have already decrypted the  | 
282  |  |      * block using an IV of zero. For decryption the IV is just XORed after  | 
283  |  |      * doing an AES block - so just XOR in the ciphertext.  | 
284  |  |      */  | 
285  | 0  |     do_xor(ct_mid.c, pt_last.c, residue, out + CTS_BLOCK_SIZE);  | 
286  |  |  | 
287  |  |     /* Restore the iv needed by the second last block */  | 
288  | 0  |     memcpy(ctx->iv, mid_iv.c, CTS_BLOCK_SIZE);  | 
289  |  |     /*  | 
290  |  |      * Decrypt the second last plaintext block now that we have rebuilt the  | 
291  |  |      * ciphertext.  | 
292  |  |      */  | 
293  | 0  |     if (!ctx->hw->cipher(ctx, out, ct_mid.c, CTS_BLOCK_SIZE))  | 
294  | 0  |         return 0;  | 
295  |  |  | 
296  |  |     /* The returned iv is the C(n) block */  | 
297  | 0  |     memcpy(ctx->iv, cn.c, CTS_BLOCK_SIZE);  | 
298  | 0  |     return len + CTS_BLOCK_SIZE + residue;  | 
299  | 0  | }  | 
300  |  |  | 
301  |  | static size_t cts128_cs2_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,  | 
302  |  |                                  unsigned char *out, size_t len)  | 
303  | 0  | { | 
304  | 0  |     if (len % CTS_BLOCK_SIZE == 0) { | 
305  |  |         /* If there are no partial blocks then it is the same as CBC mode */  | 
306  | 0  |         if (!ctx->hw->cipher(ctx, out, in, len))  | 
307  | 0  |             return 0;  | 
308  | 0  |         return len;  | 
309  | 0  |     }  | 
310  |  |     /* For partial blocks CS2 is equivalent to CS3 */  | 
311  | 0  |     return cts128_cs3_encrypt(ctx, in, out, len);  | 
312  | 0  | }  | 
313  |  |  | 
314  |  | static size_t cts128_cs2_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,  | 
315  |  |                                  unsigned char *out, size_t len)  | 
316  | 0  | { | 
317  | 0  |     if (len % CTS_BLOCK_SIZE == 0) { | 
318  |  |         /* If there are no partial blocks then it is the same as CBC mode */  | 
319  | 0  |         if (!ctx->hw->cipher(ctx, out, in, len))  | 
320  | 0  |             return 0;  | 
321  | 0  |         return len;  | 
322  | 0  |     }  | 
323  |  |     /* For partial blocks CS2 is equivalent to CS3 */  | 
324  | 0  |     return cts128_cs3_decrypt(ctx, in, out, len);  | 
325  | 0  | }  | 
326  |  |  | 
327  |  | int ossl_cipher_cbc_cts_block_update(void *vctx, unsigned char *out, size_t *outl,  | 
328  |  |                                      size_t outsize, const unsigned char *in,  | 
329  |  |                                      size_t inl)  | 
330  | 0  | { | 
331  | 0  |     PROV_CIPHER_CTX *ctx = (PROV_CIPHER_CTX *)vctx;  | 
332  | 0  |     size_t sz = 0;  | 
333  |  | 
  | 
334  | 0  |     if (inl < CTS_BLOCK_SIZE) /* There must be at least one block for CTS mode */  | 
335  | 0  |         return 0;  | 
336  | 0  |     if (outsize < inl)  | 
337  | 0  |         return 0;  | 
338  | 0  |     if (out == NULL) { | 
339  | 0  |         *outl = inl;  | 
340  | 0  |         return 1;  | 
341  | 0  |     }  | 
342  |  |  | 
343  |  |     /*  | 
344  |  |      * Return an error if the update is called multiple times, only one shot  | 
345  |  |      * is supported.  | 
346  |  |      */  | 
347  | 0  |     if (ctx->updated == 1)  | 
348  | 0  |         return 0;  | 
349  |  |  | 
350  | 0  |     if (ctx->enc) { | 
351  | 0  |         if (ctx->cts_mode == CTS_CS1)  | 
352  | 0  |             sz = cts128_cs1_encrypt(ctx, in, out, inl);  | 
353  | 0  |         else if (ctx->cts_mode == CTS_CS2)  | 
354  | 0  |             sz = cts128_cs2_encrypt(ctx, in, out, inl);  | 
355  | 0  |         else if (ctx->cts_mode == CTS_CS3)  | 
356  | 0  |             sz = cts128_cs3_encrypt(ctx, in, out, inl);  | 
357  | 0  |     } else { | 
358  | 0  |         if (ctx->cts_mode == CTS_CS1)  | 
359  | 0  |             sz = cts128_cs1_decrypt(ctx, in, out, inl);  | 
360  | 0  |         else if (ctx->cts_mode == CTS_CS2)  | 
361  | 0  |             sz = cts128_cs2_decrypt(ctx, in, out, inl);  | 
362  | 0  |         else if (ctx->cts_mode == CTS_CS3)  | 
363  | 0  |             sz = cts128_cs3_decrypt(ctx, in, out, inl);  | 
364  | 0  |     }  | 
365  | 0  |     if (sz == 0)  | 
366  | 0  |         return 0;  | 
367  | 0  |     ctx->updated = 1; /* Stop multiple updates being allowed */  | 
368  | 0  |     *outl = sz;  | 
369  | 0  |     return 1;  | 
370  | 0  | }  | 
371  |  |  | 
372  |  | int ossl_cipher_cbc_cts_block_final(void *vctx, unsigned char *out, size_t *outl,  | 
373  |  |                                     size_t outsize)  | 
374  | 0  | { | 
375  | 0  |     *outl = 0;  | 
376  | 0  |     return 1;  | 
377  | 0  | }  |