Coverage Report

Created: 2025-06-22 06:56

/src/openssl/crypto/bn/bn_gcd.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "bn_local.h"
12
#include "internal/constant_time.h"
13
14
/*
15
 * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
16
 * not contain branches that may leak sensitive information.
17
 *
18
 * This is a static function, we ensure all callers in this file pass valid
19
 * arguments: all passed pointers here are non-NULL.
20
 */
21
static ossl_inline
22
BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
23
                                 const BIGNUM *a, const BIGNUM *n,
24
                                 BN_CTX *ctx, int *pnoinv)
25
0
{
26
0
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
27
0
    BIGNUM *ret = NULL;
28
0
    int sign;
29
30
0
    bn_check_top(a);
31
0
    bn_check_top(n);
32
33
0
    BN_CTX_start(ctx);
34
0
    A = BN_CTX_get(ctx);
35
0
    B = BN_CTX_get(ctx);
36
0
    X = BN_CTX_get(ctx);
37
0
    D = BN_CTX_get(ctx);
38
0
    M = BN_CTX_get(ctx);
39
0
    Y = BN_CTX_get(ctx);
40
0
    T = BN_CTX_get(ctx);
41
0
    if (T == NULL)
42
0
        goto err;
43
44
0
    if (in == NULL)
45
0
        R = BN_new();
46
0
    else
47
0
        R = in;
48
0
    if (R == NULL)
49
0
        goto err;
50
51
0
    if (!BN_one(X))
52
0
        goto err;
53
0
    BN_zero(Y);
54
0
    if (BN_copy(B, a) == NULL)
55
0
        goto err;
56
0
    if (BN_copy(A, n) == NULL)
57
0
        goto err;
58
0
    A->neg = 0;
59
60
0
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
61
        /*
62
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
63
         * BN_div_no_branch will be called eventually.
64
         */
65
0
         {
66
0
            BIGNUM local_B;
67
0
            bn_init(&local_B);
68
0
            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
69
0
            if (!BN_nnmod(B, &local_B, A, ctx))
70
0
                goto err;
71
            /* Ensure local_B goes out of scope before any further use of B */
72
0
        }
73
0
    }
74
0
    sign = -1;
75
    /*-
76
     * From  B = a mod |n|,  A = |n|  it follows that
77
     *
78
     *      0 <= B < A,
79
     *     -sign*X*a  ==  B   (mod |n|),
80
     *      sign*Y*a  ==  A   (mod |n|).
81
     */
82
83
0
    while (!BN_is_zero(B)) {
84
0
        BIGNUM *tmp;
85
86
        /*-
87
         *      0 < B < A,
88
         * (*) -sign*X*a  ==  B   (mod |n|),
89
         *      sign*Y*a  ==  A   (mod |n|)
90
         */
91
92
        /*
93
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
94
         * BN_div_no_branch will be called eventually.
95
         */
96
0
        {
97
0
            BIGNUM local_A;
98
0
            bn_init(&local_A);
99
0
            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
100
101
            /* (D, M) := (A/B, A%B) ... */
102
0
            if (!BN_div(D, M, &local_A, B, ctx))
103
0
                goto err;
104
            /* Ensure local_A goes out of scope before any further use of A */
105
0
        }
106
107
        /*-
108
         * Now
109
         *      A = D*B + M;
110
         * thus we have
111
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
112
         */
113
114
0
        tmp = A;                /* keep the BIGNUM object, the value does not
115
                                 * matter */
116
117
        /* (A, B) := (B, A mod B) ... */
118
0
        A = B;
119
0
        B = M;
120
        /* ... so we have  0 <= B < A  again */
121
122
        /*-
123
         * Since the former  M  is now  B  and the former  B  is now  A,
124
         * (**) translates into
125
         *       sign*Y*a  ==  D*A + B    (mod |n|),
126
         * i.e.
127
         *       sign*Y*a - D*A  ==  B    (mod |n|).
128
         * Similarly, (*) translates into
129
         *      -sign*X*a  ==  A          (mod |n|).
130
         *
131
         * Thus,
132
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
133
         * i.e.
134
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
135
         *
136
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
137
         *      -sign*X*a  ==  B   (mod |n|),
138
         *       sign*Y*a  ==  A   (mod |n|).
139
         * Note that  X  and  Y  stay non-negative all the time.
140
         */
141
142
0
        if (!BN_mul(tmp, D, X, ctx))
143
0
            goto err;
144
0
        if (!BN_add(tmp, tmp, Y))
145
0
            goto err;
146
147
0
        M = Y;                  /* keep the BIGNUM object, the value does not
148
                                 * matter */
149
0
        Y = X;
150
0
        X = tmp;
151
0
        sign = -sign;
152
0
    }
153
154
    /*-
155
     * The while loop (Euclid's algorithm) ends when
156
     *      A == gcd(a,n);
157
     * we have
158
     *       sign*Y*a  ==  A  (mod |n|),
159
     * where  Y  is non-negative.
160
     */
161
162
0
    if (sign < 0) {
163
0
        if (!BN_sub(Y, n, Y))
164
0
            goto err;
165
0
    }
166
    /* Now  Y*a  ==  A  (mod |n|).  */
167
168
0
    if (BN_is_one(A)) {
169
        /* Y*a == 1  (mod |n|) */
170
0
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
171
0
            if (!BN_copy(R, Y))
172
0
                goto err;
173
0
        } else {
174
0
            if (!BN_nnmod(R, Y, n, ctx))
175
0
                goto err;
176
0
        }
177
0
    } else {
178
0
        *pnoinv = 1;
179
        /* caller sets the BN_R_NO_INVERSE error */
180
0
        goto err;
181
0
    }
182
183
0
    ret = R;
184
0
    *pnoinv = 0;
185
186
0
 err:
187
0
    if ((ret == NULL) && (in == NULL))
188
0
        BN_free(R);
189
0
    BN_CTX_end(ctx);
190
0
    bn_check_top(ret);
191
0
    return ret;
192
0
}
193
194
/*
195
 * This is an internal function, we assume all callers pass valid arguments:
196
 * all pointers passed here are assumed non-NULL.
197
 */
198
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
199
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
200
                           int *pnoinv)
201
0
{
202
0
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
203
0
    BIGNUM *ret = NULL;
204
0
    int sign;
205
206
    /* This is invalid input so we don't worry about constant time here */
207
0
    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
208
0
        *pnoinv = 1;
209
0
        return NULL;
210
0
    }
211
212
0
    *pnoinv = 0;
213
214
0
    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
215
0
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
216
0
        return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
217
0
    }
218
219
0
    bn_check_top(a);
220
0
    bn_check_top(n);
221
222
0
    BN_CTX_start(ctx);
223
0
    A = BN_CTX_get(ctx);
224
0
    B = BN_CTX_get(ctx);
225
0
    X = BN_CTX_get(ctx);
226
0
    D = BN_CTX_get(ctx);
227
0
    M = BN_CTX_get(ctx);
228
0
    Y = BN_CTX_get(ctx);
229
0
    T = BN_CTX_get(ctx);
230
0
    if (T == NULL)
231
0
        goto err;
232
233
0
    if (in == NULL)
234
0
        R = BN_new();
235
0
    else
236
0
        R = in;
237
0
    if (R == NULL)
238
0
        goto err;
239
240
0
    if (!BN_one(X))
241
0
        goto err;
242
0
    BN_zero(Y);
243
0
    if (BN_copy(B, a) == NULL)
244
0
        goto err;
245
0
    if (BN_copy(A, n) == NULL)
246
0
        goto err;
247
0
    A->neg = 0;
248
0
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
249
0
        if (!BN_nnmod(B, B, A, ctx))
250
0
            goto err;
251
0
    }
252
0
    sign = -1;
253
    /*-
254
     * From  B = a mod |n|,  A = |n|  it follows that
255
     *
256
     *      0 <= B < A,
257
     *     -sign*X*a  ==  B   (mod |n|),
258
     *      sign*Y*a  ==  A   (mod |n|).
259
     */
260
261
0
    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
262
        /*
263
         * Binary inversion algorithm; requires odd modulus. This is faster
264
         * than the general algorithm if the modulus is sufficiently small
265
         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
266
         * systems)
267
         */
268
0
        int shift;
269
270
0
        while (!BN_is_zero(B)) {
271
            /*-
272
             *      0 < B < |n|,
273
             *      0 < A <= |n|,
274
             * (1) -sign*X*a  ==  B   (mod |n|),
275
             * (2)  sign*Y*a  ==  A   (mod |n|)
276
             */
277
278
            /*
279
             * Now divide B by the maximum possible power of two in the
280
             * integers, and divide X by the same value mod |n|. When we're
281
             * done, (1) still holds.
282
             */
283
0
            shift = 0;
284
0
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
285
0
                shift++;
286
287
0
                if (BN_is_odd(X)) {
288
0
                    if (!BN_uadd(X, X, n))
289
0
                        goto err;
290
0
                }
291
                /*
292
                 * now X is even, so we can easily divide it by two
293
                 */
294
0
                if (!BN_rshift1(X, X))
295
0
                    goto err;
296
0
            }
297
0
            if (shift > 0) {
298
0
                if (!BN_rshift(B, B, shift))
299
0
                    goto err;
300
0
            }
301
302
            /*
303
             * Same for A and Y.  Afterwards, (2) still holds.
304
             */
305
0
            shift = 0;
306
0
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
307
0
                shift++;
308
309
0
                if (BN_is_odd(Y)) {
310
0
                    if (!BN_uadd(Y, Y, n))
311
0
                        goto err;
312
0
                }
313
                /* now Y is even */
314
0
                if (!BN_rshift1(Y, Y))
315
0
                    goto err;
316
0
            }
317
0
            if (shift > 0) {
318
0
                if (!BN_rshift(A, A, shift))
319
0
                    goto err;
320
0
            }
321
322
            /*-
323
             * We still have (1) and (2).
324
             * Both  A  and  B  are odd.
325
             * The following computations ensure that
326
             *
327
             *     0 <= B < |n|,
328
             *      0 < A < |n|,
329
             * (1) -sign*X*a  ==  B   (mod |n|),
330
             * (2)  sign*Y*a  ==  A   (mod |n|),
331
             *
332
             * and that either  A  or  B  is even in the next iteration.
333
             */
334
0
            if (BN_ucmp(B, A) >= 0) {
335
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
336
0
                if (!BN_uadd(X, X, Y))
337
0
                    goto err;
338
                /*
339
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
340
                 * actually makes the algorithm slower
341
                 */
342
0
                if (!BN_usub(B, B, A))
343
0
                    goto err;
344
0
            } else {
345
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
346
0
                if (!BN_uadd(Y, Y, X))
347
0
                    goto err;
348
                /*
349
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
350
                 */
351
0
                if (!BN_usub(A, A, B))
352
0
                    goto err;
353
0
            }
354
0
        }
355
0
    } else {
356
        /* general inversion algorithm */
357
358
0
        while (!BN_is_zero(B)) {
359
0
            BIGNUM *tmp;
360
361
            /*-
362
             *      0 < B < A,
363
             * (*) -sign*X*a  ==  B   (mod |n|),
364
             *      sign*Y*a  ==  A   (mod |n|)
365
             */
366
367
            /* (D, M) := (A/B, A%B) ... */
368
0
            if (BN_num_bits(A) == BN_num_bits(B)) {
369
0
                if (!BN_one(D))
370
0
                    goto err;
371
0
                if (!BN_sub(M, A, B))
372
0
                    goto err;
373
0
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
374
                /* A/B is 1, 2, or 3 */
375
0
                if (!BN_lshift1(T, B))
376
0
                    goto err;
377
0
                if (BN_ucmp(A, T) < 0) {
378
                    /* A < 2*B, so D=1 */
379
0
                    if (!BN_one(D))
380
0
                        goto err;
381
0
                    if (!BN_sub(M, A, B))
382
0
                        goto err;
383
0
                } else {
384
                    /* A >= 2*B, so D=2 or D=3 */
385
0
                    if (!BN_sub(M, A, T))
386
0
                        goto err;
387
0
                    if (!BN_add(D, T, B))
388
0
                        goto err; /* use D (:= 3*B) as temp */
389
0
                    if (BN_ucmp(A, D) < 0) {
390
                        /* A < 3*B, so D=2 */
391
0
                        if (!BN_set_word(D, 2))
392
0
                            goto err;
393
                        /*
394
                         * M (= A - 2*B) already has the correct value
395
                         */
396
0
                    } else {
397
                        /* only D=3 remains */
398
0
                        if (!BN_set_word(D, 3))
399
0
                            goto err;
400
                        /*
401
                         * currently M = A - 2*B, but we need M = A - 3*B
402
                         */
403
0
                        if (!BN_sub(M, M, B))
404
0
                            goto err;
405
0
                    }
406
0
                }
407
0
            } else {
408
0
                if (!BN_div(D, M, A, B, ctx))
409
0
                    goto err;
410
0
            }
411
412
            /*-
413
             * Now
414
             *      A = D*B + M;
415
             * thus we have
416
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
417
             */
418
419
0
            tmp = A;    /* keep the BIGNUM object, the value does not matter */
420
421
            /* (A, B) := (B, A mod B) ... */
422
0
            A = B;
423
0
            B = M;
424
            /* ... so we have  0 <= B < A  again */
425
426
            /*-
427
             * Since the former  M  is now  B  and the former  B  is now  A,
428
             * (**) translates into
429
             *       sign*Y*a  ==  D*A + B    (mod |n|),
430
             * i.e.
431
             *       sign*Y*a - D*A  ==  B    (mod |n|).
432
             * Similarly, (*) translates into
433
             *      -sign*X*a  ==  A          (mod |n|).
434
             *
435
             * Thus,
436
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
437
             * i.e.
438
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
439
             *
440
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
441
             *      -sign*X*a  ==  B   (mod |n|),
442
             *       sign*Y*a  ==  A   (mod |n|).
443
             * Note that  X  and  Y  stay non-negative all the time.
444
             */
445
446
            /*
447
             * most of the time D is very small, so we can optimize tmp := D*X+Y
448
             */
449
0
            if (BN_is_one(D)) {
450
0
                if (!BN_add(tmp, X, Y))
451
0
                    goto err;
452
0
            } else {
453
0
                if (BN_is_word(D, 2)) {
454
0
                    if (!BN_lshift1(tmp, X))
455
0
                        goto err;
456
0
                } else if (BN_is_word(D, 4)) {
457
0
                    if (!BN_lshift(tmp, X, 2))
458
0
                        goto err;
459
0
                } else if (D->top == 1) {
460
0
                    if (!BN_copy(tmp, X))
461
0
                        goto err;
462
0
                    if (!BN_mul_word(tmp, D->d[0]))
463
0
                        goto err;
464
0
                } else {
465
0
                    if (!BN_mul(tmp, D, X, ctx))
466
0
                        goto err;
467
0
                }
468
0
                if (!BN_add(tmp, tmp, Y))
469
0
                    goto err;
470
0
            }
471
472
0
            M = Y;      /* keep the BIGNUM object, the value does not matter */
473
0
            Y = X;
474
0
            X = tmp;
475
0
            sign = -sign;
476
0
        }
477
0
    }
478
479
    /*-
480
     * The while loop (Euclid's algorithm) ends when
481
     *      A == gcd(a,n);
482
     * we have
483
     *       sign*Y*a  ==  A  (mod |n|),
484
     * where  Y  is non-negative.
485
     */
486
487
0
    if (sign < 0) {
488
0
        if (!BN_sub(Y, n, Y))
489
0
            goto err;
490
0
    }
491
    /* Now  Y*a  ==  A  (mod |n|).  */
492
493
0
    if (BN_is_one(A)) {
494
        /* Y*a == 1  (mod |n|) */
495
0
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
496
0
            if (!BN_copy(R, Y))
497
0
                goto err;
498
0
        } else {
499
0
            if (!BN_nnmod(R, Y, n, ctx))
500
0
                goto err;
501
0
        }
502
0
    } else {
503
0
        *pnoinv = 1;
504
0
        goto err;
505
0
    }
506
0
    ret = R;
507
0
 err:
508
0
    if ((ret == NULL) && (in == NULL))
509
0
        BN_free(R);
510
0
    BN_CTX_end(ctx);
511
0
    bn_check_top(ret);
512
0
    return ret;
513
0
}
514
515
/* solves ax == 1 (mod n) */
516
BIGNUM *BN_mod_inverse(BIGNUM *in,
517
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
518
0
{
519
0
    BN_CTX *new_ctx = NULL;
520
0
    BIGNUM *rv;
521
0
    int noinv = 0;
522
523
0
    if (ctx == NULL) {
524
0
        ctx = new_ctx = BN_CTX_new_ex(NULL);
525
0
        if (ctx == NULL) {
526
0
            ERR_raise(ERR_LIB_BN, ERR_R_BN_LIB);
527
0
            return NULL;
528
0
        }
529
0
    }
530
531
0
    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
532
0
    if (noinv)
533
0
        ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);
534
0
    BN_CTX_free(new_ctx);
535
0
    return rv;
536
0
}
537
538
/*
539
 * The numbers a and b are coprime if the only positive integer that is a
540
 * divisor of both of them is 1.
541
 * i.e. gcd(a,b) = 1.
542
 *
543
 * Coprimes have the property: b has a multiplicative inverse modulo a
544
 * i.e there is some value x such that bx = 1 (mod a).
545
 *
546
 * Testing the modulo inverse is currently much faster than the constant
547
 * time version of BN_gcd().
548
 */
549
int BN_are_coprime(BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
550
0
{
551
0
    int ret = 0;
552
0
    BIGNUM *tmp;
553
554
0
    BN_CTX_start(ctx);
555
0
    tmp = BN_CTX_get(ctx);
556
0
    if (tmp == NULL)
557
0
        goto end;
558
559
0
    ERR_set_mark();
560
0
    BN_set_flags(a, BN_FLG_CONSTTIME);
561
0
    ret = (BN_mod_inverse(tmp, a, b, ctx) != NULL);
562
    /* Clear any errors (an error is returned if there is no inverse) */
563
0
    ERR_pop_to_mark();
564
0
end:
565
0
    BN_CTX_end(ctx);
566
0
    return ret;
567
0
}
568
569
/*-
570
 * This function is based on the constant-time GCD work by Bernstein and Yang:
571
 * https://eprint.iacr.org/2019/266
572
 * Generalized fast GCD function to allow even inputs.
573
 * The algorithm first finds the shared powers of 2 between
574
 * the inputs, and removes them, reducing at least one of the
575
 * inputs to an odd value. Then it proceeds to calculate the GCD.
576
 * Before returning the resulting GCD, we take care of adding
577
 * back the powers of two removed at the beginning.
578
 * Note 1: we assume the bit length of both inputs is public information,
579
 * since access to top potentially leaks this information.
580
 */
581
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
582
0
{
583
0
    BIGNUM *g, *temp = NULL;
584
0
    BN_ULONG pow2_numbits, pow2_numbits_temp, pow2_condition_mask, pow2_flag;
585
0
    int i, j, top, rlen, glen, m, delta = 1, cond = 0, pow2_shifts, ret = 0;
586
587
    /* Note 2: zero input corner cases are not constant-time since they are
588
     * handled immediately. An attacker can run an attack under this
589
     * assumption without the need of side-channel information. */
590
0
    if (BN_is_zero(in_b)) {
591
0
        ret = BN_copy(r, in_a) != NULL;
592
0
        r->neg = 0;
593
0
        return ret;
594
0
    }
595
0
    if (BN_is_zero(in_a)) {
596
0
        ret = BN_copy(r, in_b) != NULL;
597
0
        r->neg = 0;
598
0
        return ret;
599
0
    }
600
601
0
    bn_check_top(in_a);
602
0
    bn_check_top(in_b);
603
604
0
    BN_CTX_start(ctx);
605
0
    temp = BN_CTX_get(ctx);
606
0
    g = BN_CTX_get(ctx);
607
608
    /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
609
0
    if (g == NULL
610
0
        || !BN_lshift1(g, in_b)
611
0
        || !BN_lshift1(r, in_a))
612
0
        goto err;
613
614
    /* find shared powers of two, i.e. "shifts" >= 1 */
615
0
    pow2_flag = 1;
616
0
    pow2_shifts = 0;
617
0
    pow2_numbits = 0;
618
0
    for (i = 0; i < r->dmax && i < g->dmax; i++) {
619
0
        pow2_numbits_temp = r->d[i] | g->d[i];
620
0
        pow2_condition_mask = constant_time_is_zero_bn(pow2_flag);
621
0
        pow2_flag &= constant_time_is_zero_bn(pow2_numbits_temp);
622
0
        pow2_shifts += pow2_flag;
623
0
        pow2_numbits = constant_time_select_bn(pow2_condition_mask,
624
0
                                               pow2_numbits, pow2_numbits_temp);
625
0
    }
626
0
    pow2_numbits = ~pow2_numbits;
627
0
    pow2_shifts *= BN_BITS2;
628
0
    pow2_flag = 1;
629
0
    for (j = 0; j < BN_BITS2; j++) {
630
0
        pow2_flag &= pow2_numbits;
631
0
        pow2_shifts += pow2_flag;
632
0
        pow2_numbits >>= 1;
633
0
    }
634
635
    /* subtract shared powers of two; shifts >= 1 */
636
0
    if (!BN_rshift(r, r, pow2_shifts)
637
0
        || !BN_rshift(g, g, pow2_shifts))
638
0
        goto err;
639
640
    /* expand to biggest nword, with room for a possible extra word */
641
0
    top = 1 + ((r->top >= g->top) ? r->top : g->top);
642
0
    if (bn_wexpand(r, top) == NULL
643
0
        || bn_wexpand(g, top) == NULL
644
0
        || bn_wexpand(temp, top) == NULL)
645
0
        goto err;
646
647
    /* re arrange inputs s.t. r is odd */
648
0
    BN_consttime_swap((~r->d[0]) & 1, r, g, top);
649
650
    /* compute the number of iterations */
651
0
    rlen = BN_num_bits(r);
652
0
    glen = BN_num_bits(g);
653
0
    m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
654
655
0
    for (i = 0; i < m; i++) {
656
        /* conditionally flip signs if delta is positive and g is odd */
657
0
        cond = ((unsigned int)-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
658
            /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
659
0
            & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1)));
660
0
        delta = (-cond & -delta) | ((cond - 1) & delta);
661
0
        r->neg ^= cond;
662
        /* swap */
663
0
        BN_consttime_swap(cond, r, g, top);
664
665
        /* elimination step */
666
0
        delta++;
667
0
        if (!BN_add(temp, g, r))
668
0
            goto err;
669
0
        BN_consttime_swap(g->d[0] & 1 /* g is odd */
670
                /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
671
0
                & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1))),
672
0
                g, temp, top);
673
0
        if (!BN_rshift1(g, g))
674
0
            goto err;
675
0
    }
676
677
    /* remove possible negative sign */
678
0
    r->neg = 0;
679
    /* add powers of 2 removed, then correct the artificial shift */
680
0
    if (!BN_lshift(r, r, pow2_shifts)
681
0
        || !BN_rshift1(r, r))
682
0
        goto err;
683
684
0
    ret = 1;
685
686
0
 err:
687
0
    BN_CTX_end(ctx);
688
0
    bn_check_top(r);
689
0
    return ret;
690
0
}