Coverage Report

Created: 2025-06-22 06:56

/src/openssl/crypto/ec/ec_mult.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2001-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * ECDSA low level APIs are deprecated for public use, but still ok for
13
 * internal use.
14
 */
15
#include "internal/deprecated.h"
16
17
#include <string.h>
18
#include <openssl/err.h>
19
20
#include "internal/cryptlib.h"
21
#include "crypto/bn.h"
22
#include "ec_local.h"
23
#include "internal/refcount.h"
24
25
/*
26
 * This file implements the wNAF-based interleaving multi-exponentiation method
27
 * Formerly at:
28
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
29
 * You might now find it here:
30
 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
31
 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
32
 * For multiplication with precomputation, we use wNAF splitting, formerly at:
33
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
34
 */
35
36
/* structure for precomputed multiples of the generator */
37
struct ec_pre_comp_st {
38
    const EC_GROUP *group;      /* parent EC_GROUP object */
39
    size_t blocksize;           /* block size for wNAF splitting */
40
    size_t numblocks;           /* max. number of blocks for which we have
41
                                 * precomputation */
42
    size_t w;                   /* window size */
43
    EC_POINT **points;          /* array with pre-calculated multiples of
44
                                 * generator: 'num' pointers to EC_POINT
45
                                 * objects followed by a NULL */
46
    size_t num;                 /* numblocks * 2^(w-1) */
47
    CRYPTO_REF_COUNT references;
48
};
49
50
static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
51
0
{
52
0
    EC_PRE_COMP *ret = NULL;
53
54
0
    if (!group)
55
0
        return NULL;
56
57
0
    ret = OPENSSL_zalloc(sizeof(*ret));
58
0
    if (ret == NULL)
59
0
        return ret;
60
61
0
    ret->group = group;
62
0
    ret->blocksize = 8;         /* default */
63
0
    ret->w = 4;                 /* default */
64
65
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
66
0
        OPENSSL_free(ret);
67
0
        return NULL;
68
0
    }
69
0
    return ret;
70
0
}
71
72
EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73
0
{
74
0
    int i;
75
0
    if (pre != NULL)
76
0
        CRYPTO_UP_REF(&pre->references, &i);
77
0
    return pre;
78
0
}
79
80
void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81
0
{
82
0
    int i;
83
84
0
    if (pre == NULL)
85
0
        return;
86
87
0
    CRYPTO_DOWN_REF(&pre->references, &i);
88
0
    REF_PRINT_COUNT("EC_ec", i, pre);
89
0
    if (i > 0)
90
0
        return;
91
0
    REF_ASSERT_ISNT(i < 0);
92
93
0
    if (pre->points != NULL) {
94
0
        EC_POINT **pts;
95
96
0
        for (pts = pre->points; *pts != NULL; pts++)
97
0
            EC_POINT_free(*pts);
98
0
        OPENSSL_free(pre->points);
99
0
    }
100
0
    CRYPTO_FREE_REF(&pre->references);
101
0
    OPENSSL_free(pre);
102
0
}
103
104
0
#define EC_POINT_BN_set_flags(P, flags) do { \
105
0
    BN_set_flags((P)->X, (flags)); \
106
0
    BN_set_flags((P)->Y, (flags)); \
107
0
    BN_set_flags((P)->Z, (flags)); \
108
0
} while(0)
109
110
/*-
111
 * This functions computes a single point multiplication over the EC group,
112
 * using, at a high level, a Montgomery ladder with conditional swaps, with
113
 * various timing attack defenses.
114
 *
115
 * It performs either a fixed point multiplication
116
 *          (scalar * generator)
117
 * when point is NULL, or a variable point multiplication
118
 *          (scalar * point)
119
 * when point is not NULL.
120
 *
121
 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
122
 * constant time bets are off (where n is the cardinality of the EC group).
123
 *
124
 * This function expects `group->order` and `group->cardinality` to be well
125
 * defined and non-zero: it fails with an error code otherwise.
126
 *
127
 * NB: This says nothing about the constant-timeness of the ladder step
128
 * implementation (i.e., the default implementation is based on EC_POINT_add and
129
 * EC_POINT_dbl, which of course are not constant time themselves) or the
130
 * underlying multiprecision arithmetic.
131
 *
132
 * The product is stored in `r`.
133
 *
134
 * This is an internal function: callers are in charge of ensuring that the
135
 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
136
 *
137
 * Returns 1 on success, 0 otherwise.
138
 */
139
int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
140
                              const BIGNUM *scalar, const EC_POINT *point,
141
                              BN_CTX *ctx)
142
0
{
143
0
    int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
144
0
    EC_POINT *p = NULL;
145
0
    EC_POINT *s = NULL;
146
0
    BIGNUM *k = NULL;
147
0
    BIGNUM *lambda = NULL;
148
0
    BIGNUM *cardinality = NULL;
149
0
    int ret = 0;
150
151
    /* early exit if the input point is the point at infinity */
152
0
    if (point != NULL && EC_POINT_is_at_infinity(group, point))
153
0
        return EC_POINT_set_to_infinity(group, r);
154
155
0
    if (BN_is_zero(group->order)) {
156
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
157
0
        return 0;
158
0
    }
159
0
    if (BN_is_zero(group->cofactor)) {
160
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR);
161
0
        return 0;
162
0
    }
163
164
0
    BN_CTX_start(ctx);
165
166
0
    if (((p = EC_POINT_new(group)) == NULL)
167
0
        || ((s = EC_POINT_new(group)) == NULL)) {
168
0
        ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
169
0
        goto err;
170
0
    }
171
172
0
    if (point == NULL) {
173
0
        if (!EC_POINT_copy(p, group->generator)) {
174
0
            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
175
0
            goto err;
176
0
        }
177
0
    } else {
178
0
        if (!EC_POINT_copy(p, point)) {
179
0
            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
180
0
            goto err;
181
0
        }
182
0
    }
183
184
0
    EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
185
0
    EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
186
0
    EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
187
188
0
    cardinality = BN_CTX_get(ctx);
189
0
    lambda = BN_CTX_get(ctx);
190
0
    k = BN_CTX_get(ctx);
191
0
    if (k == NULL) {
192
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
193
0
        goto err;
194
0
    }
195
196
0
    if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
197
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
198
0
        goto err;
199
0
    }
200
201
    /*
202
     * Group cardinalities are often on a word boundary.
203
     * So when we pad the scalar, some timing diff might
204
     * pop if it needs to be expanded due to carries.
205
     * So expand ahead of time.
206
     */
207
0
    cardinality_bits = BN_num_bits(cardinality);
208
0
    group_top = bn_get_top(cardinality);
209
0
    if ((bn_wexpand(k, group_top + 2) == NULL)
210
0
        || (bn_wexpand(lambda, group_top + 2) == NULL)) {
211
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
212
0
        goto err;
213
0
    }
214
215
0
    if (!BN_copy(k, scalar)) {
216
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
217
0
        goto err;
218
0
    }
219
220
0
    BN_set_flags(k, BN_FLG_CONSTTIME);
221
222
0
    if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
223
        /*-
224
         * this is an unusual input, and we don't guarantee
225
         * constant-timeness
226
         */
227
0
        if (!BN_nnmod(k, k, cardinality, ctx)) {
228
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
229
0
            goto err;
230
0
        }
231
0
    }
232
233
0
    if (!BN_add(lambda, k, cardinality)) {
234
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
235
0
        goto err;
236
0
    }
237
0
    BN_set_flags(lambda, BN_FLG_CONSTTIME);
238
0
    if (!BN_add(k, lambda, cardinality)) {
239
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
240
0
        goto err;
241
0
    }
242
    /*
243
     * lambda := scalar + cardinality
244
     * k := scalar + 2*cardinality
245
     */
246
0
    kbit = BN_is_bit_set(lambda, cardinality_bits);
247
0
    BN_consttime_swap(kbit, k, lambda, group_top + 2);
248
249
0
    group_top = bn_get_top(group->field);
250
0
    if ((bn_wexpand(s->X, group_top) == NULL)
251
0
        || (bn_wexpand(s->Y, group_top) == NULL)
252
0
        || (bn_wexpand(s->Z, group_top) == NULL)
253
0
        || (bn_wexpand(r->X, group_top) == NULL)
254
0
        || (bn_wexpand(r->Y, group_top) == NULL)
255
0
        || (bn_wexpand(r->Z, group_top) == NULL)
256
0
        || (bn_wexpand(p->X, group_top) == NULL)
257
0
        || (bn_wexpand(p->Y, group_top) == NULL)
258
0
        || (bn_wexpand(p->Z, group_top) == NULL)) {
259
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
260
0
        goto err;
261
0
    }
262
263
    /* ensure input point is in affine coords for ladder step efficiency */
264
0
    if (!p->Z_is_one && (group->meth->make_affine == NULL
265
0
                         || !group->meth->make_affine(group, p, ctx))) {
266
0
            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
267
0
            goto err;
268
0
    }
269
270
    /* Initialize the Montgomery ladder */
271
0
    if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
272
0
        ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE);
273
0
        goto err;
274
0
    }
275
276
    /* top bit is a 1, in a fixed pos */
277
0
    pbit = 1;
278
279
0
#define EC_POINT_CSWAP(c, a, b, w, t) do {         \
280
0
        BN_consttime_swap(c, (a)->X, (b)->X, w);   \
281
0
        BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
282
0
        BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
283
0
        t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
284
0
        (a)->Z_is_one ^= (t);                      \
285
0
        (b)->Z_is_one ^= (t);                      \
286
0
} while(0)
287
288
    /*-
289
     * The ladder step, with branches, is
290
     *
291
     * k[i] == 0: S = add(R, S), R = dbl(R)
292
     * k[i] == 1: R = add(S, R), S = dbl(S)
293
     *
294
     * Swapping R, S conditionally on k[i] leaves you with state
295
     *
296
     * k[i] == 0: T, U = R, S
297
     * k[i] == 1: T, U = S, R
298
     *
299
     * Then perform the ECC ops.
300
     *
301
     * U = add(T, U)
302
     * T = dbl(T)
303
     *
304
     * Which leaves you with state
305
     *
306
     * k[i] == 0: U = add(R, S), T = dbl(R)
307
     * k[i] == 1: U = add(S, R), T = dbl(S)
308
     *
309
     * Swapping T, U conditionally on k[i] leaves you with state
310
     *
311
     * k[i] == 0: R, S = T, U
312
     * k[i] == 1: R, S = U, T
313
     *
314
     * Which leaves you with state
315
     *
316
     * k[i] == 0: S = add(R, S), R = dbl(R)
317
     * k[i] == 1: R = add(S, R), S = dbl(S)
318
     *
319
     * So we get the same logic, but instead of a branch it's a
320
     * conditional swap, followed by ECC ops, then another conditional swap.
321
     *
322
     * Optimization: The end of iteration i and start of i-1 looks like
323
     *
324
     * ...
325
     * CSWAP(k[i], R, S)
326
     * ECC
327
     * CSWAP(k[i], R, S)
328
     * (next iteration)
329
     * CSWAP(k[i-1], R, S)
330
     * ECC
331
     * CSWAP(k[i-1], R, S)
332
     * ...
333
     *
334
     * So instead of two contiguous swaps, you can merge the condition
335
     * bits and do a single swap.
336
     *
337
     * k[i]   k[i-1]    Outcome
338
     * 0      0         No Swap
339
     * 0      1         Swap
340
     * 1      0         Swap
341
     * 1      1         No Swap
342
     *
343
     * This is XOR. pbit tracks the previous bit of k.
344
     */
345
346
0
    for (i = cardinality_bits - 1; i >= 0; i--) {
347
0
        kbit = BN_is_bit_set(k, i) ^ pbit;
348
0
        EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
349
350
        /* Perform a single step of the Montgomery ladder */
351
0
        if (!ec_point_ladder_step(group, r, s, p, ctx)) {
352
0
            ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE);
353
0
            goto err;
354
0
        }
355
        /*
356
         * pbit logic merges this cswap with that of the
357
         * next iteration
358
         */
359
0
        pbit ^= kbit;
360
0
    }
361
    /* one final cswap to move the right value into r */
362
0
    EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
363
0
#undef EC_POINT_CSWAP
364
365
    /* Finalize ladder (and recover full point coordinates) */
366
0
    if (!ec_point_ladder_post(group, r, s, p, ctx)) {
367
0
        ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE);
368
0
        goto err;
369
0
    }
370
371
0
    ret = 1;
372
373
0
 err:
374
0
    EC_POINT_free(p);
375
0
    EC_POINT_clear_free(s);
376
0
    BN_CTX_end(ctx);
377
378
0
    return ret;
379
0
}
380
381
#undef EC_POINT_BN_set_flags
382
383
/*
384
 * Table could be optimised for the wNAF-based implementation,
385
 * sometimes smaller windows will give better performance (thus the
386
 * boundaries should be increased)
387
 */
388
#define EC_window_bits_for_scalar_size(b) \
389
0
                ((size_t) \
390
0
                 ((b) >= 2000 ? 6 : \
391
0
                  (b) >=  800 ? 5 : \
392
0
                  (b) >=  300 ? 4 : \
393
0
                  (b) >=   70 ? 3 : \
394
0
                  (b) >=   20 ? 2 : \
395
0
                  1))
396
397
/*-
398
 * Compute
399
 *      \sum scalars[i]*points[i],
400
 * also including
401
 *      scalar*generator
402
 * in the addition if scalar != NULL
403
 */
404
int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
405
                     size_t num, const EC_POINT *points[],
406
                     const BIGNUM *scalars[], BN_CTX *ctx)
407
0
{
408
0
    const EC_POINT *generator = NULL;
409
0
    EC_POINT *tmp = NULL;
410
0
    size_t totalnum;
411
0
    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
412
0
    size_t pre_points_per_block = 0;
413
0
    size_t i, j;
414
0
    int k;
415
0
    int r_is_inverted = 0;
416
0
    int r_is_at_infinity = 1;
417
0
    size_t *wsize = NULL;       /* individual window sizes */
418
0
    signed char **wNAF = NULL;  /* individual wNAFs */
419
0
    size_t *wNAF_len = NULL;
420
0
    size_t max_len = 0;
421
0
    size_t num_val;
422
0
    EC_POINT **val = NULL;      /* precomputation */
423
0
    EC_POINT **v;
424
0
    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
425
                                 * 'pre_comp->points' */
426
0
    const EC_PRE_COMP *pre_comp = NULL;
427
0
    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
428
                                 * treated like other scalars, i.e.
429
                                 * precomputation is not available */
430
0
    int ret = 0;
431
432
0
    if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
433
        /*-
434
         * Handle the common cases where the scalar is secret, enforcing a
435
         * scalar multiplication implementation based on a Montgomery ladder,
436
         * with various timing attack defenses.
437
         */
438
0
        if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
439
            /*-
440
             * In this case we want to compute scalar * GeneratorPoint: this
441
             * codepath is reached most prominently by (ephemeral) key
442
             * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
443
             * ECDH keygen/first half), where the scalar is always secret. This
444
             * is why we ignore if BN_FLG_CONSTTIME is actually set and we
445
             * always call the ladder version.
446
             */
447
0
            return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
448
0
        }
449
0
        if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
450
            /*-
451
             * In this case we want to compute scalar * VariablePoint: this
452
             * codepath is reached most prominently by the second half of ECDH,
453
             * where the secret scalar is multiplied by the peer's public point.
454
             * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
455
             * actually set and we always call the ladder version.
456
             */
457
0
            return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0],
458
0
                                             ctx);
459
0
        }
460
0
    }
461
462
0
    if (scalar != NULL) {
463
0
        generator = EC_GROUP_get0_generator(group);
464
0
        if (generator == NULL) {
465
0
            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
466
0
            goto err;
467
0
        }
468
469
        /* look if we can use precomputed multiples of generator */
470
471
0
        pre_comp = group->pre_comp.ec;
472
0
        if (pre_comp && pre_comp->numblocks
473
0
            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
474
0
                0)) {
475
0
            blocksize = pre_comp->blocksize;
476
477
            /*
478
             * determine maximum number of blocks that wNAF splitting may
479
             * yield (NB: maximum wNAF length is bit length plus one)
480
             */
481
0
            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
482
483
            /*
484
             * we cannot use more blocks than we have precomputation for
485
             */
486
0
            if (numblocks > pre_comp->numblocks)
487
0
                numblocks = pre_comp->numblocks;
488
489
0
            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
490
491
            /* check that pre_comp looks sane */
492
0
            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
493
0
                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
494
0
                goto err;
495
0
            }
496
0
        } else {
497
            /* can't use precomputation */
498
0
            pre_comp = NULL;
499
0
            numblocks = 1;
500
0
            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
501
                                 * 'scalars' */
502
0
        }
503
0
    }
504
505
0
    totalnum = num + numblocks;
506
507
0
    wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
508
0
    wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
509
    /* include space for pivot */
510
0
    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
511
0
    val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
512
513
    /* Ensure wNAF is initialised in case we end up going to err */
514
0
    if (wNAF != NULL)
515
0
        wNAF[0] = NULL;         /* preliminary pivot */
516
517
0
    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL)
518
0
        goto err;
519
520
    /*
521
     * num_val will be the total number of temporarily precomputed points
522
     */
523
0
    num_val = 0;
524
525
0
    for (i = 0; i < num + num_scalar; i++) {
526
0
        size_t bits;
527
528
0
        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
529
0
        wsize[i] = EC_window_bits_for_scalar_size(bits);
530
0
        num_val += (size_t)1 << (wsize[i] - 1);
531
0
        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
532
0
        wNAF[i] =
533
0
            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
534
0
                            &wNAF_len[i]);
535
0
        if (wNAF[i] == NULL)
536
0
            goto err;
537
0
        if (wNAF_len[i] > max_len)
538
0
            max_len = wNAF_len[i];
539
0
    }
540
541
0
    if (numblocks) {
542
        /* we go here iff scalar != NULL */
543
544
0
        if (pre_comp == NULL) {
545
0
            if (num_scalar != 1) {
546
0
                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
547
0
                goto err;
548
0
            }
549
            /* we have already generated a wNAF for 'scalar' */
550
0
        } else {
551
0
            signed char *tmp_wNAF = NULL;
552
0
            size_t tmp_len = 0;
553
554
0
            if (num_scalar != 0) {
555
0
                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
556
0
                goto err;
557
0
            }
558
559
            /*
560
             * use the window size for which we have precomputation
561
             */
562
0
            wsize[num] = pre_comp->w;
563
0
            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
564
0
            if (!tmp_wNAF)
565
0
                goto err;
566
567
0
            if (tmp_len <= max_len) {
568
                /*
569
                 * One of the other wNAFs is at least as long as the wNAF
570
                 * belonging to the generator, so wNAF splitting will not buy
571
                 * us anything.
572
                 */
573
574
0
                numblocks = 1;
575
0
                totalnum = num + 1; /* don't use wNAF splitting */
576
0
                wNAF[num] = tmp_wNAF;
577
0
                wNAF[num + 1] = NULL;
578
0
                wNAF_len[num] = tmp_len;
579
                /*
580
                 * pre_comp->points starts with the points that we need here:
581
                 */
582
0
                val_sub[num] = pre_comp->points;
583
0
            } else {
584
                /*
585
                 * don't include tmp_wNAF directly into wNAF array - use wNAF
586
                 * splitting and include the blocks
587
                 */
588
589
0
                signed char *pp;
590
0
                EC_POINT **tmp_points;
591
592
0
                if (tmp_len < numblocks * blocksize) {
593
                    /*
594
                     * possibly we can do with fewer blocks than estimated
595
                     */
596
0
                    numblocks = (tmp_len + blocksize - 1) / blocksize;
597
0
                    if (numblocks > pre_comp->numblocks) {
598
0
                        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
599
0
                        OPENSSL_free(tmp_wNAF);
600
0
                        goto err;
601
0
                    }
602
0
                    totalnum = num + numblocks;
603
0
                }
604
605
                /* split wNAF in 'numblocks' parts */
606
0
                pp = tmp_wNAF;
607
0
                tmp_points = pre_comp->points;
608
609
0
                for (i = num; i < totalnum; i++) {
610
0
                    if (i < totalnum - 1) {
611
0
                        wNAF_len[i] = blocksize;
612
0
                        if (tmp_len < blocksize) {
613
0
                            ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
614
0
                            OPENSSL_free(tmp_wNAF);
615
0
                            goto err;
616
0
                        }
617
0
                        tmp_len -= blocksize;
618
0
                    } else
619
                        /*
620
                         * last block gets whatever is left (this could be
621
                         * more or less than 'blocksize'!)
622
                         */
623
0
                        wNAF_len[i] = tmp_len;
624
625
0
                    wNAF[i + 1] = NULL;
626
0
                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
627
0
                    if (wNAF[i] == NULL) {
628
0
                        OPENSSL_free(tmp_wNAF);
629
0
                        goto err;
630
0
                    }
631
0
                    memcpy(wNAF[i], pp, wNAF_len[i]);
632
0
                    if (wNAF_len[i] > max_len)
633
0
                        max_len = wNAF_len[i];
634
635
0
                    if (*tmp_points == NULL) {
636
0
                        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
637
0
                        OPENSSL_free(tmp_wNAF);
638
0
                        goto err;
639
0
                    }
640
0
                    val_sub[i] = tmp_points;
641
0
                    tmp_points += pre_points_per_block;
642
0
                    pp += blocksize;
643
0
                }
644
0
                OPENSSL_free(tmp_wNAF);
645
0
            }
646
0
        }
647
0
    }
648
649
    /*
650
     * All points we precompute now go into a single array 'val'.
651
     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
652
     * subarray of 'pre_comp->points' if we already have precomputation.
653
     */
654
0
    val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
655
0
    if (val == NULL)
656
0
        goto err;
657
0
    val[num_val] = NULL;        /* pivot element */
658
659
    /* allocate points for precomputation */
660
0
    v = val;
661
0
    for (i = 0; i < num + num_scalar; i++) {
662
0
        val_sub[i] = v;
663
0
        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
664
0
            *v = EC_POINT_new(group);
665
0
            if (*v == NULL)
666
0
                goto err;
667
0
            v++;
668
0
        }
669
0
    }
670
0
    if (!(v == val + num_val)) {
671
0
        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
672
0
        goto err;
673
0
    }
674
675
0
    if ((tmp = EC_POINT_new(group)) == NULL)
676
0
        goto err;
677
678
    /*-
679
     * prepare precomputed values:
680
     *    val_sub[i][0] :=     points[i]
681
     *    val_sub[i][1] := 3 * points[i]
682
     *    val_sub[i][2] := 5 * points[i]
683
     *    ...
684
     */
685
0
    for (i = 0; i < num + num_scalar; i++) {
686
0
        if (i < num) {
687
0
            if (!EC_POINT_copy(val_sub[i][0], points[i]))
688
0
                goto err;
689
0
        } else {
690
0
            if (!EC_POINT_copy(val_sub[i][0], generator))
691
0
                goto err;
692
0
        }
693
694
0
        if (wsize[i] > 1) {
695
0
            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
696
0
                goto err;
697
0
            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
698
0
                if (!EC_POINT_add
699
0
                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
700
0
                    goto err;
701
0
            }
702
0
        }
703
0
    }
704
705
0
    if (group->meth->points_make_affine == NULL
706
0
        || !group->meth->points_make_affine(group, num_val, val, ctx))
707
0
        goto err;
708
709
0
    r_is_at_infinity = 1;
710
711
0
    for (k = max_len - 1; k >= 0; k--) {
712
0
        if (!r_is_at_infinity) {
713
0
            if (!EC_POINT_dbl(group, r, r, ctx))
714
0
                goto err;
715
0
        }
716
717
0
        for (i = 0; i < totalnum; i++) {
718
0
            if (wNAF_len[i] > (size_t)k) {
719
0
                int digit = wNAF[i][k];
720
0
                int is_neg;
721
722
0
                if (digit) {
723
0
                    is_neg = digit < 0;
724
725
0
                    if (is_neg)
726
0
                        digit = -digit;
727
728
0
                    if (is_neg != r_is_inverted) {
729
0
                        if (!r_is_at_infinity) {
730
0
                            if (!EC_POINT_invert(group, r, ctx))
731
0
                                goto err;
732
0
                        }
733
0
                        r_is_inverted = !r_is_inverted;
734
0
                    }
735
736
                    /* digit > 0 */
737
738
0
                    if (r_is_at_infinity) {
739
0
                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
740
0
                            goto err;
741
742
                        /*-
743
                         * Apply coordinate blinding for EC_POINT.
744
                         *
745
                         * The underlying EC_METHOD can optionally implement this function:
746
                         * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on
747
                         * success or if coordinate blinding is not implemented for this
748
                         * group.
749
                         */
750
0
                        if (!ossl_ec_point_blind_coordinates(group, r, ctx)) {
751
0
                            ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE);
752
0
                            goto err;
753
0
                        }
754
755
0
                        r_is_at_infinity = 0;
756
0
                    } else {
757
0
                        if (!EC_POINT_add
758
0
                            (group, r, r, val_sub[i][digit >> 1], ctx))
759
0
                            goto err;
760
0
                    }
761
0
                }
762
0
            }
763
0
        }
764
0
    }
765
766
0
    if (r_is_at_infinity) {
767
0
        if (!EC_POINT_set_to_infinity(group, r))
768
0
            goto err;
769
0
    } else {
770
0
        if (r_is_inverted)
771
0
            if (!EC_POINT_invert(group, r, ctx))
772
0
                goto err;
773
0
    }
774
775
0
    ret = 1;
776
777
0
 err:
778
0
    EC_POINT_free(tmp);
779
0
    OPENSSL_free(wsize);
780
0
    OPENSSL_free(wNAF_len);
781
0
    if (wNAF != NULL) {
782
0
        signed char **w;
783
784
0
        for (w = wNAF; *w != NULL; w++)
785
0
            OPENSSL_free(*w);
786
787
0
        OPENSSL_free(wNAF);
788
0
    }
789
0
    if (val != NULL) {
790
0
        for (v = val; *v != NULL; v++)
791
0
            EC_POINT_clear_free(*v);
792
793
0
        OPENSSL_free(val);
794
0
    }
795
0
    OPENSSL_free(val_sub);
796
0
    return ret;
797
0
}
798
799
/*-
800
 * ossl_ec_wNAF_precompute_mult()
801
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
802
 * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul().
803
 *
804
 * 'pre_comp->points' is an array of multiples of the generator
805
 * of the following form:
806
 * points[0] =     generator;
807
 * points[1] = 3 * generator;
808
 * ...
809
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
810
 * points[2^(w-1)]   =     2^blocksize * generator;
811
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
812
 * ...
813
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
814
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
815
 * ...
816
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
817
 * points[2^(w-1)*numblocks]       = NULL
818
 */
819
int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
820
0
{
821
0
    const EC_POINT *generator;
822
0
    EC_POINT *tmp_point = NULL, *base = NULL, **var;
823
0
    const BIGNUM *order;
824
0
    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
825
0
    EC_POINT **points = NULL;
826
0
    EC_PRE_COMP *pre_comp;
827
0
    int ret = 0;
828
0
    int used_ctx = 0;
829
0
#ifndef FIPS_MODULE
830
0
    BN_CTX *new_ctx = NULL;
831
0
#endif
832
833
    /* if there is an old EC_PRE_COMP object, throw it away */
834
0
    EC_pre_comp_free(group);
835
0
    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
836
0
        return 0;
837
838
0
    generator = EC_GROUP_get0_generator(group);
839
0
    if (generator == NULL) {
840
0
        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
841
0
        goto err;
842
0
    }
843
844
0
#ifndef FIPS_MODULE
845
0
    if (ctx == NULL)
846
0
        ctx = new_ctx = BN_CTX_new();
847
0
#endif
848
0
    if (ctx == NULL)
849
0
        goto err;
850
851
0
    BN_CTX_start(ctx);
852
0
    used_ctx = 1;
853
854
0
    order = EC_GROUP_get0_order(group);
855
0
    if (order == NULL)
856
0
        goto err;
857
0
    if (BN_is_zero(order)) {
858
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
859
0
        goto err;
860
0
    }
861
862
0
    bits = BN_num_bits(order);
863
    /*
864
     * The following parameters mean we precompute (approximately) one point
865
     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
866
     * bit lengths, other parameter combinations might provide better
867
     * efficiency.
868
     */
869
0
    blocksize = 8;
870
0
    w = 4;
871
0
    if (EC_window_bits_for_scalar_size(bits) > w) {
872
        /* let's not make the window too small ... */
873
0
        w = EC_window_bits_for_scalar_size(bits);
874
0
    }
875
876
0
    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
877
                                                     * to use for wNAF
878
                                                     * splitting */
879
880
0
    pre_points_per_block = (size_t)1 << (w - 1);
881
0
    num = pre_points_per_block * numblocks; /* number of points to compute
882
                                             * and store */
883
884
0
    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
885
0
    if (points == NULL)
886
0
        goto err;
887
888
0
    var = points;
889
0
    var[num] = NULL;            /* pivot */
890
0
    for (i = 0; i < num; i++) {
891
0
        if ((var[i] = EC_POINT_new(group)) == NULL) {
892
0
            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
893
0
            goto err;
894
0
        }
895
0
    }
896
897
0
    if ((tmp_point = EC_POINT_new(group)) == NULL
898
0
        || (base = EC_POINT_new(group)) == NULL) {
899
0
        ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
900
0
        goto err;
901
0
    }
902
903
0
    if (!EC_POINT_copy(base, generator))
904
0
        goto err;
905
906
    /* do the precomputation */
907
0
    for (i = 0; i < numblocks; i++) {
908
0
        size_t j;
909
910
0
        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
911
0
            goto err;
912
913
0
        if (!EC_POINT_copy(*var++, base))
914
0
            goto err;
915
916
0
        for (j = 1; j < pre_points_per_block; j++, var++) {
917
            /*
918
             * calculate odd multiples of the current base point
919
             */
920
0
            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
921
0
                goto err;
922
0
        }
923
924
0
        if (i < numblocks - 1) {
925
            /*
926
             * get the next base (multiply current one by 2^blocksize)
927
             */
928
0
            size_t k;
929
930
0
            if (blocksize <= 2) {
931
0
                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
932
0
                goto err;
933
0
            }
934
935
0
            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
936
0
                goto err;
937
0
            for (k = 2; k < blocksize; k++) {
938
0
                if (!EC_POINT_dbl(group, base, base, ctx))
939
0
                    goto err;
940
0
            }
941
0
        }
942
0
    }
943
944
0
    if (group->meth->points_make_affine == NULL
945
0
        || !group->meth->points_make_affine(group, num, points, ctx))
946
0
        goto err;
947
948
0
    pre_comp->group = group;
949
0
    pre_comp->blocksize = blocksize;
950
0
    pre_comp->numblocks = numblocks;
951
0
    pre_comp->w = w;
952
0
    pre_comp->points = points;
953
0
    points = NULL;
954
0
    pre_comp->num = num;
955
0
    SETPRECOMP(group, ec, pre_comp);
956
0
    pre_comp = NULL;
957
0
    ret = 1;
958
959
0
 err:
960
0
    if (used_ctx)
961
0
        BN_CTX_end(ctx);
962
0
#ifndef FIPS_MODULE
963
0
    BN_CTX_free(new_ctx);
964
0
#endif
965
0
    EC_ec_pre_comp_free(pre_comp);
966
0
    if (points) {
967
0
        EC_POINT **p;
968
969
0
        for (p = points; *p != NULL; p++)
970
0
            EC_POINT_free(*p);
971
0
        OPENSSL_free(points);
972
0
    }
973
0
    EC_POINT_free(tmp_point);
974
0
    EC_POINT_free(base);
975
0
    return ret;
976
0
}
977
978
int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group)
979
0
{
980
0
    return HAVEPRECOMP(group, ec);
981
0
}