/src/openssl/crypto/lhash/lhash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <string.h> |
12 | | #include <stdlib.h> |
13 | | #include <openssl/crypto.h> |
14 | | #include <openssl/lhash.h> |
15 | | #include <openssl/err.h> |
16 | | #include "crypto/ctype.h" |
17 | | #include "crypto/lhash.h" |
18 | | #include "lhash_local.h" |
19 | | |
20 | | /* |
21 | | * A hashing implementation that appears to be based on the linear hashing |
22 | | * algorithm: |
23 | | * https://en.wikipedia.org/wiki/Linear_hashing |
24 | | * |
25 | | * Litwin, Witold (1980), "Linear hashing: A new tool for file and table |
26 | | * addressing", Proc. 6th Conference on Very Large Databases: 212-223 |
27 | | * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf |
28 | | * |
29 | | * From the Wikipedia article "Linear hashing is used in the BDB Berkeley |
30 | | * database system, which in turn is used by many software systems such as |
31 | | * OpenLDAP, using a C implementation derived from the CACM article and first |
32 | | * published on the Usenet in 1988 by Esmond Pitt." |
33 | | * |
34 | | * The CACM paper is available here: |
35 | | * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf |
36 | | */ |
37 | | |
38 | | #undef MIN_NODES |
39 | 1.65k | #define MIN_NODES 16 |
40 | 317 | #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */ |
41 | 317 | #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */ |
42 | | |
43 | | static int expand(OPENSSL_LHASH *lh); |
44 | | static void contract(OPENSSL_LHASH *lh); |
45 | | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash); |
46 | | |
47 | | OPENSSL_LHASH *OPENSSL_LH_set_thunks(OPENSSL_LHASH *lh, |
48 | | OPENSSL_LH_HASHFUNCTHUNK hw, |
49 | | OPENSSL_LH_COMPFUNCTHUNK cw, |
50 | | OPENSSL_LH_DOALL_FUNC_THUNK daw, |
51 | | OPENSSL_LH_DOALL_FUNCARG_THUNK daaw) |
52 | 317 | { |
53 | | |
54 | 317 | if (lh == NULL) |
55 | 0 | return NULL; |
56 | 317 | lh->compw = cw; |
57 | 317 | lh->hashw = hw; |
58 | 317 | lh->daw = daw; |
59 | 317 | lh->daaw = daaw; |
60 | 317 | return lh; |
61 | 317 | } |
62 | | |
63 | | OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c) |
64 | 317 | { |
65 | 317 | OPENSSL_LHASH *ret; |
66 | | |
67 | 317 | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) |
68 | 0 | return NULL; |
69 | 317 | if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL) |
70 | 0 | goto err; |
71 | 317 | ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c); |
72 | 317 | ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h); |
73 | 317 | ret->num_nodes = MIN_NODES / 2; |
74 | 317 | ret->num_alloc_nodes = MIN_NODES; |
75 | 317 | ret->pmax = MIN_NODES / 2; |
76 | 317 | ret->up_load = UP_LOAD; |
77 | 317 | ret->down_load = DOWN_LOAD; |
78 | 317 | return ret; |
79 | | |
80 | 0 | err: |
81 | 0 | OPENSSL_free(ret->b); |
82 | 0 | OPENSSL_free(ret); |
83 | 0 | return NULL; |
84 | 317 | } |
85 | | |
86 | | void OPENSSL_LH_free(OPENSSL_LHASH *lh) |
87 | 48 | { |
88 | 48 | if (lh == NULL) |
89 | 3 | return; |
90 | | |
91 | 45 | OPENSSL_LH_flush(lh); |
92 | 45 | OPENSSL_free(lh->b); |
93 | 45 | OPENSSL_free(lh); |
94 | 45 | } |
95 | | |
96 | | void OPENSSL_LH_flush(OPENSSL_LHASH *lh) |
97 | 63 | { |
98 | 63 | unsigned int i; |
99 | 63 | OPENSSL_LH_NODE *n, *nn; |
100 | | |
101 | 63 | if (lh == NULL) |
102 | 0 | return; |
103 | | |
104 | 3.15k | for (i = 0; i < lh->num_nodes; i++) { |
105 | 3.08k | n = lh->b[i]; |
106 | 7.68k | while (n != NULL) { |
107 | 4.59k | nn = n->next; |
108 | 4.59k | OPENSSL_free(n); |
109 | 4.59k | n = nn; |
110 | 4.59k | } |
111 | 3.08k | lh->b[i] = NULL; |
112 | 3.08k | } |
113 | | |
114 | 63 | lh->num_items = 0; |
115 | 63 | } |
116 | | |
117 | | void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data) |
118 | 14.2k | { |
119 | 14.2k | unsigned long hash; |
120 | 14.2k | OPENSSL_LH_NODE *nn, **rn; |
121 | 14.2k | void *ret; |
122 | | |
123 | 14.2k | lh->error = 0; |
124 | 14.2k | if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh)) |
125 | 0 | return NULL; /* 'lh->error++' already done in 'expand' */ |
126 | | |
127 | 14.2k | rn = getrn(lh, data, &hash); |
128 | | |
129 | 14.2k | if (*rn == NULL) { |
130 | 5.38k | if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { |
131 | 0 | lh->error++; |
132 | 0 | return NULL; |
133 | 0 | } |
134 | 5.38k | nn->data = data; |
135 | 5.38k | nn->next = NULL; |
136 | 5.38k | nn->hash = hash; |
137 | 5.38k | *rn = nn; |
138 | 5.38k | ret = NULL; |
139 | 5.38k | lh->num_items++; |
140 | 8.88k | } else { /* replace same key */ |
141 | 8.88k | ret = (*rn)->data; |
142 | 8.88k | (*rn)->data = data; |
143 | 8.88k | } |
144 | 14.2k | return ret; |
145 | 14.2k | } |
146 | | |
147 | | void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data) |
148 | 699 | { |
149 | 699 | unsigned long hash; |
150 | 699 | OPENSSL_LH_NODE *nn, **rn; |
151 | 699 | void *ret; |
152 | | |
153 | 699 | lh->error = 0; |
154 | 699 | rn = getrn(lh, data, &hash); |
155 | | |
156 | 699 | if (*rn == NULL) { |
157 | 0 | return NULL; |
158 | 699 | } else { |
159 | 699 | nn = *rn; |
160 | 699 | *rn = nn->next; |
161 | 699 | ret = nn->data; |
162 | 699 | OPENSSL_free(nn); |
163 | 699 | } |
164 | | |
165 | 699 | lh->num_items--; |
166 | 699 | if ((lh->num_nodes > MIN_NODES) && |
167 | 699 | (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes))) |
168 | 3 | contract(lh); |
169 | | |
170 | 699 | return ret; |
171 | 699 | } |
172 | | |
173 | | void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data) |
174 | 1.06M | { |
175 | 1.06M | unsigned long hash; |
176 | 1.06M | OPENSSL_LH_NODE **rn; |
177 | | |
178 | 1.06M | if (lh->error != 0) |
179 | 0 | lh->error = 0; |
180 | | |
181 | 1.06M | rn = getrn(lh, data, &hash); |
182 | | |
183 | 1.06M | return *rn == NULL ? NULL : (*rn)->data; |
184 | 1.06M | } |
185 | | |
186 | | static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg, |
187 | | OPENSSL_LH_DOALL_FUNC_THUNK wfunc, |
188 | | OPENSSL_LH_DOALL_FUNC func, |
189 | | OPENSSL_LH_DOALL_FUNCARG func_arg, |
190 | | OPENSSL_LH_DOALL_FUNCARG_THUNK wfunc_arg, |
191 | | void *arg) |
192 | 77 | { |
193 | 77 | int i; |
194 | 77 | OPENSSL_LH_NODE *a, *n; |
195 | | |
196 | 77 | if (lh == NULL) |
197 | 0 | return; |
198 | | |
199 | | /* |
200 | | * reverse the order so we search from 'top to bottom' We were having |
201 | | * memory leaks otherwise |
202 | | */ |
203 | 2.87k | for (i = lh->num_nodes - 1; i >= 0; i--) { |
204 | 2.79k | a = lh->b[i]; |
205 | 6.25k | while (a != NULL) { |
206 | 3.46k | n = a->next; |
207 | 3.46k | if (use_arg) |
208 | 1.86k | wfunc_arg(a->data, arg, func_arg); |
209 | 1.60k | else |
210 | 1.60k | wfunc(a->data, func); |
211 | 3.46k | a = n; |
212 | 3.46k | } |
213 | 2.79k | } |
214 | 77 | } |
215 | | |
216 | | void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func) |
217 | 69 | { |
218 | 69 | if (lh == NULL) |
219 | 0 | return; |
220 | | |
221 | 69 | doall_util_fn(lh, 0, lh->daw, func, (OPENSSL_LH_DOALL_FUNCARG)NULL, |
222 | 69 | (OPENSSL_LH_DOALL_FUNCARG_THUNK)NULL, NULL); |
223 | 69 | } |
224 | | |
225 | | void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, |
226 | | OPENSSL_LH_DOALL_FUNCARG func, void *arg) |
227 | 0 | { |
228 | 0 | if (lh == NULL) |
229 | 0 | return; |
230 | | |
231 | 0 | doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC_THUNK)NULL, |
232 | 0 | (OPENSSL_LH_DOALL_FUNC)NULL, func, lh->daaw, arg); |
233 | 0 | } |
234 | | |
235 | | void OPENSSL_LH_doall_arg_thunk(OPENSSL_LHASH *lh, |
236 | | OPENSSL_LH_DOALL_FUNCARG_THUNK daaw, |
237 | | OPENSSL_LH_DOALL_FUNCARG fn, void *arg) |
238 | 8 | { |
239 | 8 | doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC_THUNK)NULL, |
240 | 8 | (OPENSSL_LH_DOALL_FUNC)NULL, fn, daaw, arg); |
241 | 8 | } |
242 | | |
243 | | static int expand(OPENSSL_LHASH *lh) |
244 | 2.58k | { |
245 | 2.58k | OPENSSL_LH_NODE **n, **n1, **n2, *np; |
246 | 2.58k | unsigned int p, pmax, nni, j; |
247 | 2.58k | unsigned long hash; |
248 | | |
249 | 2.58k | nni = lh->num_alloc_nodes; |
250 | 2.58k | p = lh->p; |
251 | 2.58k | pmax = lh->pmax; |
252 | 2.58k | if (p + 1 >= pmax) { |
253 | 27 | j = nni * 2; |
254 | 27 | n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j); |
255 | 27 | if (n == NULL) { |
256 | 0 | lh->error++; |
257 | 0 | return 0; |
258 | 0 | } |
259 | 27 | lh->b = n; |
260 | 27 | memset(n + nni, 0, sizeof(*n) * (j - nni)); |
261 | 27 | lh->pmax = nni; |
262 | 27 | lh->num_alloc_nodes = j; |
263 | 27 | lh->p = 0; |
264 | 2.55k | } else { |
265 | 2.55k | lh->p++; |
266 | 2.55k | } |
267 | | |
268 | 2.58k | lh->num_nodes++; |
269 | 2.58k | n1 = &(lh->b[p]); |
270 | 2.58k | n2 = &(lh->b[p + pmax]); |
271 | 2.58k | *n2 = NULL; |
272 | | |
273 | 11.7k | for (np = *n1; np != NULL;) { |
274 | 9.15k | hash = np->hash; |
275 | 9.15k | if ((hash % nni) != p) { /* move it */ |
276 | 1.62k | *n1 = (*n1)->next; |
277 | 1.62k | np->next = *n2; |
278 | 1.62k | *n2 = np; |
279 | 1.62k | } else |
280 | 7.52k | n1 = &((*n1)->next); |
281 | 9.15k | np = *n1; |
282 | 9.15k | } |
283 | | |
284 | 2.58k | return 1; |
285 | 2.58k | } |
286 | | |
287 | | static void contract(OPENSSL_LHASH *lh) |
288 | 3 | { |
289 | 3 | OPENSSL_LH_NODE **n, *n1, *np; |
290 | | |
291 | 3 | np = lh->b[lh->p + lh->pmax - 1]; |
292 | 3 | lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */ |
293 | 3 | if (lh->p == 0) { |
294 | 0 | n = OPENSSL_realloc(lh->b, |
295 | 0 | (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax)); |
296 | 0 | if (n == NULL) { |
297 | | /* fputs("realloc error in lhash", stderr); */ |
298 | 0 | lh->error++; |
299 | 0 | } else { |
300 | 0 | lh->b = n; |
301 | 0 | } |
302 | 0 | lh->num_alloc_nodes /= 2; |
303 | 0 | lh->pmax /= 2; |
304 | 0 | lh->p = lh->pmax - 1; |
305 | 0 | } else |
306 | 3 | lh->p--; |
307 | | |
308 | 3 | lh->num_nodes--; |
309 | | |
310 | 3 | n1 = lh->b[(int)lh->p]; |
311 | 3 | if (n1 == NULL) |
312 | 3 | lh->b[(int)lh->p] = np; |
313 | 0 | else { |
314 | 0 | while (n1->next != NULL) |
315 | 0 | n1 = n1->next; |
316 | 0 | n1->next = np; |
317 | 0 | } |
318 | 3 | } |
319 | | |
320 | | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, |
321 | | const void *data, unsigned long *rhash) |
322 | 1.07M | { |
323 | 1.07M | OPENSSL_LH_NODE **ret, *n1; |
324 | 1.07M | unsigned long hash, nn; |
325 | | |
326 | 1.07M | if (lh->hashw != NULL) |
327 | 1.07M | hash = lh->hashw(data, lh->hash); |
328 | 0 | else |
329 | 0 | hash = lh->hash(data); |
330 | | |
331 | 1.07M | *rhash = hash; |
332 | | |
333 | 1.07M | nn = hash % lh->pmax; |
334 | 1.07M | if (nn < lh->p) |
335 | 8.87k | nn = hash % lh->num_alloc_nodes; |
336 | | |
337 | 1.07M | ret = &(lh->b[(int)nn]); |
338 | 1.10M | for (n1 = *ret; n1 != NULL; n1 = n1->next) { |
339 | 1.09M | if (n1->hash != hash) { |
340 | 24.8k | ret = &(n1->next); |
341 | 24.8k | continue; |
342 | 24.8k | } |
343 | | |
344 | 1.07M | if (lh->compw != NULL) { |
345 | 1.07M | if (lh->compw(n1->data, data, lh->comp) == 0) |
346 | 1.06M | break; |
347 | 1.07M | } else { |
348 | 0 | if (lh->comp(n1->data, data) == 0) |
349 | 0 | break; |
350 | 0 | } |
351 | 474 | ret = &(n1->next); |
352 | 474 | } |
353 | 1.07M | return ret; |
354 | 1.07M | } |
355 | | |
356 | | /* |
357 | | * The following hash seems to work very well on normal text strings no |
358 | | * collisions on /usr/dict/words and it distributes on %2^n quite well, not |
359 | | * as good as MD5, but still good. |
360 | | */ |
361 | | unsigned long OPENSSL_LH_strhash(const char *c) |
362 | 1.05M | { |
363 | 1.05M | unsigned long ret = 0; |
364 | 1.05M | long n; |
365 | 1.05M | unsigned long v; |
366 | 1.05M | int r; |
367 | | |
368 | 1.05M | if ((c == NULL) || (*c == '\0')) |
369 | 1.05M | return ret; |
370 | | |
371 | 536 | n = 0x100; |
372 | 6.54k | while (*c) { |
373 | 6.00k | v = n | (*c); |
374 | 6.00k | n += 0x100; |
375 | 6.00k | r = (int)((v >> 2) ^ v) & 0x0f; |
376 | | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
377 | 6.00k | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
378 | 6.00k | ret &= 0xFFFFFFFFL; |
379 | 6.00k | ret ^= v * v; |
380 | 6.00k | c++; |
381 | 6.00k | } |
382 | 536 | return (ret >> 16) ^ ret; |
383 | 1.05M | } |
384 | | |
385 | | /* |
386 | | * Case insensitive string hashing. |
387 | | * |
388 | | * The lower/upper case bit is masked out (forcing all letters to be capitals). |
389 | | * The major side effect on non-alpha characters is mapping the symbols and |
390 | | * digits into the control character range (which should be harmless). |
391 | | * The duplication (with respect to the hash value) of printable characters |
392 | | * are that '`', '{', '|', '}' and '~' map to '@', '[', '\', ']' and '^' |
393 | | * respectively (which seems tolerable). |
394 | | * |
395 | | * For EBCDIC, the alpha mapping is to lower case, most symbols go to control |
396 | | * characters. The only duplication is '0' mapping to '^', which is better |
397 | | * than for ASCII. |
398 | | */ |
399 | | unsigned long ossl_lh_strcasehash(const char *c) |
400 | 3.80k | { |
401 | 3.80k | unsigned long ret = 0; |
402 | 3.80k | long n; |
403 | 3.80k | unsigned long v; |
404 | 3.80k | int r; |
405 | | #if defined(CHARSET_EBCDIC) && !defined(CHARSET_EBCDIC_TEST) |
406 | | const long int case_adjust = ~0x40; |
407 | | #else |
408 | 3.80k | const long int case_adjust = ~0x20; |
409 | 3.80k | #endif |
410 | | |
411 | 3.80k | if (c == NULL || *c == '\0') |
412 | 0 | return ret; |
413 | | |
414 | 46.4k | for (n = 0x100; *c != '\0'; n += 0x100) { |
415 | 42.6k | v = n | (case_adjust & *c); |
416 | 42.6k | r = (int)((v >> 2) ^ v) & 0x0f; |
417 | | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
418 | 42.6k | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
419 | 42.6k | ret &= 0xFFFFFFFFL; |
420 | 42.6k | ret ^= v * v; |
421 | 42.6k | c++; |
422 | 42.6k | } |
423 | 3.80k | return (ret >> 16) ^ ret; |
424 | 3.80k | } |
425 | | |
426 | | unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh) |
427 | 3 | { |
428 | 3 | return lh ? lh->num_items : 0; |
429 | 3 | } |
430 | | |
431 | | unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh) |
432 | 12 | { |
433 | 12 | return lh->down_load; |
434 | 12 | } |
435 | | |
436 | | void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load) |
437 | 21 | { |
438 | 21 | lh->down_load = down_load; |
439 | 21 | } |
440 | | |
441 | | int OPENSSL_LH_error(OPENSSL_LHASH *lh) |
442 | 821 | { |
443 | 821 | return lh->error; |
444 | 821 | } |