/src/openssl/crypto/mem_sec.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * This file is in two halves. The first half implements the public API |
13 | | * to be used by external consumers, and to be used by OpenSSL to store |
14 | | * data in a "secure arena." The second half implements the secure arena. |
15 | | * For details on that implementation, see below (look for uppercase |
16 | | * "SECURE HEAP IMPLEMENTATION"). |
17 | | */ |
18 | | #include "internal/e_os.h" |
19 | | #include <openssl/crypto.h> |
20 | | #include <openssl/err.h> |
21 | | |
22 | | #include <string.h> |
23 | | |
24 | | #ifndef OPENSSL_NO_SECURE_MEMORY |
25 | | # if defined(_WIN32) |
26 | | # include <windows.h> |
27 | | # if defined(WINAPI_FAMILY_PARTITION) |
28 | | # if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP | WINAPI_PARTITION_SYSTEM) |
29 | | /* |
30 | | * While VirtualLock is available under the app partition (e.g. UWP), |
31 | | * the headers do not define the API. Define it ourselves instead. |
32 | | */ |
33 | | WINBASEAPI |
34 | | BOOL |
35 | | WINAPI |
36 | | VirtualLock( |
37 | | _In_ LPVOID lpAddress, |
38 | | _In_ SIZE_T dwSize |
39 | | ); |
40 | | # endif |
41 | | # endif |
42 | | # endif |
43 | | # include <stdlib.h> |
44 | | # include <assert.h> |
45 | | # if defined(OPENSSL_SYS_UNIX) |
46 | | # include <unistd.h> |
47 | | # endif |
48 | | # include <sys/types.h> |
49 | | # if defined(OPENSSL_SYS_UNIX) |
50 | | # include <sys/mman.h> |
51 | | # if defined(__FreeBSD__) |
52 | | # define MADV_DONTDUMP MADV_NOCORE |
53 | | # endif |
54 | | # if !defined(MAP_CONCEAL) |
55 | 0 | # define MAP_CONCEAL 0 |
56 | | # endif |
57 | | # endif |
58 | | # if defined(OPENSSL_SYS_LINUX) |
59 | | # include <sys/syscall.h> |
60 | | # if defined(SYS_mlock2) |
61 | | # include <linux/mman.h> |
62 | | # include <errno.h> |
63 | | # endif |
64 | | # include <sys/param.h> |
65 | | # endif |
66 | | # include <sys/stat.h> |
67 | | # include <fcntl.h> |
68 | | #endif |
69 | | #ifndef HAVE_MADVISE |
70 | | # if defined(MADV_DONTDUMP) |
71 | | # define HAVE_MADVISE 1 |
72 | | # else |
73 | | # define HAVE_MADVISE 0 |
74 | | # endif |
75 | | #endif |
76 | | #if HAVE_MADVISE |
77 | | # undef NO_MADVISE |
78 | | #else |
79 | | # define NO_MADVISE |
80 | | #endif |
81 | | |
82 | 0 | #define CLEAR(p, s) OPENSSL_cleanse(p, s) |
83 | | #ifndef PAGE_SIZE |
84 | 0 | # define PAGE_SIZE 4096 |
85 | | #endif |
86 | | #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS) |
87 | | # define MAP_ANON MAP_ANONYMOUS |
88 | | #endif |
89 | | |
90 | | #ifndef OPENSSL_NO_SECURE_MEMORY |
91 | | static size_t secure_mem_used; |
92 | | |
93 | | static int secure_mem_initialized; |
94 | | |
95 | | static CRYPTO_RWLOCK *sec_malloc_lock = NULL; |
96 | | |
97 | | /* |
98 | | * These are the functions that must be implemented by a secure heap (sh). |
99 | | */ |
100 | | static int sh_init(size_t size, size_t minsize); |
101 | | static void *sh_malloc(size_t size); |
102 | | static void sh_free(void *ptr); |
103 | | static void sh_done(void); |
104 | | static size_t sh_actual_size(char *ptr); |
105 | | static int sh_allocated(const char *ptr); |
106 | | #endif |
107 | | |
108 | | int CRYPTO_secure_malloc_init(size_t size, size_t minsize) |
109 | 0 | { |
110 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
111 | 0 | int ret = 0; |
112 | |
|
113 | 0 | if (!secure_mem_initialized) { |
114 | 0 | sec_malloc_lock = CRYPTO_THREAD_lock_new(); |
115 | 0 | if (sec_malloc_lock == NULL) |
116 | 0 | return 0; |
117 | 0 | if ((ret = sh_init(size, minsize)) != 0) { |
118 | 0 | secure_mem_initialized = 1; |
119 | 0 | } else { |
120 | 0 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
121 | 0 | sec_malloc_lock = NULL; |
122 | 0 | } |
123 | 0 | } |
124 | | |
125 | 0 | return ret; |
126 | | #else |
127 | | return 0; |
128 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
129 | 0 | } |
130 | | |
131 | | int CRYPTO_secure_malloc_done(void) |
132 | 3 | { |
133 | 3 | #ifndef OPENSSL_NO_SECURE_MEMORY |
134 | 3 | if (secure_mem_used == 0) { |
135 | 3 | sh_done(); |
136 | 3 | secure_mem_initialized = 0; |
137 | 3 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
138 | 3 | sec_malloc_lock = NULL; |
139 | 3 | return 1; |
140 | 3 | } |
141 | 0 | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
142 | 0 | return 0; |
143 | 3 | } |
144 | | |
145 | | int CRYPTO_secure_malloc_initialized(void) |
146 | 0 | { |
147 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
148 | 0 | return secure_mem_initialized; |
149 | | #else |
150 | | return 0; |
151 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
152 | 0 | } |
153 | | |
154 | | void *CRYPTO_secure_malloc(size_t num, const char *file, int line) |
155 | 0 | { |
156 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
157 | 0 | void *ret = NULL; |
158 | 0 | size_t actual_size; |
159 | 0 | int reason = CRYPTO_R_SECURE_MALLOC_FAILURE; |
160 | |
|
161 | 0 | if (!secure_mem_initialized) { |
162 | 0 | return CRYPTO_malloc(num, file, line); |
163 | 0 | } |
164 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) { |
165 | 0 | reason = ERR_R_CRYPTO_LIB; |
166 | 0 | goto err; |
167 | 0 | } |
168 | 0 | ret = sh_malloc(num); |
169 | 0 | actual_size = ret ? sh_actual_size(ret) : 0; |
170 | 0 | secure_mem_used += actual_size; |
171 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
172 | 0 | err: |
173 | 0 | if (ret == NULL && (file != NULL || line != 0)) { |
174 | 0 | ERR_new(); |
175 | 0 | ERR_set_debug(file, line, NULL); |
176 | 0 | ERR_set_error(ERR_LIB_CRYPTO, reason, NULL); |
177 | 0 | } |
178 | 0 | return ret; |
179 | | #else |
180 | | return CRYPTO_malloc(num, file, line); |
181 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
182 | 0 | } |
183 | | |
184 | | void *CRYPTO_secure_zalloc(size_t num, const char *file, int line) |
185 | 0 | { |
186 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
187 | 0 | if (secure_mem_initialized) |
188 | | /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */ |
189 | 0 | return CRYPTO_secure_malloc(num, file, line); |
190 | 0 | #endif |
191 | 0 | return CRYPTO_zalloc(num, file, line); |
192 | 0 | } |
193 | | |
194 | | void CRYPTO_secure_free(void *ptr, const char *file, int line) |
195 | 0 | { |
196 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
197 | 0 | size_t actual_size; |
198 | |
|
199 | 0 | if (ptr == NULL) |
200 | 0 | return; |
201 | 0 | if (!CRYPTO_secure_allocated(ptr)) { |
202 | 0 | CRYPTO_free(ptr, file, line); |
203 | 0 | return; |
204 | 0 | } |
205 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
206 | 0 | return; |
207 | 0 | actual_size = sh_actual_size(ptr); |
208 | 0 | CLEAR(ptr, actual_size); |
209 | 0 | secure_mem_used -= actual_size; |
210 | 0 | sh_free(ptr); |
211 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
212 | | #else |
213 | | CRYPTO_free(ptr, file, line); |
214 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
215 | 0 | } |
216 | | |
217 | | void CRYPTO_secure_clear_free(void *ptr, size_t num, |
218 | | const char *file, int line) |
219 | 0 | { |
220 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
221 | 0 | size_t actual_size; |
222 | |
|
223 | 0 | if (ptr == NULL) |
224 | 0 | return; |
225 | 0 | if (!CRYPTO_secure_allocated(ptr)) { |
226 | 0 | OPENSSL_cleanse(ptr, num); |
227 | 0 | CRYPTO_free(ptr, file, line); |
228 | 0 | return; |
229 | 0 | } |
230 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
231 | 0 | return; |
232 | 0 | actual_size = sh_actual_size(ptr); |
233 | 0 | CLEAR(ptr, actual_size); |
234 | 0 | secure_mem_used -= actual_size; |
235 | 0 | sh_free(ptr); |
236 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
237 | | #else |
238 | | if (ptr == NULL) |
239 | | return; |
240 | | OPENSSL_cleanse(ptr, num); |
241 | | CRYPTO_free(ptr, file, line); |
242 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
243 | 0 | } |
244 | | |
245 | | int CRYPTO_secure_allocated(const void *ptr) |
246 | 0 | { |
247 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
248 | 0 | if (!secure_mem_initialized) |
249 | 0 | return 0; |
250 | | /* |
251 | | * Only read accesses to the arena take place in sh_allocated() and this |
252 | | * is only changed by the sh_init() and sh_done() calls which are not |
253 | | * locked. Hence, it is safe to make this check without a lock too. |
254 | | */ |
255 | 0 | return sh_allocated(ptr); |
256 | | #else |
257 | | return 0; |
258 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
259 | 0 | } |
260 | | |
261 | | size_t CRYPTO_secure_used(void) |
262 | 0 | { |
263 | 0 | size_t ret = 0; |
264 | |
|
265 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
266 | 0 | if (!CRYPTO_THREAD_read_lock(sec_malloc_lock)) |
267 | 0 | return 0; |
268 | | |
269 | 0 | ret = secure_mem_used; |
270 | |
|
271 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
272 | 0 | #endif /* OPENSSL_NO_SECURE_MEMORY */ |
273 | 0 | return ret; |
274 | 0 | } |
275 | | |
276 | | size_t CRYPTO_secure_actual_size(void *ptr) |
277 | 0 | { |
278 | 0 | #ifndef OPENSSL_NO_SECURE_MEMORY |
279 | 0 | size_t actual_size; |
280 | |
|
281 | 0 | if (!CRYPTO_THREAD_write_lock(sec_malloc_lock)) |
282 | 0 | return 0; |
283 | 0 | actual_size = sh_actual_size(ptr); |
284 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
285 | 0 | return actual_size; |
286 | | #else |
287 | | return 0; |
288 | | #endif |
289 | 0 | } |
290 | | |
291 | | /* |
292 | | * SECURE HEAP IMPLEMENTATION |
293 | | */ |
294 | | #ifndef OPENSSL_NO_SECURE_MEMORY |
295 | | |
296 | | |
297 | | /* |
298 | | * The implementation provided here uses a fixed-sized mmap() heap, |
299 | | * which is locked into memory, not written to core files, and protected |
300 | | * on either side by an unmapped page, which will catch pointer overruns |
301 | | * (or underruns) and an attempt to read data out of the secure heap. |
302 | | * Free'd memory is zero'd or otherwise cleansed. |
303 | | * |
304 | | * This is a pretty standard buddy allocator. We keep areas in a multiple |
305 | | * of "sh.minsize" units. The freelist and bitmaps are kept separately, |
306 | | * so all (and only) data is kept in the mmap'd heap. |
307 | | * |
308 | | * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the |
309 | | * place. |
310 | | */ |
311 | | |
312 | 0 | #define ONE ((size_t)1) |
313 | | |
314 | 0 | # define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7))) |
315 | 0 | # define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7))) |
316 | 0 | # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7)))) |
317 | | |
318 | | #define WITHIN_ARENA(p) \ |
319 | 0 | ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) |
320 | | #define WITHIN_FREELIST(p) \ |
321 | | ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) |
322 | | |
323 | | |
324 | | typedef struct sh_list_st { |
325 | | struct sh_list_st *next; |
326 | | struct sh_list_st **p_next; |
327 | | } SH_LIST; |
328 | | |
329 | | typedef struct sh_st { |
330 | | char* map_result; |
331 | | size_t map_size; |
332 | | char *arena; |
333 | | size_t arena_size; |
334 | | char **freelist; |
335 | | ossl_ssize_t freelist_size; |
336 | | size_t minsize; |
337 | | unsigned char *bittable; |
338 | | unsigned char *bitmalloc; |
339 | | size_t bittable_size; /* size in bits */ |
340 | | } SH; |
341 | | |
342 | | static SH sh; |
343 | | |
344 | | static size_t sh_getlist(char *ptr) |
345 | 0 | { |
346 | 0 | ossl_ssize_t list = sh.freelist_size - 1; |
347 | 0 | size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; |
348 | |
|
349 | 0 | for (; bit; bit >>= 1, list--) { |
350 | 0 | if (TESTBIT(sh.bittable, bit)) |
351 | 0 | break; |
352 | 0 | OPENSSL_assert((bit & 1) == 0); |
353 | 0 | } |
354 | |
|
355 | 0 | return list; |
356 | 0 | } |
357 | | |
358 | | |
359 | | static int sh_testbit(char *ptr, int list, unsigned char *table) |
360 | 0 | { |
361 | 0 | size_t bit; |
362 | |
|
363 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
364 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
365 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
366 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
367 | 0 | return TESTBIT(table, bit); |
368 | 0 | } |
369 | | |
370 | | static void sh_clearbit(char *ptr, int list, unsigned char *table) |
371 | 0 | { |
372 | 0 | size_t bit; |
373 | |
|
374 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
375 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
376 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
377 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
378 | 0 | OPENSSL_assert(TESTBIT(table, bit)); |
379 | 0 | CLEARBIT(table, bit); |
380 | 0 | } |
381 | | |
382 | | static void sh_setbit(char *ptr, int list, unsigned char *table) |
383 | 0 | { |
384 | 0 | size_t bit; |
385 | |
|
386 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
387 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
388 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
389 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
390 | 0 | OPENSSL_assert(!TESTBIT(table, bit)); |
391 | 0 | SETBIT(table, bit); |
392 | 0 | } |
393 | | |
394 | | static void sh_add_to_list(char **list, char *ptr) |
395 | 0 | { |
396 | 0 | SH_LIST *temp; |
397 | |
|
398 | 0 | OPENSSL_assert(WITHIN_FREELIST(list)); |
399 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
400 | |
|
401 | 0 | temp = (SH_LIST *)ptr; |
402 | 0 | temp->next = *(SH_LIST **)list; |
403 | 0 | OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); |
404 | 0 | temp->p_next = (SH_LIST **)list; |
405 | |
|
406 | 0 | if (temp->next != NULL) { |
407 | 0 | OPENSSL_assert((char **)temp->next->p_next == list); |
408 | 0 | temp->next->p_next = &(temp->next); |
409 | 0 | } |
410 | |
|
411 | 0 | *list = ptr; |
412 | 0 | } |
413 | | |
414 | | static void sh_remove_from_list(char *ptr) |
415 | 0 | { |
416 | 0 | SH_LIST *temp, *temp2; |
417 | |
|
418 | 0 | temp = (SH_LIST *)ptr; |
419 | 0 | if (temp->next != NULL) |
420 | 0 | temp->next->p_next = temp->p_next; |
421 | 0 | *temp->p_next = temp->next; |
422 | 0 | if (temp->next == NULL) |
423 | 0 | return; |
424 | | |
425 | 0 | temp2 = temp->next; |
426 | 0 | OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); |
427 | 0 | } |
428 | | |
429 | | |
430 | | static int sh_init(size_t size, size_t minsize) |
431 | 0 | { |
432 | 0 | int ret; |
433 | 0 | size_t i; |
434 | 0 | size_t pgsize; |
435 | 0 | size_t aligned; |
436 | | #if defined(_WIN32) |
437 | | DWORD flOldProtect; |
438 | | SYSTEM_INFO systemInfo; |
439 | | #endif |
440 | |
|
441 | 0 | memset(&sh, 0, sizeof(sh)); |
442 | | |
443 | | /* make sure size is a powers of 2 */ |
444 | 0 | OPENSSL_assert(size > 0); |
445 | 0 | OPENSSL_assert((size & (size - 1)) == 0); |
446 | 0 | if (size == 0 || (size & (size - 1)) != 0) |
447 | 0 | goto err; |
448 | | |
449 | 0 | if (minsize <= sizeof(SH_LIST)) { |
450 | 0 | OPENSSL_assert(sizeof(SH_LIST) <= 65536); |
451 | | /* |
452 | | * Compute the minimum possible allocation size. |
453 | | * This must be a power of 2 and at least as large as the SH_LIST |
454 | | * structure. |
455 | | */ |
456 | 0 | minsize = sizeof(SH_LIST) - 1; |
457 | 0 | minsize |= minsize >> 1; |
458 | 0 | minsize |= minsize >> 2; |
459 | 0 | if (sizeof(SH_LIST) > 16) |
460 | 0 | minsize |= minsize >> 4; |
461 | 0 | if (sizeof(SH_LIST) > 256) |
462 | 0 | minsize |= minsize >> 8; |
463 | 0 | minsize++; |
464 | 0 | } else { |
465 | | /* make sure minsize is a powers of 2 */ |
466 | 0 | OPENSSL_assert((minsize & (minsize - 1)) == 0); |
467 | 0 | if ((minsize & (minsize - 1)) != 0) |
468 | 0 | goto err; |
469 | 0 | } |
470 | | |
471 | 0 | sh.arena_size = size; |
472 | 0 | sh.minsize = minsize; |
473 | 0 | sh.bittable_size = (sh.arena_size / sh.minsize) * 2; |
474 | | |
475 | | /* Prevent allocations of size 0 later on */ |
476 | 0 | if (sh.bittable_size >> 3 == 0) |
477 | 0 | goto err; |
478 | | |
479 | 0 | sh.freelist_size = -1; |
480 | 0 | for (i = sh.bittable_size; i; i >>= 1) |
481 | 0 | sh.freelist_size++; |
482 | |
|
483 | 0 | sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *)); |
484 | 0 | OPENSSL_assert(sh.freelist != NULL); |
485 | 0 | if (sh.freelist == NULL) |
486 | 0 | goto err; |
487 | | |
488 | 0 | sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3); |
489 | 0 | OPENSSL_assert(sh.bittable != NULL); |
490 | 0 | if (sh.bittable == NULL) |
491 | 0 | goto err; |
492 | | |
493 | 0 | sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3); |
494 | 0 | OPENSSL_assert(sh.bitmalloc != NULL); |
495 | 0 | if (sh.bitmalloc == NULL) |
496 | 0 | goto err; |
497 | | |
498 | | /* Allocate space for heap, and two extra pages as guards */ |
499 | 0 | #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE) |
500 | 0 | { |
501 | 0 | # if defined(_SC_PAGE_SIZE) |
502 | 0 | long tmppgsize = sysconf(_SC_PAGE_SIZE); |
503 | | # else |
504 | | long tmppgsize = sysconf(_SC_PAGESIZE); |
505 | | # endif |
506 | 0 | if (tmppgsize < 1) |
507 | 0 | pgsize = PAGE_SIZE; |
508 | 0 | else |
509 | 0 | pgsize = (size_t)tmppgsize; |
510 | 0 | } |
511 | | #elif defined(_WIN32) |
512 | | GetSystemInfo(&systemInfo); |
513 | | pgsize = (size_t)systemInfo.dwPageSize; |
514 | | #else |
515 | | pgsize = PAGE_SIZE; |
516 | | #endif |
517 | 0 | sh.map_size = pgsize + sh.arena_size + pgsize; |
518 | |
|
519 | 0 | #if !defined(_WIN32) |
520 | 0 | # ifdef MAP_ANON |
521 | 0 | sh.map_result = mmap(NULL, sh.map_size, |
522 | 0 | PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE|MAP_CONCEAL, -1, 0); |
523 | | # else |
524 | | { |
525 | | int fd; |
526 | | |
527 | | sh.map_result = MAP_FAILED; |
528 | | if ((fd = open("/dev/zero", O_RDWR)) >= 0) { |
529 | | sh.map_result = mmap(NULL, sh.map_size, |
530 | | PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); |
531 | | close(fd); |
532 | | } |
533 | | } |
534 | | # endif |
535 | 0 | if (sh.map_result == MAP_FAILED) |
536 | 0 | goto err; |
537 | | #else |
538 | | sh.map_result = VirtualAlloc(NULL, sh.map_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); |
539 | | |
540 | | if (sh.map_result == NULL) |
541 | | goto err; |
542 | | #endif |
543 | | |
544 | 0 | sh.arena = (char *)(sh.map_result + pgsize); |
545 | 0 | sh_setbit(sh.arena, 0, sh.bittable); |
546 | 0 | sh_add_to_list(&sh.freelist[0], sh.arena); |
547 | | |
548 | | /* Now try to add guard pages and lock into memory. */ |
549 | 0 | ret = 1; |
550 | |
|
551 | 0 | #if !defined(_WIN32) |
552 | | /* Starting guard is already aligned from mmap. */ |
553 | 0 | if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) |
554 | 0 | ret = 2; |
555 | | #else |
556 | | if (VirtualProtect(sh.map_result, pgsize, PAGE_NOACCESS, &flOldProtect) == FALSE) |
557 | | ret = 2; |
558 | | #endif |
559 | | |
560 | | /* Ending guard page - need to round up to page boundary */ |
561 | 0 | aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); |
562 | 0 | #if !defined(_WIN32) |
563 | 0 | if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) |
564 | 0 | ret = 2; |
565 | | #else |
566 | | if (VirtualProtect(sh.map_result + aligned, pgsize, PAGE_NOACCESS, &flOldProtect) == FALSE) |
567 | | ret = 2; |
568 | | #endif |
569 | |
|
570 | 0 | #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2) |
571 | 0 | if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) { |
572 | 0 | if (errno == ENOSYS) { |
573 | 0 | if (mlock(sh.arena, sh.arena_size) < 0) |
574 | 0 | ret = 2; |
575 | 0 | } else { |
576 | 0 | ret = 2; |
577 | 0 | } |
578 | 0 | } |
579 | | #elif defined(_WIN32) |
580 | | if (VirtualLock(sh.arena, sh.arena_size) == FALSE) |
581 | | ret = 2; |
582 | | #else |
583 | | if (mlock(sh.arena, sh.arena_size) < 0) |
584 | | ret = 2; |
585 | | #endif |
586 | 0 | #ifndef NO_MADVISE |
587 | 0 | if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) |
588 | 0 | ret = 2; |
589 | 0 | #endif |
590 | |
|
591 | 0 | return ret; |
592 | | |
593 | 0 | err: |
594 | 0 | sh_done(); |
595 | 0 | return 0; |
596 | 0 | } |
597 | | |
598 | | static void sh_done(void) |
599 | 3 | { |
600 | 3 | OPENSSL_free(sh.freelist); |
601 | 3 | OPENSSL_free(sh.bittable); |
602 | 3 | OPENSSL_free(sh.bitmalloc); |
603 | 3 | #if !defined(_WIN32) |
604 | 3 | if (sh.map_result != MAP_FAILED && sh.map_size) |
605 | 0 | munmap(sh.map_result, sh.map_size); |
606 | | #else |
607 | | if (sh.map_result != NULL && sh.map_size) |
608 | | VirtualFree(sh.map_result, 0, MEM_RELEASE); |
609 | | #endif |
610 | 3 | memset(&sh, 0, sizeof(sh)); |
611 | 3 | } |
612 | | |
613 | | static int sh_allocated(const char *ptr) |
614 | 0 | { |
615 | 0 | return WITHIN_ARENA(ptr) ? 1 : 0; |
616 | 0 | } |
617 | | |
618 | | static char *sh_find_my_buddy(char *ptr, int list) |
619 | 0 | { |
620 | 0 | size_t bit; |
621 | 0 | char *chunk = NULL; |
622 | |
|
623 | 0 | bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list); |
624 | 0 | bit ^= 1; |
625 | |
|
626 | 0 | if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) |
627 | 0 | chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list)); |
628 | |
|
629 | 0 | return chunk; |
630 | 0 | } |
631 | | |
632 | | static void *sh_malloc(size_t size) |
633 | 0 | { |
634 | 0 | ossl_ssize_t list, slist; |
635 | 0 | size_t i; |
636 | 0 | char *chunk; |
637 | |
|
638 | 0 | if (size > sh.arena_size) |
639 | 0 | return NULL; |
640 | | |
641 | 0 | list = sh.freelist_size - 1; |
642 | 0 | for (i = sh.minsize; i < size; i <<= 1) |
643 | 0 | list--; |
644 | 0 | if (list < 0) |
645 | 0 | return NULL; |
646 | | |
647 | | /* try to find a larger entry to split */ |
648 | 0 | for (slist = list; slist >= 0; slist--) |
649 | 0 | if (sh.freelist[slist] != NULL) |
650 | 0 | break; |
651 | 0 | if (slist < 0) |
652 | 0 | return NULL; |
653 | | |
654 | | /* split larger entry */ |
655 | 0 | while (slist != list) { |
656 | 0 | char *temp = sh.freelist[slist]; |
657 | | |
658 | | /* remove from bigger list */ |
659 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
660 | 0 | sh_clearbit(temp, slist, sh.bittable); |
661 | 0 | sh_remove_from_list(temp); |
662 | 0 | OPENSSL_assert(temp != sh.freelist[slist]); |
663 | | |
664 | | /* done with bigger list */ |
665 | 0 | slist++; |
666 | | |
667 | | /* add to smaller list */ |
668 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
669 | 0 | sh_setbit(temp, slist, sh.bittable); |
670 | 0 | sh_add_to_list(&sh.freelist[slist], temp); |
671 | 0 | OPENSSL_assert(sh.freelist[slist] == temp); |
672 | | |
673 | | /* split in 2 */ |
674 | 0 | temp += sh.arena_size >> slist; |
675 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
676 | 0 | sh_setbit(temp, slist, sh.bittable); |
677 | 0 | sh_add_to_list(&sh.freelist[slist], temp); |
678 | 0 | OPENSSL_assert(sh.freelist[slist] == temp); |
679 | |
|
680 | 0 | OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); |
681 | 0 | } |
682 | | |
683 | | /* peel off memory to hand back */ |
684 | 0 | chunk = sh.freelist[list]; |
685 | 0 | OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); |
686 | 0 | sh_setbit(chunk, list, sh.bitmalloc); |
687 | 0 | sh_remove_from_list(chunk); |
688 | |
|
689 | 0 | OPENSSL_assert(WITHIN_ARENA(chunk)); |
690 | | |
691 | | /* zero the free list header as a precaution against information leakage */ |
692 | 0 | memset(chunk, 0, sizeof(SH_LIST)); |
693 | |
|
694 | 0 | return chunk; |
695 | 0 | } |
696 | | |
697 | | static void sh_free(void *ptr) |
698 | 0 | { |
699 | 0 | size_t list; |
700 | 0 | void *buddy; |
701 | |
|
702 | 0 | if (ptr == NULL) |
703 | 0 | return; |
704 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
705 | 0 | if (!WITHIN_ARENA(ptr)) |
706 | 0 | return; |
707 | | |
708 | 0 | list = sh_getlist(ptr); |
709 | 0 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
710 | 0 | sh_clearbit(ptr, list, sh.bitmalloc); |
711 | 0 | sh_add_to_list(&sh.freelist[list], ptr); |
712 | | |
713 | | /* Try to coalesce two adjacent free areas. */ |
714 | 0 | while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { |
715 | 0 | OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); |
716 | 0 | OPENSSL_assert(ptr != NULL); |
717 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
718 | 0 | sh_clearbit(ptr, list, sh.bittable); |
719 | 0 | sh_remove_from_list(ptr); |
720 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
721 | 0 | sh_clearbit(buddy, list, sh.bittable); |
722 | 0 | sh_remove_from_list(buddy); |
723 | |
|
724 | 0 | list--; |
725 | | |
726 | | /* Zero the higher addressed block's free list pointers */ |
727 | 0 | memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST)); |
728 | 0 | if (ptr > buddy) |
729 | 0 | ptr = buddy; |
730 | |
|
731 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
732 | 0 | sh_setbit(ptr, list, sh.bittable); |
733 | 0 | sh_add_to_list(&sh.freelist[list], ptr); |
734 | 0 | OPENSSL_assert(sh.freelist[list] == ptr); |
735 | 0 | } |
736 | 0 | } |
737 | | |
738 | | static size_t sh_actual_size(char *ptr) |
739 | 0 | { |
740 | 0 | int list; |
741 | |
|
742 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
743 | 0 | if (!WITHIN_ARENA(ptr)) |
744 | 0 | return 0; |
745 | 0 | list = sh_getlist(ptr); |
746 | 0 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
747 | 0 | return sh.arena_size / (ONE << list); |
748 | 0 | } |
749 | | #endif /* OPENSSL_NO_SECURE_MEMORY */ |