/src/openssl/crypto/ml_dsa/ml_dsa_ntt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "ml_dsa_local.h" |
11 | | #include "ml_dsa_poly.h" |
12 | | |
13 | | /* |
14 | | * This file has multiple parts required for fast matrix multiplication, |
15 | | * 1) NTT (See https://eprint.iacr.org/2024/585.pdf) |
16 | | * NTT and NTT inverse transformations are Discrete Fourier Transforms in a |
17 | | * polynomial ring. Fast-Fourier Transformations can then be applied to make |
18 | | * multiplications n log(n). This uses the symmetry of the transformation to |
19 | | * reduce computations. |
20 | | * |
21 | | * 2) Montgomery multiplication |
22 | | * The multiplication of a.b mod q requires division by q which is a slow operation. |
23 | | * |
24 | | * When many multiplications mod q are required montgomery multiplication |
25 | | * can be used. This requires a number R > q such that R & q are coprime |
26 | | * (i.e. GCD(R, q) = 1), so that division happens using R instead of q. |
27 | | * If r is a power of 2 then this division can be done as a bit shift. |
28 | | * |
29 | | * Given that q = 2^23 - 2^13 + 1 |
30 | | * We can chose a Montgomery multiplier of R = 2^32. |
31 | | * |
32 | | * To transform |a| into Montgomery form |m| we use |
33 | | * m = a mod q * ((2^32)*(2^32) mod q) |
34 | | * which is then Montgomery reduced, removing the excess factor of R = 2^32. |
35 | | */ |
36 | | |
37 | | /* |
38 | | * The table in FIPS 204 Appendix B uses the following formula |
39 | | * zeta[k]= 1753^bitrev(k) mod q for (k = 1..255) (The first value is not used). |
40 | | * |
41 | | * As this implementation uses montgomery form with a multiplier of 2^32. |
42 | | * The values need to be transformed i.e. |
43 | | * |
44 | | * zetasMontgomery[k] = reduce_montgomery(zeta[k] * (2^32 * 2^32 mod(q))) |
45 | | * reduce_montgomery() is defined below.. |
46 | | */ |
47 | | static const uint32_t zetas_montgomery[256] = { |
48 | | 4193792, 25847, 5771523, 7861508, 237124, 7602457, 7504169, 466468, |
49 | | 1826347, 2353451, 8021166, 6288512, 3119733, 5495562, 3111497, 2680103, |
50 | | 2725464, 1024112, 7300517, 3585928, 7830929, 7260833, 2619752, 6271868, |
51 | | 6262231, 4520680, 6980856, 5102745, 1757237, 8360995, 4010497, 280005, |
52 | | 2706023, 95776, 3077325, 3530437, 6718724, 4788269, 5842901, 3915439, |
53 | | 4519302, 5336701, 3574422, 5512770, 3539968, 8079950, 2348700, 7841118, |
54 | | 6681150, 6736599, 3505694, 4558682, 3507263, 6239768, 6779997, 3699596, |
55 | | 811944, 531354, 954230, 3881043, 3900724, 5823537, 2071892, 5582638, |
56 | | 4450022, 6851714, 4702672, 5339162, 6927966, 3475950, 2176455, 6795196, |
57 | | 7122806, 1939314, 4296819, 7380215, 5190273, 5223087, 4747489, 126922, |
58 | | 3412210, 7396998, 2147896, 2715295, 5412772, 4686924, 7969390, 5903370, |
59 | | 7709315, 7151892, 8357436, 7072248, 7998430, 1349076, 1852771, 6949987, |
60 | | 5037034, 264944, 508951, 3097992, 44288, 7280319, 904516, 3958618, |
61 | | 4656075, 8371839, 1653064, 5130689, 2389356, 8169440, 759969, 7063561, |
62 | | 189548, 4827145, 3159746, 6529015, 5971092, 8202977, 1315589, 1341330, |
63 | | 1285669, 6795489, 7567685, 6940675, 5361315, 4499357, 4751448, 3839961, |
64 | | 2091667, 3407706, 2316500, 3817976, 5037939, 2244091, 5933984, 4817955, |
65 | | 266997, 2434439, 7144689, 3513181, 4860065, 4621053, 7183191, 5187039, |
66 | | 900702, 1859098, 909542, 819034, 495491, 6767243, 8337157, 7857917, |
67 | | 7725090, 5257975, 2031748, 3207046, 4823422, 7855319, 7611795, 4784579, |
68 | | 342297, 286988, 5942594, 4108315, 3437287, 5038140, 1735879, 203044, |
69 | | 2842341, 2691481, 5790267, 1265009, 4055324, 1247620, 2486353, 1595974, |
70 | | 4613401, 1250494, 2635921, 4832145, 5386378, 1869119, 1903435, 7329447, |
71 | | 7047359, 1237275, 5062207, 6950192, 7929317, 1312455, 3306115, 6417775, |
72 | | 7100756, 1917081, 5834105, 7005614, 1500165, 777191, 2235880, 3406031, |
73 | | 7838005, 5548557, 6709241, 6533464, 5796124, 4656147, 594136, 4603424, |
74 | | 6366809, 2432395, 2454455, 8215696, 1957272, 3369112, 185531, 7173032, |
75 | | 5196991, 162844, 1616392, 3014001, 810149, 1652634, 4686184, 6581310, |
76 | | 5341501, 3523897, 3866901, 269760, 2213111, 7404533, 1717735, 472078, |
77 | | 7953734, 1723600, 6577327, 1910376, 6712985, 7276084, 8119771, 4546524, |
78 | | 5441381, 6144432, 7959518, 6094090, 183443, 7403526, 1612842, 4834730, |
79 | | 7826001, 3919660, 8332111, 7018208, 3937738, 1400424, 7534263, 1976782 |
80 | | }; |
81 | | |
82 | | /* |
83 | | * @brief When multiplying 2 numbers mod q that are in montgomery form, the |
84 | | * product mod q needs to be multiplied by 2^-32 to be in montgomery form. |
85 | | * See FIPS 204, Algorithm 49, MontgomeryReduce() |
86 | | * Note it is slightly different due to the input range being positive |
87 | | * |
88 | | * @param a is the result of a multiply of 2 numbers in montgomery form, |
89 | | * in the range 0...(2^32)*q |
90 | | * @returns The Montgomery form of 'a' with multiplier 2^32 in the range 0..q-1 |
91 | | * The result is congruent to x * 2^-32 mod q |
92 | | */ |
93 | | static uint32_t reduce_montgomery(uint64_t a) |
94 | 0 | { |
95 | 0 | uint64_t t = (uint32_t)a * (uint32_t)ML_DSA_Q_NEG_INV; /* a * -qinv */ |
96 | 0 | uint64_t b = a + t * ML_DSA_Q; /* a - t * q */ |
97 | 0 | uint32_t c = b >> 32; /* /2^32 = 0..2q */ |
98 | |
|
99 | 0 | return reduce_once(c); /* 0..q */ |
100 | 0 | } |
101 | | |
102 | | /* |
103 | | * @brief Multiply two polynomials in the number theoretically transformed state. |
104 | | * See FIPS 204, Algorithm 45, MultiplyNTT() |
105 | | * This function has been modified to use montgomery multiplication |
106 | | * |
107 | | * @param lhs A polynomial multiplicand |
108 | | * @param rhs A polynomial multiplier |
109 | | * @param out The returned result of the polynomial multiply |
110 | | */ |
111 | | void ossl_ml_dsa_poly_ntt_mult(const POLY *lhs, const POLY *rhs, POLY *out) |
112 | 0 | { |
113 | 0 | int i; |
114 | |
|
115 | 0 | for (i = 0; i < ML_DSA_NUM_POLY_COEFFICIENTS; i++) |
116 | 0 | out->coeff[i] = |
117 | 0 | reduce_montgomery((uint64_t)lhs->coeff[i] * (uint64_t)rhs->coeff[i]); |
118 | 0 | } |
119 | | |
120 | | /* |
121 | | * In place number theoretic transform of a given polynomial. |
122 | | * |
123 | | * See FIPS 204, Algorithm 41, NTT() |
124 | | * This function uses montgomery multiplication. |
125 | | * |
126 | | * @param p a polynomial that is used as the input, that is replaced with |
127 | | * the NTT of the polynomial |
128 | | */ |
129 | | void ossl_ml_dsa_poly_ntt(POLY *p) |
130 | 0 | { |
131 | 0 | int i, j, k; |
132 | 0 | int step; |
133 | 0 | int offset = ML_DSA_NUM_POLY_COEFFICIENTS; |
134 | | |
135 | | /* Step: 1, 2, 4, 8, ..., 128 */ |
136 | 0 | for (step = 1; step < ML_DSA_NUM_POLY_COEFFICIENTS; step <<= 1) { |
137 | 0 | k = 0; |
138 | 0 | offset >>= 1; /* Offset: 128, 64, 32, 16, ..., 1 */ |
139 | 0 | for (i = 0; i < step; i++) { |
140 | 0 | const uint32_t z_step_root = zetas_montgomery[step + i]; |
141 | |
|
142 | 0 | for (j = k; j < k + offset; j++) { |
143 | 0 | uint32_t w_even = p->coeff[j]; |
144 | 0 | uint32_t t_odd = |
145 | 0 | reduce_montgomery((uint64_t)z_step_root |
146 | 0 | * (uint64_t)p->coeff[j + offset]); |
147 | |
|
148 | 0 | p->coeff[j] = reduce_once(w_even + t_odd); |
149 | 0 | p->coeff[j + offset] = mod_sub(w_even, t_odd); |
150 | 0 | } |
151 | 0 | k += 2 * offset; |
152 | 0 | } |
153 | 0 | } |
154 | 0 | } |
155 | | |
156 | | /* |
157 | | * @brief In place inverse number theoretic transform of a given polynomial. |
158 | | * See FIPS 204, Algorithm 42, NTT^-1() |
159 | | * |
160 | | * @param p a polynomial that is used as the input, that is overwritten with |
161 | | * the inverse of the NTT. |
162 | | */ |
163 | | void ossl_ml_dsa_poly_ntt_inverse(POLY *p) |
164 | 0 | { |
165 | | /* |
166 | | * Step: 128, 64, 32, 16, ..., 1 |
167 | | * Offset: 1, 2, 4, 8, ..., 128 |
168 | | */ |
169 | 0 | int i, j, k, offset, step = ML_DSA_NUM_POLY_COEFFICIENTS; |
170 | | /* |
171 | | * The multiplicative inverse of 256 mod q, in Montgomery form is |
172 | | * ((256^-1 mod q) * ((2^32 * 2^32) mod q)) mod q = (8347681 * 2365951) mod 8380417 |
173 | | */ |
174 | 0 | static const uint32_t inverse_degree_montgomery = 41978; |
175 | |
|
176 | 0 | for (offset = 1; offset < ML_DSA_NUM_POLY_COEFFICIENTS; offset <<= 1) { |
177 | 0 | step >>= 1; |
178 | 0 | k = 0; |
179 | 0 | for (i = 0; i < step; i++) { |
180 | 0 | const uint32_t step_root = |
181 | 0 | ML_DSA_Q - zetas_montgomery[step + (step - 1 - i)]; |
182 | |
|
183 | 0 | for (j = k; j < k + offset; j++) { |
184 | 0 | uint32_t even = p->coeff[j]; |
185 | 0 | uint32_t odd = p->coeff[j + offset]; |
186 | |
|
187 | 0 | p->coeff[j] = reduce_once(odd + even); |
188 | 0 | p->coeff[j + offset] = |
189 | 0 | reduce_montgomery((uint64_t)step_root |
190 | 0 | * (uint64_t)(ML_DSA_Q + even - odd)); |
191 | 0 | } |
192 | 0 | k += 2 * offset; |
193 | 0 | } |
194 | 0 | } |
195 | 0 | for (i = 0; i < ML_DSA_NUM_POLY_COEFFICIENTS; i++) |
196 | 0 | p->coeff[i] = reduce_montgomery((uint64_t)p->coeff[i] * |
197 | 0 | (uint64_t)inverse_degree_montgomery); |
198 | 0 | } |