Coverage Report

Created: 2025-06-22 06:56

/src/openssl/crypto/ml_dsa/ml_dsa_ntt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "ml_dsa_local.h"
11
#include "ml_dsa_poly.h"
12
13
/*
14
 * This file has multiple parts required for fast matrix multiplication,
15
 * 1) NTT (See https://eprint.iacr.org/2024/585.pdf)
16
 * NTT and NTT inverse transformations are Discrete Fourier Transforms in a
17
 * polynomial ring. Fast-Fourier Transformations can then be applied to make
18
 * multiplications n log(n). This uses the symmetry of the transformation to
19
 * reduce computations.
20
 *
21
 * 2) Montgomery multiplication
22
 * The multiplication of a.b mod q requires division by q which is a slow operation.
23
 *
24
 * When many multiplications mod q are required montgomery multiplication
25
 * can be used. This requires a number R > q such that R & q are coprime
26
 * (i.e. GCD(R, q) = 1), so that division happens using R instead of q.
27
 * If r is a power of 2 then this division can be done as a bit shift.
28
 *
29
 * Given that q = 2^23 - 2^13 + 1
30
 * We can chose a Montgomery multiplier of R = 2^32.
31
 *
32
 * To transform |a| into Montgomery form |m| we use
33
 *   m = a mod q * ((2^32)*(2^32) mod q)
34
 * which is then Montgomery reduced, removing the excess factor of R = 2^32.
35
 */
36
37
/*
38
 * The table in FIPS 204 Appendix B uses the following formula
39
 * zeta[k]= 1753^bitrev(k) mod q for (k = 1..255) (The first value is not used).
40
 *
41
 * As this implementation uses montgomery form with a multiplier of 2^32.
42
 * The values need to be transformed i.e.
43
 *
44
 * zetasMontgomery[k] = reduce_montgomery(zeta[k] * (2^32 * 2^32 mod(q)))
45
 * reduce_montgomery() is defined below..
46
 */
47
static const uint32_t zetas_montgomery[256] = {
48
    4193792, 25847,   5771523, 7861508, 237124,  7602457, 7504169, 466468,
49
    1826347, 2353451, 8021166, 6288512, 3119733, 5495562, 3111497, 2680103,
50
    2725464, 1024112, 7300517, 3585928, 7830929, 7260833, 2619752, 6271868,
51
    6262231, 4520680, 6980856, 5102745, 1757237, 8360995, 4010497, 280005,
52
    2706023, 95776,   3077325, 3530437, 6718724, 4788269, 5842901, 3915439,
53
    4519302, 5336701, 3574422, 5512770, 3539968, 8079950, 2348700, 7841118,
54
    6681150, 6736599, 3505694, 4558682, 3507263, 6239768, 6779997, 3699596,
55
    811944,  531354,  954230,  3881043, 3900724, 5823537, 2071892, 5582638,
56
    4450022, 6851714, 4702672, 5339162, 6927966, 3475950, 2176455, 6795196,
57
    7122806, 1939314, 4296819, 7380215, 5190273, 5223087, 4747489, 126922,
58
    3412210, 7396998, 2147896, 2715295, 5412772, 4686924, 7969390, 5903370,
59
    7709315, 7151892, 8357436, 7072248, 7998430, 1349076, 1852771, 6949987,
60
    5037034, 264944,  508951,  3097992, 44288,   7280319, 904516,  3958618,
61
    4656075, 8371839, 1653064, 5130689, 2389356, 8169440, 759969,  7063561,
62
    189548,  4827145, 3159746, 6529015, 5971092, 8202977, 1315589, 1341330,
63
    1285669, 6795489, 7567685, 6940675, 5361315, 4499357, 4751448, 3839961,
64
    2091667, 3407706, 2316500, 3817976, 5037939, 2244091, 5933984, 4817955,
65
    266997,  2434439, 7144689, 3513181, 4860065, 4621053, 7183191, 5187039,
66
    900702,  1859098, 909542,  819034,  495491,  6767243, 8337157, 7857917,
67
    7725090, 5257975, 2031748, 3207046, 4823422, 7855319, 7611795, 4784579,
68
    342297,  286988,  5942594, 4108315, 3437287, 5038140, 1735879, 203044,
69
    2842341, 2691481, 5790267, 1265009, 4055324, 1247620, 2486353, 1595974,
70
    4613401, 1250494, 2635921, 4832145, 5386378, 1869119, 1903435, 7329447,
71
    7047359, 1237275, 5062207, 6950192, 7929317, 1312455, 3306115, 6417775,
72
    7100756, 1917081, 5834105, 7005614, 1500165, 777191,  2235880, 3406031,
73
    7838005, 5548557, 6709241, 6533464, 5796124, 4656147, 594136,  4603424,
74
    6366809, 2432395, 2454455, 8215696, 1957272, 3369112, 185531,  7173032,
75
    5196991, 162844,  1616392, 3014001, 810149,  1652634, 4686184, 6581310,
76
    5341501, 3523897, 3866901, 269760,  2213111, 7404533, 1717735, 472078,
77
    7953734, 1723600, 6577327, 1910376, 6712985, 7276084, 8119771, 4546524,
78
    5441381, 6144432, 7959518, 6094090, 183443,  7403526, 1612842, 4834730,
79
    7826001, 3919660, 8332111, 7018208, 3937738, 1400424, 7534263, 1976782
80
};
81
82
/*
83
 * @brief When multiplying 2 numbers mod q that are in montgomery form, the
84
 * product mod q needs to be multiplied by 2^-32 to be in montgomery form.
85
 * See FIPS 204, Algorithm 49, MontgomeryReduce()
86
 * Note it is slightly different due to the input range being positive
87
 *
88
 * @param a is the result of a multiply of 2 numbers in montgomery form,
89
 *          in the range 0...(2^32)*q
90
 * @returns The Montgomery form of 'a' with multiplier 2^32 in the range 0..q-1
91
 *          The result is congruent to x * 2^-32 mod q
92
 */
93
static uint32_t reduce_montgomery(uint64_t a)
94
0
{
95
0
    uint64_t t = (uint32_t)a * (uint32_t)ML_DSA_Q_NEG_INV; /* a * -qinv */
96
0
    uint64_t b = a + t * ML_DSA_Q; /* a - t * q */
97
0
    uint32_t c = b >> 32; /* /2^32  = 0..2q */
98
99
0
    return reduce_once(c); /* 0..q */
100
0
}
101
102
/*
103
 * @brief Multiply two polynomials in the number theoretically transformed state.
104
 * See FIPS 204, Algorithm 45, MultiplyNTT()
105
 * This function has been modified to use montgomery multiplication
106
 *
107
 * @param lhs A polynomial multiplicand
108
 * @param rhs A polynomial multiplier
109
 * @param out The returned result of the polynomial multiply
110
 */
111
void ossl_ml_dsa_poly_ntt_mult(const POLY *lhs, const POLY *rhs, POLY *out)
112
0
{
113
0
    int i;
114
115
0
    for (i = 0; i < ML_DSA_NUM_POLY_COEFFICIENTS; i++)
116
0
        out->coeff[i] =
117
0
            reduce_montgomery((uint64_t)lhs->coeff[i] * (uint64_t)rhs->coeff[i]);
118
0
}
119
120
/*
121
 * In place number theoretic transform of a given polynomial.
122
 *
123
 * See FIPS 204, Algorithm 41, NTT()
124
 * This function uses montgomery multiplication.
125
 *
126
 * @param p a polynomial that is used as the input, that is replaced with
127
 *        the NTT of the polynomial
128
 */
129
void ossl_ml_dsa_poly_ntt(POLY *p)
130
0
{
131
0
    int i, j, k;
132
0
    int step;
133
0
    int offset = ML_DSA_NUM_POLY_COEFFICIENTS;
134
135
    /* Step: 1, 2, 4, 8, ..., 128 */
136
0
    for (step = 1; step < ML_DSA_NUM_POLY_COEFFICIENTS; step <<= 1) {
137
0
        k = 0;
138
0
        offset >>= 1; /* Offset: 128, 64, 32, 16, ..., 1 */
139
0
        for (i = 0; i < step; i++) {
140
0
            const uint32_t z_step_root = zetas_montgomery[step + i];
141
142
0
            for (j = k; j < k + offset; j++) {
143
0
                uint32_t w_even = p->coeff[j];
144
0
                uint32_t t_odd =
145
0
                    reduce_montgomery((uint64_t)z_step_root
146
0
                                      * (uint64_t)p->coeff[j + offset]);
147
148
0
                p->coeff[j] = reduce_once(w_even + t_odd);
149
0
                p->coeff[j + offset] = mod_sub(w_even, t_odd);
150
0
            }
151
0
            k += 2 * offset;
152
0
        }
153
0
    }
154
0
}
155
156
/*
157
 * @brief In place inverse number theoretic transform of a given polynomial.
158
 * See FIPS 204, Algorithm 42,  NTT^-1()
159
 *
160
 * @param p a polynomial that is used as the input, that is overwritten with
161
 *          the inverse of the NTT.
162
 */
163
void ossl_ml_dsa_poly_ntt_inverse(POLY *p)
164
0
{
165
    /*
166
     * Step: 128, 64, 32, 16, ..., 1
167
     * Offset: 1, 2, 4, 8, ..., 128
168
     */
169
0
    int i, j, k, offset, step = ML_DSA_NUM_POLY_COEFFICIENTS;
170
    /*
171
     * The multiplicative inverse of 256 mod q, in Montgomery form is
172
     * ((256^-1 mod q) * ((2^32 * 2^32) mod q)) mod q = (8347681 * 2365951) mod 8380417
173
     */
174
0
    static const uint32_t inverse_degree_montgomery = 41978;
175
176
0
    for (offset = 1; offset < ML_DSA_NUM_POLY_COEFFICIENTS; offset <<= 1) {
177
0
        step >>= 1;
178
0
        k = 0;
179
0
        for (i = 0; i < step; i++) {
180
0
            const uint32_t step_root =
181
0
                ML_DSA_Q - zetas_montgomery[step + (step - 1 - i)];
182
183
0
            for (j = k; j < k + offset; j++) {
184
0
                uint32_t even = p->coeff[j];
185
0
                uint32_t odd = p->coeff[j + offset];
186
187
0
                p->coeff[j] = reduce_once(odd + even);
188
0
                p->coeff[j + offset] =
189
0
                    reduce_montgomery((uint64_t)step_root
190
0
                                      * (uint64_t)(ML_DSA_Q + even - odd));
191
0
            }
192
0
            k += 2 * offset;
193
0
        }
194
0
    }
195
0
    for (i = 0; i < ML_DSA_NUM_POLY_COEFFICIENTS; i++)
196
0
        p->coeff[i] = reduce_montgomery((uint64_t)p->coeff[i] *
197
0
                                        (uint64_t)inverse_degree_montgomery);
198
0
}