Coverage Report

Created: 2025-06-22 06:56

/src/openssl/crypto/rsa/rsa_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * RSA low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <openssl/crypto.h>
17
#include <openssl/core_names.h>
18
#ifndef FIPS_MODULE
19
# include <openssl/engine.h>
20
#endif
21
#include <openssl/evp.h>
22
#include <openssl/param_build.h>
23
#include "internal/cryptlib.h"
24
#include "internal/refcount.h"
25
#include "crypto/bn.h"
26
#include "crypto/evp.h"
27
#include "crypto/rsa.h"
28
#include "crypto/security_bits.h"
29
#include "rsa_local.h"
30
31
static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32
33
#ifndef FIPS_MODULE
34
RSA *RSA_new(void)
35
0
{
36
0
    return rsa_new_intern(NULL, NULL);
37
0
}
38
39
const RSA_METHOD *RSA_get_method(const RSA *rsa)
40
0
{
41
0
    return rsa->meth;
42
0
}
43
44
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45
0
{
46
    /*
47
     * NB: The caller is specifically setting a method, so it's not up to us
48
     * to deal with which ENGINE it comes from.
49
     */
50
0
    const RSA_METHOD *mtmp;
51
0
    mtmp = rsa->meth;
52
0
    if (mtmp->finish)
53
0
        mtmp->finish(rsa);
54
0
#ifndef OPENSSL_NO_ENGINE
55
0
    ENGINE_finish(rsa->engine);
56
0
    rsa->engine = NULL;
57
0
#endif
58
0
    rsa->meth = meth;
59
0
    if (meth->init)
60
0
        meth->init(rsa);
61
0
    return 1;
62
0
}
63
64
RSA *RSA_new_method(ENGINE *engine)
65
0
{
66
0
    return rsa_new_intern(engine, NULL);
67
0
}
68
#endif
69
70
RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71
0
{
72
0
    return rsa_new_intern(NULL, libctx);
73
0
}
74
75
static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76
0
{
77
0
    RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78
79
0
    if (ret == NULL)
80
0
        return NULL;
81
82
0
    ret->lock = CRYPTO_THREAD_lock_new();
83
0
    if (ret->lock == NULL) {
84
0
        ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
85
0
        OPENSSL_free(ret);
86
0
        return NULL;
87
0
    }
88
89
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
90
0
        CRYPTO_THREAD_lock_free(ret->lock);
91
0
        OPENSSL_free(ret);
92
0
        return NULL;
93
0
    }
94
95
0
    ret->libctx = libctx;
96
0
    ret->meth = RSA_get_default_method();
97
0
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
98
0
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
99
0
    if (engine) {
100
0
        if (!ENGINE_init(engine)) {
101
0
            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
102
0
            goto err;
103
0
        }
104
0
        ret->engine = engine;
105
0
    } else {
106
0
        ret->engine = ENGINE_get_default_RSA();
107
0
    }
108
0
    if (ret->engine) {
109
0
        ret->meth = ENGINE_get_RSA(ret->engine);
110
0
        if (ret->meth == NULL) {
111
0
            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
112
0
            goto err;
113
0
        }
114
0
    }
115
0
#endif
116
117
0
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
118
0
#ifndef FIPS_MODULE
119
0
    if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
120
0
        goto err;
121
0
    }
122
0
#endif
123
124
0
    if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
125
0
        ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
126
0
        goto err;
127
0
    }
128
129
0
    return ret;
130
131
0
 err:
132
0
    RSA_free(ret);
133
0
    return NULL;
134
0
}
135
136
void RSA_free(RSA *r)
137
0
{
138
0
    int i;
139
140
0
    if (r == NULL)
141
0
        return;
142
143
0
    CRYPTO_DOWN_REF(&r->references, &i);
144
0
    REF_PRINT_COUNT("RSA", i, r);
145
0
    if (i > 0)
146
0
        return;
147
0
    REF_ASSERT_ISNT(i < 0);
148
149
0
    if (r->meth != NULL && r->meth->finish != NULL)
150
0
        r->meth->finish(r);
151
0
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
152
0
    ENGINE_finish(r->engine);
153
0
#endif
154
155
0
#ifndef FIPS_MODULE
156
0
    CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
157
0
#endif
158
159
0
    CRYPTO_THREAD_lock_free(r->lock);
160
0
    CRYPTO_FREE_REF(&r->references);
161
162
#ifdef OPENSSL_PEDANTIC_ZEROIZATION
163
    BN_clear_free(r->n);
164
    BN_clear_free(r->e);
165
#else
166
0
    BN_free(r->n);
167
0
    BN_free(r->e);
168
0
#endif
169
0
    BN_clear_free(r->d);
170
0
    BN_clear_free(r->p);
171
0
    BN_clear_free(r->q);
172
0
    BN_clear_free(r->dmp1);
173
0
    BN_clear_free(r->dmq1);
174
0
    BN_clear_free(r->iqmp);
175
176
#if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
177
    ossl_rsa_acvp_test_free(r->acvp_test);
178
#endif
179
180
0
#ifndef FIPS_MODULE
181
0
    RSA_PSS_PARAMS_free(r->pss);
182
0
    sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
183
0
#endif
184
0
    BN_BLINDING_free(r->blinding);
185
0
    BN_BLINDING_free(r->mt_blinding);
186
0
    OPENSSL_free(r);
187
0
}
188
189
int RSA_up_ref(RSA *r)
190
0
{
191
0
    int i;
192
193
0
    if (CRYPTO_UP_REF(&r->references, &i) <= 0)
194
0
        return 0;
195
196
0
    REF_PRINT_COUNT("RSA", i, r);
197
0
    REF_ASSERT_ISNT(i < 2);
198
0
    return i > 1 ? 1 : 0;
199
0
}
200
201
OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
202
0
{
203
0
    return r->libctx;
204
0
}
205
206
void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
207
0
{
208
0
    r->libctx = libctx;
209
0
}
210
211
#ifndef FIPS_MODULE
212
int RSA_set_ex_data(RSA *r, int idx, void *arg)
213
0
{
214
0
    return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
215
0
}
216
217
void *RSA_get_ex_data(const RSA *r, int idx)
218
0
{
219
0
    return CRYPTO_get_ex_data(&r->ex_data, idx);
220
0
}
221
#endif
222
223
/*
224
 * Define a scaling constant for our fixed point arithmetic.
225
 * This value must be a power of two because the base two logarithm code
226
 * makes this assumption.  The exponent must also be a multiple of three so
227
 * that the scale factor has an exact cube root.  Finally, the scale factor
228
 * should not be so large that a multiplication of two scaled numbers
229
 * overflows a 64 bit unsigned integer.
230
 */
231
static const unsigned int scale = 1 << 18;
232
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
233
234
/* Define some constants, none exceed 32 bits */
235
static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
236
static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
237
static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
238
static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
239
240
/*
241
 * Multiply two scaled integers together and rescale the result.
242
 */
243
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
244
0
{
245
0
    return a * b / scale;
246
0
}
247
248
/*
249
 * Calculate the cube root of a 64 bit scaled integer.
250
 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
251
 * integer, this is not guaranteed after scaling, so this function has a
252
 * 64 bit return.  This uses the shifting nth root algorithm with some
253
 * algebraic simplifications.
254
 */
255
static uint64_t icbrt64(uint64_t x)
256
0
{
257
0
    uint64_t r = 0;
258
0
    uint64_t b;
259
0
    int s;
260
261
0
    for (s = 63; s >= 0; s -= 3) {
262
0
        r <<= 1;
263
0
        b = 3 * r * (r + 1) + 1;
264
0
        if ((x >> s) >= b) {
265
0
            x -= b << s;
266
0
            r++;
267
0
        }
268
0
    }
269
0
    return r * cbrt_scale;
270
0
}
271
272
/*
273
 * Calculate the natural logarithm of a 64 bit scaled integer.
274
 * This is done by calculating a base two logarithm and scaling.
275
 * The maximum logarithm (base 2) is 64 and this reduces base e, so
276
 * a 32 bit result should not overflow.  The argument passed must be
277
 * greater than unity so we don't need to handle negative results.
278
 */
279
static uint32_t ilog_e(uint64_t v)
280
0
{
281
0
    uint32_t i, r = 0;
282
283
    /*
284
     * Scale down the value into the range 1 .. 2.
285
     *
286
     * If fractional numbers need to be processed, another loop needs
287
     * to go here that checks v < scale and if so multiplies it by 2 and
288
     * reduces r by scale.  This also means making r signed.
289
     */
290
0
    while (v >= 2 * scale) {
291
0
        v >>= 1;
292
0
        r += scale;
293
0
    }
294
0
    for (i = scale / 2; i != 0; i /= 2) {
295
0
        v = mul2(v, v);
296
0
        if (v >= 2 * scale) {
297
0
            v >>= 1;
298
0
            r += i;
299
0
        }
300
0
    }
301
0
    r = (r * (uint64_t)scale) / log_e;
302
0
    return r;
303
0
}
304
305
/*
306
 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
307
 * Modulus Lengths.
308
 *
309
 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
310
 * for FFC safe prime groups for modp and ffdhe.
311
 * After Table 25 and Table 26 it refers to
312
 * "The maximum security strength estimates were calculated using the formula in
313
 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
314
 * bits".
315
 *
316
 * The formula is:
317
 *
318
 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
319
 *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
320
 * The two cube roots are merged together here.
321
 */
322
uint16_t ossl_ifc_ffc_compute_security_bits(int n)
323
0
{
324
0
    uint64_t x;
325
0
    uint32_t lx;
326
0
    uint16_t y, cap;
327
328
    /*
329
     * Look for common values as listed in standards.
330
     * These values are not exactly equal to the results from the formulae in
331
     * the standards but are defined to be canonical.
332
     */
333
0
    switch (n) {
334
0
    case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
335
0
        return 112;
336
0
    case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
337
0
        return 128;
338
0
    case 4096:      /* SP 800-56B rev 2 Appendix D */
339
0
        return 152;
340
0
    case 6144:      /* SP 800-56B rev 2 Appendix D */
341
0
        return 176;
342
0
    case 7680:      /* FIPS 140-2 IG 7.5 */
343
0
        return 192;
344
0
    case 8192:      /* SP 800-56B rev 2 Appendix D */
345
0
        return 200;
346
0
    case 15360:     /* FIPS 140-2 IG 7.5 */
347
0
        return 256;
348
0
    }
349
350
    /*
351
     * The first incorrect result (i.e. not accurate or off by one low) occurs
352
     * for n = 699668.  The true value here is 1200.  Instead of using this n
353
     * as the check threshold, the smallest n such that the correct result is
354
     * 1200 is used instead.
355
     */
356
0
    if (n >= 687737)
357
0
        return 1200;
358
0
    if (n < 8)
359
0
        return 0;
360
361
    /*
362
     * To ensure that the output is non-decreasing with respect to n,
363
     * a cap needs to be applied to the two values where the function over
364
     * estimates the strength (according to the above fast path).
365
     */
366
0
    if (n <= 7680)
367
0
        cap = 192;
368
0
    else if (n <= 15360)
369
0
        cap = 256;
370
0
    else
371
0
        cap = 1200;
372
373
0
    x = n * (uint64_t)log_2;
374
0
    lx = ilog_e(x);
375
0
    y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
376
0
                   / log_2);
377
0
    y = (y + 4) & ~7;
378
0
    if (y > cap)
379
0
        y = cap;
380
0
    return y;
381
0
}
382
383
384
385
int RSA_security_bits(const RSA *rsa)
386
0
{
387
0
    int bits = BN_num_bits(rsa->n);
388
389
0
#ifndef FIPS_MODULE
390
0
    if (rsa->version == RSA_ASN1_VERSION_MULTI) {
391
        /* This ought to mean that we have private key at hand. */
392
0
        int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
393
394
0
        if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
395
0
            return 0;
396
0
    }
397
0
#endif
398
0
    return ossl_ifc_ffc_compute_security_bits(bits);
399
0
}
400
401
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
402
0
{
403
    /* If the fields n and e in r are NULL, the corresponding input
404
     * parameters MUST be non-NULL for n and e.  d may be
405
     * left NULL (in case only the public key is used).
406
     */
407
0
    if ((r->n == NULL && n == NULL)
408
0
        || (r->e == NULL && e == NULL))
409
0
        return 0;
410
411
0
    if (n != NULL) {
412
0
        BN_free(r->n);
413
0
        r->n = n;
414
0
    }
415
0
    if (e != NULL) {
416
0
        BN_free(r->e);
417
0
        r->e = e;
418
0
    }
419
0
    if (d != NULL) {
420
0
        BN_clear_free(r->d);
421
0
        r->d = d;
422
0
        BN_set_flags(r->d, BN_FLG_CONSTTIME);
423
0
    }
424
0
    r->dirty_cnt++;
425
426
0
    return 1;
427
0
}
428
429
int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
430
0
{
431
    /* If the fields p and q in r are NULL, the corresponding input
432
     * parameters MUST be non-NULL.
433
     */
434
0
    if ((r->p == NULL && p == NULL)
435
0
        || (r->q == NULL && q == NULL))
436
0
        return 0;
437
438
0
    if (p != NULL) {
439
0
        BN_clear_free(r->p);
440
0
        r->p = p;
441
0
        BN_set_flags(r->p, BN_FLG_CONSTTIME);
442
0
    }
443
0
    if (q != NULL) {
444
0
        BN_clear_free(r->q);
445
0
        r->q = q;
446
0
        BN_set_flags(r->q, BN_FLG_CONSTTIME);
447
0
    }
448
0
    r->dirty_cnt++;
449
450
0
    return 1;
451
0
}
452
453
int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
454
0
{
455
    /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
456
     * parameters MUST be non-NULL.
457
     */
458
0
    if ((r->dmp1 == NULL && dmp1 == NULL)
459
0
        || (r->dmq1 == NULL && dmq1 == NULL)
460
0
        || (r->iqmp == NULL && iqmp == NULL))
461
0
        return 0;
462
463
0
    if (dmp1 != NULL) {
464
0
        BN_clear_free(r->dmp1);
465
0
        r->dmp1 = dmp1;
466
0
        BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
467
0
    }
468
0
    if (dmq1 != NULL) {
469
0
        BN_clear_free(r->dmq1);
470
0
        r->dmq1 = dmq1;
471
0
        BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
472
0
    }
473
0
    if (iqmp != NULL) {
474
0
        BN_clear_free(r->iqmp);
475
0
        r->iqmp = iqmp;
476
0
        BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
477
0
    }
478
0
    r->dirty_cnt++;
479
480
0
    return 1;
481
0
}
482
483
#ifndef FIPS_MODULE
484
/*
485
 * Is it better to export RSA_PRIME_INFO structure
486
 * and related functions to let user pass a triplet?
487
 */
488
int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
489
                                BIGNUM *coeffs[], int pnum)
490
0
{
491
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
492
0
    RSA_PRIME_INFO *pinfo;
493
0
    int i;
494
495
0
    if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
496
0
        return 0;
497
498
0
    prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
499
0
    if (prime_infos == NULL)
500
0
        return 0;
501
502
0
    if (r->prime_infos != NULL)
503
0
        old = r->prime_infos;
504
505
0
    for (i = 0; i < pnum; i++) {
506
0
        pinfo = ossl_rsa_multip_info_new();
507
0
        if (pinfo == NULL)
508
0
            goto err;
509
0
        if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
510
0
            BN_clear_free(pinfo->r);
511
0
            BN_clear_free(pinfo->d);
512
0
            BN_clear_free(pinfo->t);
513
0
            pinfo->r = primes[i];
514
0
            pinfo->d = exps[i];
515
0
            pinfo->t = coeffs[i];
516
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
517
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
518
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
519
0
        } else {
520
0
            ossl_rsa_multip_info_free(pinfo);
521
0
            goto err;
522
0
        }
523
0
        (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
524
0
    }
525
526
0
    r->prime_infos = prime_infos;
527
528
0
    if (!ossl_rsa_multip_calc_product(r)) {
529
0
        r->prime_infos = old;
530
0
        goto err;
531
0
    }
532
533
0
    if (old != NULL) {
534
        /*
535
         * This is hard to deal with, since the old infos could
536
         * also be set by this function and r, d, t should not
537
         * be freed in that case. So currently, stay consistent
538
         * with other *set0* functions: just free it...
539
         */
540
0
        sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
541
0
    }
542
543
0
    r->version = RSA_ASN1_VERSION_MULTI;
544
0
    r->dirty_cnt++;
545
546
0
    return 1;
547
0
 err:
548
    /* r, d, t should not be freed */
549
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
550
0
    return 0;
551
0
}
552
#endif
553
554
void RSA_get0_key(const RSA *r,
555
                  const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
556
0
{
557
0
    if (n != NULL)
558
0
        *n = r->n;
559
0
    if (e != NULL)
560
0
        *e = r->e;
561
0
    if (d != NULL)
562
0
        *d = r->d;
563
0
}
564
565
void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
566
0
{
567
0
    if (p != NULL)
568
0
        *p = r->p;
569
0
    if (q != NULL)
570
0
        *q = r->q;
571
0
}
572
573
#ifndef FIPS_MODULE
574
int RSA_get_multi_prime_extra_count(const RSA *r)
575
0
{
576
0
    int pnum;
577
578
0
    pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
579
0
    if (pnum <= 0)
580
0
        pnum = 0;
581
0
    return pnum;
582
0
}
583
584
int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
585
0
{
586
0
    int pnum, i;
587
0
    RSA_PRIME_INFO *pinfo;
588
589
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
590
0
        return 0;
591
592
    /*
593
     * return other primes
594
     * it's caller's responsibility to allocate oth_primes[pnum]
595
     */
596
0
    for (i = 0; i < pnum; i++) {
597
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
598
0
        primes[i] = pinfo->r;
599
0
    }
600
601
0
    return 1;
602
0
}
603
#endif
604
605
void RSA_get0_crt_params(const RSA *r,
606
                         const BIGNUM **dmp1, const BIGNUM **dmq1,
607
                         const BIGNUM **iqmp)
608
0
{
609
0
    if (dmp1 != NULL)
610
0
        *dmp1 = r->dmp1;
611
0
    if (dmq1 != NULL)
612
0
        *dmq1 = r->dmq1;
613
0
    if (iqmp != NULL)
614
0
        *iqmp = r->iqmp;
615
0
}
616
617
#ifndef FIPS_MODULE
618
int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
619
                                    const BIGNUM *coeffs[])
620
0
{
621
0
    int pnum;
622
623
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
624
0
        return 0;
625
626
    /* return other primes */
627
0
    if (exps != NULL || coeffs != NULL) {
628
0
        RSA_PRIME_INFO *pinfo;
629
0
        int i;
630
631
        /* it's the user's job to guarantee the buffer length */
632
0
        for (i = 0; i < pnum; i++) {
633
0
            pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
634
0
            if (exps != NULL)
635
0
                exps[i] = pinfo->d;
636
0
            if (coeffs != NULL)
637
0
                coeffs[i] = pinfo->t;
638
0
        }
639
0
    }
640
641
0
    return 1;
642
0
}
643
#endif
644
645
const BIGNUM *RSA_get0_n(const RSA *r)
646
0
{
647
0
    return r->n;
648
0
}
649
650
const BIGNUM *RSA_get0_e(const RSA *r)
651
0
{
652
0
    return r->e;
653
0
}
654
655
const BIGNUM *RSA_get0_d(const RSA *r)
656
0
{
657
0
    return r->d;
658
0
}
659
660
const BIGNUM *RSA_get0_p(const RSA *r)
661
0
{
662
0
    return r->p;
663
0
}
664
665
const BIGNUM *RSA_get0_q(const RSA *r)
666
0
{
667
0
    return r->q;
668
0
}
669
670
const BIGNUM *RSA_get0_dmp1(const RSA *r)
671
0
{
672
0
    return r->dmp1;
673
0
}
674
675
const BIGNUM *RSA_get0_dmq1(const RSA *r)
676
0
{
677
0
    return r->dmq1;
678
0
}
679
680
const BIGNUM *RSA_get0_iqmp(const RSA *r)
681
0
{
682
0
    return r->iqmp;
683
0
}
684
685
const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
686
0
{
687
#ifdef FIPS_MODULE
688
    return NULL;
689
#else
690
0
    return r->pss;
691
0
#endif
692
0
}
693
694
/* Internal */
695
int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
696
0
{
697
#ifdef FIPS_MODULE
698
    return 0;
699
#else
700
0
    RSA_PSS_PARAMS_free(r->pss);
701
0
    r->pss = pss;
702
0
    return 1;
703
0
#endif
704
0
}
705
706
/* Internal */
707
RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
708
0
{
709
0
    return &r->pss_params;
710
0
}
711
712
void RSA_clear_flags(RSA *r, int flags)
713
0
{
714
0
    r->flags &= ~flags;
715
0
}
716
717
int RSA_test_flags(const RSA *r, int flags)
718
0
{
719
0
    return r->flags & flags;
720
0
}
721
722
void RSA_set_flags(RSA *r, int flags)
723
0
{
724
0
    r->flags |= flags;
725
0
}
726
727
int RSA_get_version(RSA *r)
728
0
{
729
    /* { two-prime(0), multi(1) } */
730
0
    return r->version;
731
0
}
732
733
#ifndef FIPS_MODULE
734
ENGINE *RSA_get0_engine(const RSA *r)
735
0
{
736
0
    return r->engine;
737
0
}
738
739
int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
740
0
{
741
    /* If key type not RSA or RSA-PSS return error */
742
0
    if (ctx != NULL && ctx->pmeth != NULL
743
0
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA
744
0
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
745
0
        return -1;
746
0
     return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
747
0
}
748
#endif
749
750
DEFINE_STACK_OF(BIGNUM)
751
752
/*
753
 * Note: This function deletes values from the parameter
754
 * stack values as they are consumed and set in the RSA key.
755
 */
756
int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,
757
                             STACK_OF(BIGNUM) *exps,
758
                             STACK_OF(BIGNUM) *coeffs)
759
0
{
760
0
#ifndef FIPS_MODULE
761
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
762
0
#endif
763
0
    int pnum;
764
765
0
    if (primes == NULL || exps == NULL || coeffs == NULL)
766
0
        return 0;
767
768
0
    pnum = sk_BIGNUM_num(primes);
769
770
    /* we need at least 2 primes */
771
0
    if (pnum < 2)
772
0
        return 0;
773
774
0
    if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
775
0
                          sk_BIGNUM_value(primes, 1)))
776
0
        return 0;
777
778
    /*
779
     * if we managed to set everything above, remove those elements from the
780
     * stack
781
     * Note, we do this after the above all to ensure that we have taken
782
     * ownership of all the elements in the RSA key to avoid memory leaks
783
     * we also use delete 0 here as we are grabbing items from the end of the
784
     * stack rather than the start, otherwise we could use pop
785
     */
786
0
    sk_BIGNUM_delete(primes, 0);
787
0
    sk_BIGNUM_delete(primes, 0);
788
789
0
    if (pnum == sk_BIGNUM_num(exps)
790
0
        && pnum == sk_BIGNUM_num(coeffs) + 1) {
791
792
0
        if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
793
0
                                 sk_BIGNUM_value(exps, 1),
794
0
                                 sk_BIGNUM_value(coeffs, 0)))
795
0
        return 0;
796
797
        /* as above, once we consume the above params, delete them from the list */
798
0
        sk_BIGNUM_delete(exps, 0);
799
0
        sk_BIGNUM_delete(exps, 0);
800
0
        sk_BIGNUM_delete(coeffs, 0);
801
0
    }
802
803
0
#ifndef FIPS_MODULE
804
0
    old_infos = r->prime_infos;
805
0
#endif
806
807
0
    if (pnum > 2) {
808
0
#ifndef FIPS_MODULE
809
0
        int i;
810
811
0
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
812
0
        if (prime_infos == NULL)
813
0
            return 0;
814
815
0
        for (i = 2; i < pnum; i++) {
816
0
            BIGNUM *prime = sk_BIGNUM_pop(primes);
817
0
            BIGNUM *exp = sk_BIGNUM_pop(exps);
818
0
            BIGNUM *coeff = sk_BIGNUM_pop(coeffs);
819
0
            RSA_PRIME_INFO *pinfo = NULL;
820
821
0
            if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
822
0
                goto err;
823
824
            /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
825
0
            if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)
826
0
                goto err;
827
828
0
            pinfo->r = prime;
829
0
            pinfo->d = exp;
830
0
            pinfo->t = coeff;
831
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
832
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
833
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
834
0
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
835
0
        }
836
837
0
        r->prime_infos = prime_infos;
838
839
0
        if (!ossl_rsa_multip_calc_product(r)) {
840
0
            r->prime_infos = old_infos;
841
0
            goto err;
842
0
        }
843
#else
844
        return 0;
845
#endif
846
0
    }
847
848
0
#ifndef FIPS_MODULE
849
0
    if (old_infos != NULL) {
850
        /*
851
         * This is hard to deal with, since the old infos could
852
         * also be set by this function and r, d, t should not
853
         * be freed in that case. So currently, stay consistent
854
         * with other *set0* functions: just free it...
855
         */
856
0
        sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
857
0
    }
858
0
#endif
859
860
0
    r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
861
0
    r->dirty_cnt++;
862
863
0
    return 1;
864
0
#ifndef FIPS_MODULE
865
0
 err:
866
    /* r, d, t should not be freed */
867
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
868
0
    return 0;
869
0
#endif
870
0
}
871
872
DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
873
874
int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
875
                             STACK_OF(BIGNUM_const) *exps,
876
                             STACK_OF(BIGNUM_const) *coeffs)
877
0
{
878
0
#ifndef FIPS_MODULE
879
0
    RSA_PRIME_INFO *pinfo;
880
0
    int i, pnum;
881
0
#endif
882
883
0
    if (r == NULL)
884
0
        return 0;
885
886
    /* If |p| is NULL, there are no CRT parameters */
887
0
    if (RSA_get0_p(r) == NULL)
888
0
        return 1;
889
890
0
    sk_BIGNUM_const_push(primes, RSA_get0_p(r));
891
0
    sk_BIGNUM_const_push(primes, RSA_get0_q(r));
892
0
    sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
893
0
    sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
894
0
    sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
895
896
0
#ifndef FIPS_MODULE
897
0
    pnum = RSA_get_multi_prime_extra_count(r);
898
0
    for (i = 0; i < pnum; i++) {
899
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
900
0
        sk_BIGNUM_const_push(primes, pinfo->r);
901
0
        sk_BIGNUM_const_push(exps, pinfo->d);
902
0
        sk_BIGNUM_const_push(coeffs, pinfo->t);
903
0
    }
904
0
#endif
905
906
0
    return 1;
907
0
}
908
909
0
#define safe_BN_num_bits(_k_)  (((_k_) == NULL) ? 0 : BN_num_bits((_k_)))
910
int ossl_rsa_check_factors(RSA *r)
911
0
{
912
0
    int valid = 0;
913
0
    int n, i, bits;
914
0
    STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();
915
0
    STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();
916
0
    STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();
917
918
0
    if (factors == NULL || exps == NULL || coeffs == NULL)
919
0
        goto done;
920
921
    /*
922
     * Simple sanity check for RSA key. All RSA key parameters
923
     * must be less-than/equal-to RSA parameter n.
924
     */
925
0
    ossl_rsa_get0_all_params(r, factors, exps, coeffs);
926
0
    n = safe_BN_num_bits(RSA_get0_n(r));
927
928
0
    if (safe_BN_num_bits(RSA_get0_d(r)) > n)
929
0
        goto done;
930
931
0
    for (i = 0; i < sk_BIGNUM_const_num(exps); i++) {
932
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i));
933
0
        if (bits > n)
934
0
            goto done;
935
0
    }
936
937
0
    for (i = 0; i < sk_BIGNUM_const_num(factors); i++) {
938
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i));
939
0
        if (bits > n)
940
0
            goto done;
941
0
    }
942
943
0
    for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) {
944
0
        bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i));
945
0
        if (bits > n)
946
0
            goto done;
947
0
    }
948
949
0
    valid = 1;
950
951
0
done:
952
0
    sk_BIGNUM_const_free(factors);
953
0
    sk_BIGNUM_const_free(exps);
954
0
    sk_BIGNUM_const_free(coeffs);
955
956
0
    return valid;
957
0
}
958
959
#ifndef FIPS_MODULE
960
/* Helpers to set or get diverse hash algorithm names */
961
static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
962
                               /* For checks */
963
                               int keytype, int optype,
964
                               /* For EVP_PKEY_CTX_set_params() */
965
                               const char *mdkey, const char *mdname,
966
                               const char *propkey, const char *mdprops)
967
0
{
968
0
    OSSL_PARAM params[3], *p = params;
969
970
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
971
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
972
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
973
0
        return -2;
974
0
    }
975
976
    /* If key type not RSA return error */
977
0
    switch (keytype) {
978
0
    case -1:
979
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
980
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
981
0
            return -1;
982
0
        break;
983
0
    default:
984
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
985
0
            return -1;
986
0
        break;
987
0
    }
988
989
    /* Cast away the const. This is read only so should be safe */
990
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
991
0
    if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
992
        /* Cast away the const. This is read only so should be safe */
993
0
        *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
994
0
    }
995
0
    *p++ = OSSL_PARAM_construct_end();
996
997
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
998
0
}
999
1000
/* Helpers to set or get diverse hash algorithm names */
1001
static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
1002
                               /* For checks */
1003
                               int keytype, int optype,
1004
                               /* For EVP_PKEY_CTX_get_params() */
1005
                               const char *mdkey,
1006
                               char *mdname, size_t mdnamesize)
1007
0
{
1008
0
    OSSL_PARAM params[2], *p = params;
1009
1010
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
1011
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1012
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1013
0
        return -2;
1014
0
    }
1015
1016
    /* If key type not RSA return error */
1017
0
    switch (keytype) {
1018
0
    case -1:
1019
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1020
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1021
0
            return -1;
1022
0
        break;
1023
0
    default:
1024
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
1025
0
            return -1;
1026
0
        break;
1027
0
    }
1028
1029
    /* Cast away the const. This is read only so should be safe */
1030
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
1031
0
    *p++ = OSSL_PARAM_construct_end();
1032
1033
0
    return evp_pkey_ctx_get_params_strict(ctx, params);
1034
0
}
1035
1036
/*
1037
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1038
 * simply because that's easier.
1039
 */
1040
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
1041
0
{
1042
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
1043
0
                             pad_mode, NULL);
1044
0
}
1045
1046
/*
1047
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1048
 * simply because that's easier.
1049
 */
1050
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
1051
0
{
1052
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
1053
0
                             0, pad_mode);
1054
0
}
1055
1056
/*
1057
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1058
 * simply because that's easier.
1059
 */
1060
int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1061
0
{
1062
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1063
0
                             EVP_PKEY_CTRL_MD, 0, (void *)(md));
1064
0
}
1065
1066
int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
1067
                                            const char *mdname,
1068
                                            const char *mdprops)
1069
0
{
1070
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1071
0
                               OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
1072
0
                               OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
1073
0
}
1074
1075
/*
1076
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1077
 * simply because that's easier.
1078
 */
1079
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1080
0
{
1081
    /* If key type not RSA return error */
1082
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1083
0
        return -1;
1084
1085
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1086
0
                             EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1087
0
}
1088
1089
int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1090
                                      const char *mdprops)
1091
0
{
1092
0
    return
1093
0
        int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1094
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1095
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1096
0
}
1097
1098
int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1099
                                      size_t namesize)
1100
0
{
1101
0
    return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1102
0
                               OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1103
0
                               name, namesize);
1104
0
}
1105
1106
/*
1107
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1108
 * simply because that's easier.
1109
 */
1110
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1111
0
{
1112
    /* If key type not RSA return error */
1113
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1114
0
        return -1;
1115
1116
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1117
0
                             EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1118
0
}
1119
1120
/*
1121
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1122
 * simply because that's easier.
1123
 */
1124
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1125
0
{
1126
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1127
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1128
0
}
1129
1130
int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1131
                                      const char *mdprops)
1132
0
{
1133
0
    return int_set_rsa_md_name(ctx, -1,
1134
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1135
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1136
0
                               OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1137
0
}
1138
1139
int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1140
                                      size_t namesize)
1141
0
{
1142
0
    return int_get_rsa_md_name(ctx, -1,
1143
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1144
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1145
0
}
1146
1147
/*
1148
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1149
 * simply because that's easier.
1150
 */
1151
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1152
0
{
1153
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1154
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1155
0
}
1156
1157
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1158
                                                 const char *mdname)
1159
0
{
1160
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1161
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1162
0
                               NULL, NULL);
1163
0
}
1164
1165
/*
1166
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1167
 * simply because that's easier.
1168
 */
1169
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1170
0
{
1171
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1172
0
                             EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1173
0
}
1174
1175
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1176
0
{
1177
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1178
0
    const char *empty = "";
1179
    /*
1180
     * Needed as we swap label with empty if it is NULL, and label is
1181
     * freed at the end of this function.
1182
     */
1183
0
    void *plabel = label;
1184
0
    int ret;
1185
1186
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1187
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1188
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1189
0
        return -2;
1190
0
    }
1191
1192
    /* If key type not RSA return error */
1193
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1194
0
        return -1;
1195
1196
    /* Accept NULL for backward compatibility */
1197
0
    if (label == NULL && llen == 0)
1198
0
        plabel = (void *)empty;
1199
1200
    /* Cast away the const. This is read only so should be safe */
1201
0
    *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1202
0
                                             (void *)plabel, (size_t)llen);
1203
0
    *p++ = OSSL_PARAM_construct_end();
1204
1205
0
    ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1206
0
    if (ret <= 0)
1207
0
        return ret;
1208
1209
    /* Ownership is supposed to be transferred to the callee. */
1210
0
    OPENSSL_free(label);
1211
0
    return 1;
1212
0
}
1213
1214
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1215
0
{
1216
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1217
0
    size_t labellen;
1218
1219
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1220
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1221
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1222
0
        return -2;
1223
0
    }
1224
1225
    /* If key type not RSA return error */
1226
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1227
0
        return -1;
1228
1229
0
    *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1230
0
                                          (void **)label, 0);
1231
0
    *p++ = OSSL_PARAM_construct_end();
1232
1233
0
    if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1234
0
        return -1;
1235
1236
0
    labellen = rsa_params[0].return_size;
1237
0
    if (labellen > INT_MAX)
1238
0
        return -1;
1239
1240
0
    return (int)labellen;
1241
0
}
1242
1243
/*
1244
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1245
 * simply because that's easier.
1246
 */
1247
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1248
0
{
1249
    /*
1250
     * For some reason, the optype was set to this:
1251
     *
1252
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1253
     *
1254
     * However, we do use RSA-PSS with the whole gamut of diverse signature
1255
     * and verification operations, so the optype gets upgraded to this:
1256
     *
1257
     * EVP_PKEY_OP_TYPE_SIG
1258
     */
1259
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1260
0
                             EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1261
0
}
1262
1263
/*
1264
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1265
 * simply because that's easier.
1266
 */
1267
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1268
0
{
1269
    /*
1270
     * Because of circumstances, the optype is updated from:
1271
     *
1272
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1273
     *
1274
     * to:
1275
     *
1276
     * EVP_PKEY_OP_TYPE_SIG
1277
     */
1278
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1279
0
                             EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1280
0
}
1281
1282
int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1283
0
{
1284
0
    OSSL_PARAM pad_params[2], *p = pad_params;
1285
1286
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1287
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1288
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1289
0
        return -2;
1290
0
    }
1291
1292
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1293
0
        return -1;
1294
1295
0
    *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1296
0
                                    &saltlen);
1297
0
    *p++ = OSSL_PARAM_construct_end();
1298
1299
0
    return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1300
0
}
1301
1302
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1303
0
{
1304
0
    OSSL_PARAM params[2], *p = params;
1305
0
    size_t bits2 = bits;
1306
1307
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1308
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1309
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1310
0
        return -2;
1311
0
    }
1312
1313
    /* If key type not RSA return error */
1314
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1315
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1316
0
        return -1;
1317
1318
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1319
0
    *p++ = OSSL_PARAM_construct_end();
1320
1321
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1322
0
}
1323
1324
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1325
0
{
1326
0
    int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1327
0
                                EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1328
1329
    /*
1330
     * Satisfy memory semantics for pre-3.0 callers of
1331
     * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1332
     * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1333
     */
1334
0
    if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1335
0
        BN_free(ctx->rsa_pubexp);
1336
0
        ctx->rsa_pubexp = pubexp;
1337
0
    }
1338
1339
0
    return ret;
1340
0
}
1341
1342
int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1343
0
{
1344
0
    int ret = 0;
1345
1346
    /*
1347
     * When we're dealing with a provider, there's no need to duplicate
1348
     * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1349
     */
1350
0
    if (evp_pkey_ctx_is_legacy(ctx)) {
1351
0
        pubexp = BN_dup(pubexp);
1352
0
        if (pubexp == NULL)
1353
0
            return 0;
1354
0
    }
1355
0
    ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1356
0
                            EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1357
0
    if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1358
0
        BN_free(pubexp);
1359
0
    return ret;
1360
0
}
1361
1362
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1363
0
{
1364
0
    OSSL_PARAM params[2], *p = params;
1365
0
    size_t primes2 = primes;
1366
1367
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1368
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1369
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1370
0
        return -2;
1371
0
    }
1372
1373
    /* If key type not RSA return error */
1374
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1375
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1376
0
        return -1;
1377
1378
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1379
0
    *p++ = OSSL_PARAM_construct_end();
1380
1381
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1382
0
}
1383
#endif