Coverage Report

Created: 2025-06-22 06:56

/src/openssl/providers/implementations/rands/seeding/rand_unix.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef _GNU_SOURCE
11
# define _GNU_SOURCE
12
#endif
13
#include "internal/e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include <openssl/crypto.h>
18
#include "crypto/rand_pool.h"
19
#include "crypto/rand.h"
20
#include "internal/dso.h"
21
#include "internal/nelem.h"
22
#include "prov/seeding.h"
23
24
#ifndef OPENSSL_SYS_UEFI
25
# ifdef __linux
26
#  include <sys/syscall.h>
27
#  ifdef DEVRANDOM_WAIT
28
#   include <sys/shm.h>
29
#   include <sys/utsname.h>
30
#  endif
31
# endif
32
# if defined(__FreeBSD__) || defined(__NetBSD__)
33
#  include <sys/types.h>
34
#  include <sys/sysctl.h>
35
#  include <sys/param.h>
36
# endif
37
# if defined(__FreeBSD__) && __FreeBSD_version >= 1200061
38
#  include <sys/random.h>
39
# endif
40
# if defined(__OpenBSD__)
41
#  include <sys/param.h>
42
# endif
43
# if defined(__DragonFly__)
44
#  include <sys/param.h>
45
#  include <sys/random.h>
46
# endif
47
#endif
48
49
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
50
     || defined(__DJGPP__)
51
# include <sys/types.h>
52
# include <sys/stat.h>
53
# include <fcntl.h>
54
# include <unistd.h>
55
# include <sys/time.h>
56
57
static uint64_t get_time_stamp(void);
58
59
/* Macro to convert two thirty two bit values into a sixty four bit one */
60
0
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
61
62
/*
63
 * Check for the existence and support of POSIX timers.  The standard
64
 * says that the _POSIX_TIMERS macro will have a positive value if they
65
 * are available.
66
 *
67
 * However, we want an additional constraint: that the timer support does
68
 * not require an extra library dependency.  Early versions of glibc
69
 * require -lrt to be specified on the link line to access the timers,
70
 * so this needs to be checked for.
71
 *
72
 * It is worse because some libraries define __GLIBC__ but don't
73
 * support the version testing macro (e.g. uClibc).  This means
74
 * an extra check is needed.
75
 *
76
 * The final condition is:
77
 *      "have posix timers and either not glibc or glibc without -lrt"
78
 *
79
 * The nested #if sequences are required to avoid using a parameterised
80
 * macro that might be undefined.
81
 */
82
# undef OSSL_POSIX_TIMER_OKAY
83
/* On some systems, _POSIX_TIMERS is defined but empty.
84
 * Subtracting by 0 when comparing avoids an error in this case. */
85
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
86
#  if defined(__GLIBC__)
87
#   if defined(__GLIBC_PREREQ)
88
#    if __GLIBC_PREREQ(2, 17)
89
#     define OSSL_POSIX_TIMER_OKAY
90
#    endif
91
#   endif
92
#  else
93
#   define OSSL_POSIX_TIMER_OKAY
94
#  endif
95
# endif
96
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
97
          || defined(__DJGPP__) */
98
99
#if defined(OPENSSL_RAND_SEED_NONE)
100
/* none means none. this simplifies the following logic */
101
# undef OPENSSL_RAND_SEED_OS
102
# undef OPENSSL_RAND_SEED_GETRANDOM
103
# undef OPENSSL_RAND_SEED_DEVRANDOM
104
# undef OPENSSL_RAND_SEED_RDTSC
105
# undef OPENSSL_RAND_SEED_RDCPU
106
# undef OPENSSL_RAND_SEED_EGD
107
#endif
108
109
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
110
# error "UEFI only supports seeding NONE"
111
#endif
112
113
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
114
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
115
    || defined(OPENSSL_SYS_UEFI))
116
117
# if defined(OPENSSL_SYS_VOS)
118
119
#  ifndef OPENSSL_RAND_SEED_OS
120
#   error "Unsupported seeding method configured; must be os"
121
#  endif
122
123
#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
124
#   error "Unsupported HP-PA and IA32 at the same time."
125
#  endif
126
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
127
#   error "Must have one of HP-PA or IA32"
128
#  endif
129
130
/*
131
 * The following algorithm repeatedly samples the real-time clock (RTC) to
132
 * generate a sequence of unpredictable data.  The algorithm relies upon the
133
 * uneven execution speed of the code (due to factors such as cache misses,
134
 * interrupts, bus activity, and scheduling) and upon the rather large
135
 * relative difference between the speed of the clock and the rate at which
136
 * it can be read.  If it is ported to an environment where execution speed
137
 * is more constant or where the RTC ticks at a much slower rate, or the
138
 * clock can be read with fewer instructions, it is likely that the results
139
 * would be far more predictable.  This should only be used for legacy
140
 * platforms.
141
 *
142
 * As a precaution, we assume only 2 bits of entropy per byte.
143
 */
144
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
145
{
146
    short int code;
147
    int i, k;
148
    size_t bytes_needed;
149
    struct timespec ts;
150
    unsigned char v;
151
#  ifdef OPENSSL_SYS_VOS_HPPA
152
    long duration;
153
    extern void s$sleep(long *_duration, short int *_code);
154
#  else
155
    long long duration;
156
    extern void s$sleep2(long long *_duration, short int *_code);
157
#  endif
158
159
    bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
160
161
    for (i = 0; i < bytes_needed; i++) {
162
        /*
163
         * burn some cpu; hope for interrupts, cache collisions, bus
164
         * interference, etc.
165
         */
166
        for (k = 0; k < 99; k++)
167
            ts.tv_nsec = random();
168
169
#  ifdef OPENSSL_SYS_VOS_HPPA
170
        /* sleep for 1/1024 of a second (976 us).  */
171
        duration = 1;
172
        s$sleep(&duration, &code);
173
#  else
174
        /* sleep for 1/65536 of a second (15 us).  */
175
        duration = 1;
176
        s$sleep2(&duration, &code);
177
#  endif
178
179
        /* Get wall clock time, take 8 bits. */
180
        clock_gettime(CLOCK_REALTIME, &ts);
181
        v = (unsigned char)(ts.tv_nsec & 0xFF);
182
        ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2);
183
    }
184
    return ossl_rand_pool_entropy_available(pool);
185
}
186
187
void ossl_rand_pool_cleanup(void)
188
{
189
}
190
191
void ossl_rand_pool_keep_random_devices_open(int keep)
192
{
193
}
194
195
# else
196
197
#  if defined(OPENSSL_RAND_SEED_EGD) && \
198
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
199
#   error "Seeding uses EGD but EGD is turned off or no device given"
200
#  endif
201
202
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
203
#   error "Seeding uses urandom but DEVRANDOM is not configured"
204
#  endif
205
206
#  if defined(OPENSSL_RAND_SEED_OS)
207
#   if !defined(DEVRANDOM)
208
#    error "OS seeding requires DEVRANDOM to be configured"
209
#   endif
210
#   define OPENSSL_RAND_SEED_GETRANDOM
211
#   define OPENSSL_RAND_SEED_DEVRANDOM
212
#  endif
213
214
#  if ((defined(__FreeBSD__) && __FreeBSD_version < 1200061)        \
215
       || (defined(__NetBSD__) && __NetBSD_Version < 1000000000))   \
216
      && defined(KERN_ARND)
217
/*
218
 * sysctl_random(): Use sysctl() to read a random number from the kernel
219
 * Returns the number of bytes returned in buf on success, -1 on failure.
220
 */
221
static ssize_t sysctl_random(char *buf, size_t buflen)
222
{
223
    int mib[2];
224
    size_t done = 0;
225
    size_t len;
226
227
    /*
228
     * Note: sign conversion between size_t and ssize_t is safe even
229
     * without a range check, see comment in syscall_random()
230
     */
231
232
    /*
233
     * On FreeBSD old implementations returned longs, newer versions support
234
     * variable sizes up to 256 byte. The code below would not work properly
235
     * when the sysctl returns long and we want to request something not a
236
     * multiple of longs, which should never be the case.
237
     */
238
#if   defined(__FreeBSD__)
239
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
240
        errno = EINVAL;
241
        return -1;
242
    }
243
#endif
244
245
    /*
246
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
247
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
248
     * it returns a variable number of bytes with the current version supporting
249
     * up to 256 bytes.
250
     * Just return an error on older NetBSD versions.
251
     */
252
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
253
    errno = ENOSYS;
254
    return -1;
255
#endif
256
257
    mib[0] = CTL_KERN;
258
    mib[1] = KERN_ARND;
259
260
    do {
261
        len = buflen > 256 ? 256 : buflen;
262
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
263
            return done > 0 ? done : -1;
264
        done += len;
265
        buf += len;
266
        buflen -= len;
267
    } while (buflen > 0);
268
269
    return done;
270
}
271
#  endif
272
273
#  if defined(OPENSSL_RAND_SEED_GETRANDOM)
274
275
#   if defined(__linux) && !defined(__NR_getrandom)
276
#    if defined(__arm__)
277
#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
278
#    elif defined(__i386__)
279
#     define __NR_getrandom    355
280
#    elif defined(__x86_64__)
281
#     if defined(__ILP32__)
282
#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
283
#     else
284
#      define __NR_getrandom   318
285
#     endif
286
#    elif defined(__xtensa__)
287
#     define __NR_getrandom    338
288
#    elif defined(__s390__) || defined(__s390x__)
289
#     define __NR_getrandom    349
290
#    elif defined(__bfin__)
291
#     define __NR_getrandom    389
292
#    elif defined(__powerpc__)
293
#     define __NR_getrandom    359
294
#    elif defined(__mips__) || defined(__mips64)
295
#     if _MIPS_SIM == _MIPS_SIM_ABI32
296
#      define __NR_getrandom   (__NR_Linux + 353)
297
#     elif _MIPS_SIM == _MIPS_SIM_ABI64
298
#      define __NR_getrandom   (__NR_Linux + 313)
299
#     elif _MIPS_SIM == _MIPS_SIM_NABI32
300
#      define __NR_getrandom   (__NR_Linux + 317)
301
#     endif
302
#    elif defined(__hppa__)
303
#     define __NR_getrandom    (__NR_Linux + 339)
304
#    elif defined(__sparc__)
305
#     define __NR_getrandom    347
306
#    elif defined(__ia64__)
307
#     define __NR_getrandom    1339
308
#    elif defined(__alpha__)
309
#     define __NR_getrandom    511
310
#    elif defined(__sh__)
311
#     if defined(__SH5__)
312
#      define __NR_getrandom   373
313
#     else
314
#      define __NR_getrandom   384
315
#     endif
316
#    elif defined(__avr32__)
317
#     define __NR_getrandom    317
318
#    elif defined(__microblaze__)
319
#     define __NR_getrandom    385
320
#    elif defined(__m68k__)
321
#     define __NR_getrandom    352
322
#    elif defined(__cris__)
323
#     define __NR_getrandom    356
324
#    else /* generic (f.e. aarch64, loongarch, loongarch64) */
325
#     define __NR_getrandom    278
326
#    endif
327
#   endif
328
329
/*
330
 * syscall_random(): Try to get random data using a system call
331
 * returns the number of bytes returned in buf, or < 0 on error.
332
 */
333
static ssize_t syscall_random(void *buf, size_t buflen)
334
0
{
335
    /*
336
     * Note: 'buflen' equals the size of the buffer which is used by the
337
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
338
     *
339
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
340
     *
341
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
342
     * between size_t and ssize_t is safe even without a range check.
343
     */
344
345
    /*
346
     * Do runtime detection to find getentropy().
347
     *
348
     * Known OSs that should support this:
349
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
350
     * - Solaris since 11.3
351
     * - OpenBSD since 5.6
352
     * - Linux since 3.17 with glibc 2.25
353
     *
354
     * Note: Sometimes getentropy() can be provided but not implemented
355
     * internally. So we need to check errno for ENOSYS
356
     */
357
0
#  if !defined(__DragonFly__) && !defined(__NetBSD__) && !defined(__FreeBSD__)
358
0
#    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
359
0
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
360
361
0
    if (getentropy != NULL) {
362
0
        if (getentropy(buf, buflen) == 0)
363
0
            return (ssize_t)buflen;
364
0
        if (errno != ENOSYS)
365
0
            return -1;
366
0
    }
367
#    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
368
369
    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
370
      return (ssize_t)buflen;
371
372
    return -1;
373
#    else
374
    union {
375
        void *p;
376
        int (*f)(void *buffer, size_t length);
377
    } p_getentropy;
378
379
    /*
380
     * We could cache the result of the lookup, but we normally don't
381
     * call this function often.
382
     */
383
    ERR_set_mark();
384
    p_getentropy.p = DSO_global_lookup("getentropy");
385
    ERR_pop_to_mark();
386
    if (p_getentropy.p != NULL)
387
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
388
#    endif
389
0
#  endif /* !__DragonFly__ && !__NetBSD__ && !__FreeBSD__ */
390
391
    /* Linux supports this since version 3.17 */
392
0
#  if defined(__linux) && defined(__NR_getrandom)
393
0
    return syscall(__NR_getrandom, buf, buflen, 0);
394
#  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
395
     || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000) \
396
     || (defined(__FreeBSD__) && __FreeBSD_version >= 1200061)
397
    return getrandom(buf, buflen, 0);
398
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
399
    return sysctl_random(buf, buflen);
400
#  elif defined(__wasi__)
401
    if (getentropy(buf, buflen) == 0)
402
      return (ssize_t)buflen;
403
    return -1;
404
#  else
405
    errno = ENOSYS;
406
    return -1;
407
#  endif
408
0
}
409
#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
410
411
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
412
static const char *random_device_paths[] = { DEVRANDOM };
413
static struct random_device {
414
    int fd;
415
    dev_t dev;
416
    ino_t ino;
417
    mode_t mode;
418
    dev_t rdev;
419
} random_devices[OSSL_NELEM(random_device_paths)];
420
static int keep_random_devices_open = 1;
421
422
#   if defined(__linux) && defined(DEVRANDOM_WAIT) \
423
       && defined(OPENSSL_RAND_SEED_GETRANDOM)
424
static void *shm_addr;
425
426
static void cleanup_shm(void)
427
0
{
428
0
    shmdt(shm_addr);
429
0
}
430
431
/*
432
 * Ensure that the system randomness source has been adequately seeded.
433
 * This is done by having the first start of libcrypto, wait until the device
434
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
435
 * of the library and later reseedings do not need to do this.
436
 */
437
static int wait_random_seeded(void)
438
0
{
439
0
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
440
0
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
441
0
    int kernel[2];
442
0
    int shm_id, fd, r;
443
0
    char c, *p;
444
0
    struct utsname un;
445
0
    fd_set fds;
446
447
0
    if (!seeded) {
448
        /* See if anything has created the global seeded indication */
449
0
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
450
            /*
451
             * Check the kernel's version and fail if it is too recent.
452
             *
453
             * Linux kernels from 4.8 onwards do not guarantee that
454
             * /dev/urandom is properly seeded when /dev/random becomes
455
             * readable.  However, such kernels support the getentropy(2)
456
             * system call and this should always succeed which renders
457
             * this alternative but essentially identical source moot.
458
             */
459
0
            if (uname(&un) == 0) {
460
0
                kernel[0] = atoi(un.release);
461
0
                p = strchr(un.release, '.');
462
0
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
463
0
                if (kernel[0] > kernel_version[0]
464
0
                    || (kernel[0] == kernel_version[0]
465
0
                        && kernel[1] >= kernel_version[1])) {
466
0
                    return 0;
467
0
                }
468
0
            }
469
            /* Open /dev/random and wait for it to be readable */
470
0
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
471
0
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
472
0
                    FD_ZERO(&fds);
473
0
                    FD_SET(fd, &fds);
474
0
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
475
0
                           && errno == EINTR);
476
0
                } else {
477
0
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
478
0
                }
479
0
                close(fd);
480
0
                if (r == 1) {
481
0
                    seeded = 1;
482
                    /* Create the shared memory indicator */
483
0
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
484
0
                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
485
0
                }
486
0
            }
487
0
        }
488
0
        if (shm_id != -1) {
489
0
            seeded = 1;
490
            /*
491
             * Map the shared memory to prevent its premature destruction.
492
             * If this call fails, it isn't a big problem.
493
             */
494
0
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
495
0
            if (shm_addr != (void *)-1)
496
0
                OPENSSL_atexit(&cleanup_shm);
497
0
        }
498
0
    }
499
0
    return seeded;
500
0
}
501
#   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
502
static int wait_random_seeded(void)
503
{
504
    return 1;
505
}
506
#   endif
507
508
/*
509
 * Verify that the file descriptor associated with the random source is
510
 * still valid. The rationale for doing this is the fact that it is not
511
 * uncommon for daemons to close all open file handles when daemonizing.
512
 * So the handle might have been closed or even reused for opening
513
 * another file.
514
 */
515
static int check_random_device(struct random_device *rd)
516
0
{
517
0
    struct stat st;
518
519
0
    return rd->fd != -1
520
0
           && fstat(rd->fd, &st) != -1
521
0
           && rd->dev == st.st_dev
522
0
           && rd->ino == st.st_ino
523
0
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
524
0
           && rd->rdev == st.st_rdev;
525
0
}
526
527
/*
528
 * Open a random device if required and return its file descriptor or -1 on error
529
 */
530
static int get_random_device(size_t n)
531
0
{
532
0
    struct stat st;
533
0
    struct random_device *rd = &random_devices[n];
534
535
    /* reuse existing file descriptor if it is (still) valid */
536
0
    if (check_random_device(rd))
537
0
        return rd->fd;
538
539
    /* open the random device ... */
540
0
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
541
0
        return rd->fd;
542
543
    /* ... and cache its relevant stat(2) data */
544
0
    if (fstat(rd->fd, &st) != -1) {
545
0
        rd->dev = st.st_dev;
546
0
        rd->ino = st.st_ino;
547
0
        rd->mode = st.st_mode;
548
0
        rd->rdev = st.st_rdev;
549
0
    } else {
550
0
        close(rd->fd);
551
0
        rd->fd = -1;
552
0
    }
553
554
0
    return rd->fd;
555
0
}
556
557
/*
558
 * Close a random device making sure it is a random device
559
 */
560
static void close_random_device(size_t n)
561
0
{
562
0
    struct random_device *rd = &random_devices[n];
563
564
0
    if (check_random_device(rd))
565
0
        close(rd->fd);
566
0
    rd->fd = -1;
567
0
}
568
569
int ossl_rand_pool_init(void)
570
0
{
571
0
    size_t i;
572
573
0
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
574
0
        random_devices[i].fd = -1;
575
576
0
    return 1;
577
0
}
578
579
void ossl_rand_pool_cleanup(void)
580
0
{
581
0
    size_t i;
582
583
0
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
584
0
        close_random_device(i);
585
0
}
586
587
void ossl_rand_pool_keep_random_devices_open(int keep)
588
0
{
589
0
    if (!keep)
590
0
        ossl_rand_pool_cleanup();
591
592
0
    keep_random_devices_open = keep;
593
0
}
594
595
#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
596
597
int ossl_rand_pool_init(void)
598
{
599
    return 1;
600
}
601
602
void ossl_rand_pool_cleanup(void)
603
{
604
}
605
606
void ossl_rand_pool_keep_random_devices_open(int keep)
607
{
608
}
609
610
#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
611
612
/*
613
 * Try the various seeding methods in turn, exit when successful.
614
 *
615
 * If more than one entropy source is available, is it
616
 * preferable to stop as soon as enough entropy has been collected
617
 * (as favored by @rsalz) or should one rather be defensive and add
618
 * more entropy than requested and/or from different sources?
619
 *
620
 * Currently, the user can select multiple entropy sources in the
621
 * configure step, yet in practice only the first available source
622
 * will be used. A more flexible solution has been requested, but
623
 * currently it is not clear how this can be achieved without
624
 * overengineering the problem. There are many parameters which
625
 * could be taken into account when selecting the order and amount
626
 * of input from the different entropy sources (trust, quality,
627
 * possibility of blocking).
628
 */
629
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
630
0
{
631
#  if defined(OPENSSL_RAND_SEED_NONE)
632
    return ossl_rand_pool_entropy_available(pool);
633
#  else
634
0
    size_t entropy_available = 0;
635
636
0
    (void)entropy_available;    /* avoid compiler warning */
637
638
0
#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
639
0
    {
640
0
        size_t bytes_needed;
641
0
        unsigned char *buffer;
642
0
        ssize_t bytes;
643
        /* Maximum allowed number of consecutive unsuccessful attempts */
644
0
        int attempts = 3;
645
646
0
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
647
0
        while (bytes_needed != 0 && attempts-- > 0) {
648
0
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
649
0
            bytes = syscall_random(buffer, bytes_needed);
650
0
            if (bytes > 0) {
651
0
                ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
652
0
                bytes_needed -= bytes;
653
0
                attempts = 3; /* reset counter after successful attempt */
654
0
            } else if (bytes < 0 && errno != EINTR) {
655
0
                break;
656
0
            }
657
0
        }
658
0
    }
659
0
    entropy_available = ossl_rand_pool_entropy_available(pool);
660
0
    if (entropy_available > 0)
661
0
        return entropy_available;
662
0
#   endif
663
664
0
#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
665
0
    if (wait_random_seeded()) {
666
0
        size_t bytes_needed;
667
0
        unsigned char *buffer;
668
0
        size_t i;
669
670
0
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
671
0
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
672
0
             i++) {
673
0
            ssize_t bytes = 0;
674
            /* Maximum number of consecutive unsuccessful attempts */
675
0
            int attempts = 3;
676
0
            const int fd = get_random_device(i);
677
678
0
            if (fd == -1)
679
0
                continue;
680
681
0
            while (bytes_needed != 0 && attempts-- > 0) {
682
0
                buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
683
0
                bytes = read(fd, buffer, bytes_needed);
684
685
0
                if (bytes > 0) {
686
0
                    ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
687
0
                    bytes_needed -= bytes;
688
0
                    attempts = 3; /* reset counter on successful attempt */
689
0
                } else if (bytes < 0 && errno != EINTR) {
690
0
                    break;
691
0
                }
692
0
            }
693
0
            if (bytes < 0 || !keep_random_devices_open)
694
0
                close_random_device(i);
695
696
0
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
697
0
        }
698
0
        entropy_available = ossl_rand_pool_entropy_available(pool);
699
0
        if (entropy_available > 0)
700
0
            return entropy_available;
701
0
    }
702
0
#   endif
703
704
#   if defined(OPENSSL_RAND_SEED_RDTSC)
705
    entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
706
    if (entropy_available > 0)
707
        return entropy_available;
708
#   endif
709
710
#   if defined(OPENSSL_RAND_SEED_RDCPU)
711
    entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
712
    if (entropy_available > 0)
713
        return entropy_available;
714
#   endif
715
716
#   if defined(OPENSSL_RAND_SEED_EGD)
717
    {
718
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
719
        size_t bytes_needed;
720
        unsigned char *buffer;
721
        int i;
722
723
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
724
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
725
            size_t bytes = 0;
726
            int num;
727
728
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
729
            num = RAND_query_egd_bytes(paths[i],
730
                                       buffer, (int)bytes_needed);
731
            if (num == (int)bytes_needed)
732
                bytes = bytes_needed;
733
734
            ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
735
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
736
        }
737
        entropy_available = ossl_rand_pool_entropy_available(pool);
738
        if (entropy_available > 0)
739
            return entropy_available;
740
    }
741
#   endif
742
743
0
    return ossl_rand_pool_entropy_available(pool);
744
0
#  endif
745
0
}
746
# endif
747
#endif
748
749
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
750
     || defined(__DJGPP__)
751
int ossl_pool_add_nonce_data(RAND_POOL *pool)
752
0
{
753
0
    struct {
754
0
        pid_t pid;
755
0
        CRYPTO_THREAD_ID tid;
756
0
        uint64_t time;
757
0
    } data;
758
759
    /* Erase the entire structure including any padding */
760
0
    memset(&data, 0, sizeof(data));
761
762
    /*
763
     * Add process id, thread id, and a high resolution timestamp to
764
     * ensure that the nonce is unique with high probability for
765
     * different process instances.
766
     */
767
0
    data.pid = getpid();
768
0
    data.tid = CRYPTO_THREAD_get_current_id();
769
0
    data.time = get_time_stamp();
770
771
0
    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
772
0
}
773
774
/*
775
 * Get the current time with the highest possible resolution
776
 *
777
 * The time stamp is added to the nonce, so it is optimized for not repeating.
778
 * The current time is ideal for this purpose, provided the computer's clock
779
 * is synchronized.
780
 */
781
static uint64_t get_time_stamp(void)
782
0
{
783
0
# if defined(OSSL_POSIX_TIMER_OKAY)
784
0
    {
785
0
        struct timespec ts;
786
787
0
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
788
0
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
789
0
    }
790
0
# endif
791
0
# if defined(__unix__) \
792
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
793
0
    {
794
0
        struct timeval tv;
795
796
0
        if (gettimeofday(&tv, NULL) == 0)
797
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
798
0
    }
799
0
# endif
800
0
    return time(NULL);
801
0
}
802
803
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
804
          || defined(__DJGPP__) */