/src/cryptsetup/lib/luks1/af.c
Line | Count | Source |
1 | | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | | /* |
3 | | * AFsplitter - Anti forensic information splitter |
4 | | * |
5 | | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> |
6 | | * Copyright (C) 2009-2025 Red Hat, Inc. All rights reserved. |
7 | | * |
8 | | * AFsplitter diffuses information over a large stripe of data, |
9 | | * therefore supporting secure data destruction. |
10 | | */ |
11 | | |
12 | | #include <stddef.h> |
13 | | #include <stdlib.h> |
14 | | #include <string.h> |
15 | | #include <errno.h> |
16 | | #include "internal.h" |
17 | | #include "af.h" |
18 | | |
19 | | static void XORblock(const char *src1, const char *src2, char *dst, size_t n) |
20 | 0 | { |
21 | 0 | size_t j; |
22 | |
|
23 | 0 | for (j = 0; j < n; j++) |
24 | 0 | dst[j] = src1[j] ^ src2[j]; |
25 | 0 | } |
26 | | |
27 | | static int hash_buf(const char *src, char *dst, uint32_t iv, |
28 | | size_t len, const char *hash_name) |
29 | 0 | { |
30 | 0 | struct crypt_hash *hd = NULL; |
31 | 0 | char *iv_char = (char *)&iv; |
32 | 0 | int r; |
33 | |
|
34 | 0 | iv = be32_to_cpu(iv); |
35 | 0 | if (crypt_hash_init(&hd, hash_name)) |
36 | 0 | return -EINVAL; |
37 | | |
38 | 0 | if ((r = crypt_hash_write(hd, iv_char, sizeof(uint32_t)))) |
39 | 0 | goto out; |
40 | | |
41 | 0 | if ((r = crypt_hash_write(hd, src, len))) |
42 | 0 | goto out; |
43 | | |
44 | 0 | r = crypt_hash_final(hd, dst, len); |
45 | 0 | out: |
46 | 0 | crypt_hash_destroy(hd); |
47 | 0 | return r; |
48 | 0 | } |
49 | | |
50 | | /* |
51 | | * diffuse: Information spreading over the whole dataset with |
52 | | * the help of hash function. |
53 | | */ |
54 | | static int diffuse(char *src, char *dst, size_t size, const char *hash_name) |
55 | 0 | { |
56 | 0 | int r, hash_size = crypt_hash_size(hash_name); |
57 | 0 | unsigned int digest_size; |
58 | 0 | unsigned int i, blocks, padding; |
59 | |
|
60 | 0 | if (hash_size <= 0) |
61 | 0 | return -EINVAL; |
62 | 0 | digest_size = hash_size; |
63 | |
|
64 | 0 | blocks = size / digest_size; |
65 | 0 | padding = size % digest_size; |
66 | |
|
67 | 0 | for (i = 0; i < blocks; i++) { |
68 | 0 | r = hash_buf(src + digest_size * i, |
69 | 0 | dst + digest_size * i, |
70 | 0 | i, (size_t)digest_size, hash_name); |
71 | 0 | if (r < 0) |
72 | 0 | return r; |
73 | 0 | } |
74 | | |
75 | 0 | if (padding) { |
76 | 0 | r = hash_buf(src + digest_size * i, |
77 | 0 | dst + digest_size * i, |
78 | 0 | i, (size_t)padding, hash_name); |
79 | 0 | if (r < 0) |
80 | 0 | return r; |
81 | 0 | } |
82 | | |
83 | 0 | return 0; |
84 | 0 | } |
85 | | |
86 | | /* |
87 | | * Information splitting. The amount of data is multiplied by |
88 | | * blocknumbers. The same blocksize and blocknumbers values |
89 | | * must be supplied to AF_merge to recover information. |
90 | | */ |
91 | | int AF_split(struct crypt_device *ctx, const char *src, char *dst, |
92 | | size_t blocksize, unsigned int blocknumbers, const char *hash) |
93 | 0 | { |
94 | 0 | unsigned int i; |
95 | 0 | char *bufblock; |
96 | 0 | int r; |
97 | |
|
98 | 0 | bufblock = crypt_safe_alloc(blocksize); |
99 | 0 | if (!bufblock) |
100 | 0 | return -ENOMEM; |
101 | | |
102 | | /* process everything except the last block */ |
103 | 0 | for (i = 0; i < blocknumbers - 1; i++) { |
104 | 0 | r = crypt_random_get(ctx, dst + blocksize * i, blocksize, CRYPT_RND_NORMAL); |
105 | 0 | if (r < 0) |
106 | 0 | goto out; |
107 | | |
108 | 0 | XORblock(dst + blocksize * i, bufblock, bufblock, blocksize); |
109 | 0 | r = diffuse(bufblock, bufblock, blocksize, hash); |
110 | 0 | if (r < 0) |
111 | 0 | goto out; |
112 | 0 | } |
113 | | /* the last block is computed */ |
114 | 0 | XORblock(src, bufblock, dst + blocksize * i, blocksize); |
115 | 0 | r = 0; |
116 | 0 | out: |
117 | 0 | crypt_safe_free(bufblock); |
118 | 0 | return r; |
119 | 0 | } |
120 | | |
121 | | int AF_merge(const char *src, char *dst, |
122 | | size_t blocksize, unsigned int blocknumbers, const char *hash) |
123 | 0 | { |
124 | 0 | unsigned int i; |
125 | 0 | char *bufblock; |
126 | 0 | int r; |
127 | |
|
128 | 0 | bufblock = crypt_safe_alloc(blocksize); |
129 | 0 | if (!bufblock) |
130 | 0 | return -ENOMEM; |
131 | | |
132 | 0 | for (i = 0; i < blocknumbers - 1; i++) { |
133 | 0 | XORblock(src + blocksize * i, bufblock, bufblock, blocksize); |
134 | 0 | r = diffuse(bufblock, bufblock, blocksize, hash); |
135 | 0 | if (r < 0) |
136 | 0 | goto out; |
137 | 0 | } |
138 | 0 | XORblock(src + blocksize * i, bufblock, dst, blocksize); |
139 | 0 | r = 0; |
140 | 0 | out: |
141 | 0 | crypt_safe_free(bufblock); |
142 | 0 | return r; |
143 | 0 | } |
144 | | |
145 | | /* Size of final split data including sector alignment */ |
146 | | size_t AF_split_sectors(size_t blocksize, unsigned int blocknumbers) |
147 | 690 | { |
148 | 690 | size_t af_size; |
149 | | |
150 | | /* data material * stripes */ |
151 | 690 | af_size = blocksize * blocknumbers; |
152 | | |
153 | | /* round up to sector */ |
154 | 690 | af_size = (af_size + (SECTOR_SIZE - 1)) / SECTOR_SIZE; |
155 | | |
156 | 690 | return af_size; |
157 | 690 | } |