Coverage Report

Created: 2025-11-07 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/json-c/linkhash.c
Line
Count
Source
1
/*
2
 * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
3
 *
4
 * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
5
 * Michael Clark <michael@metaparadigm.com>
6
 * Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
7
 *
8
 * This library is free software; you can redistribute it and/or modify
9
 * it under the terms of the MIT license. See COPYING for details.
10
 *
11
 */
12
13
#include "config.h"
14
15
#include <assert.h>
16
#include <limits.h>
17
#include <stdarg.h>
18
#include <stddef.h>
19
#include <stdio.h>
20
#include <stdlib.h>
21
#include <string.h>
22
23
#ifdef HAVE_ENDIAN_H
24
#include <endian.h> /* attempt to define endianness */
25
#endif
26
27
#if defined(_MSC_VER) || defined(__MINGW32__)
28
#ifndef WIN32_LEAN_AND_MEAN
29
#define WIN32_LEAN_AND_MEAN
30
#endif
31
#include <windows.h> /* Get InterlockedCompareExchange */
32
#endif
33
34
#include "linkhash.h"
35
#include "random_seed.h"
36
37
/* hash functions */
38
static unsigned long lh_char_hash(const void *k);
39
static unsigned long lh_perllike_str_hash(const void *k);
40
static lh_hash_fn *char_hash_fn = lh_char_hash;
41
42
/* comparison functions */
43
int lh_char_equal(const void *k1, const void *k2);
44
int lh_ptr_equal(const void *k1, const void *k2);
45
46
int json_global_set_string_hash(const int h)
47
0
{
48
0
  switch (h)
49
0
  {
50
0
  case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break;
51
0
  case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break;
52
0
  default: return -1;
53
0
  }
54
0
  return 0;
55
0
}
56
57
static unsigned long lh_ptr_hash(const void *k)
58
0
{
59
  /* CAW: refactored to be 64bit nice */
60
0
  return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
61
0
}
62
63
int lh_ptr_equal(const void *k1, const void *k2)
64
0
{
65
0
  return (k1 == k2);
66
0
}
67
68
/*
69
 * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
70
 * https://burtleburtle.net/bob/c/lookup3.c
71
 * minor modifications to make functions static so no symbols are exported
72
 * minor modifications to compile with -Werror
73
 */
74
75
/*
76
-------------------------------------------------------------------------------
77
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
78
79
These are functions for producing 32-bit hashes for hash table lookup.
80
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
81
are externally useful functions.  Routines to test the hash are included
82
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
83
the public domain.  It has no warranty.
84
85
You probably want to use hashlittle().  hashlittle() and hashbig()
86
hash byte arrays.  hashlittle() is faster than hashbig() on
87
little-endian machines.  Intel and AMD are little-endian machines.
88
On second thought, you probably want hashlittle2(), which is identical to
89
hashlittle() except it returns two 32-bit hashes for the price of one.
90
You could implement hashbig2() if you wanted but I haven't bothered here.
91
92
If you want to find a hash of, say, exactly 7 integers, do
93
  a = i1;  b = i2;  c = i3;
94
  mix(a,b,c);
95
  a += i4; b += i5; c += i6;
96
  mix(a,b,c);
97
  a += i7;
98
  final(a,b,c);
99
then use c as the hash value.  If you have a variable length array of
100
4-byte integers to hash, use hashword().  If you have a byte array (like
101
a character string), use hashlittle().  If you have several byte arrays, or
102
a mix of things, see the comments above hashlittle().
103
104
Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
105
then mix those integers.  This is fast (you can do a lot more thorough
106
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
107
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
108
-------------------------------------------------------------------------------
109
*/
110
111
/*
112
 * My best guess at if you are big-endian or little-endian.  This may
113
 * need adjustment.
114
 */
115
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \
116
    (defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) ||          \
117
     defined(__i686__) || defined(vax) || defined(MIPSEL))
118
1.25M
#define HASH_LITTLE_ENDIAN 1
119
#define HASH_BIG_ENDIAN 0
120
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \
121
    (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
122
#define HASH_LITTLE_ENDIAN 0
123
#define HASH_BIG_ENDIAN 1
124
#else
125
#define HASH_LITTLE_ENDIAN 0
126
#define HASH_BIG_ENDIAN 0
127
#endif
128
129
#define hashsize(n) ((uint32_t)1 << (n))
130
#define hashmask(n) (hashsize(n) - 1)
131
3.76M
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
132
133
/*
134
-------------------------------------------------------------------------------
135
mix -- mix 3 32-bit values reversibly.
136
137
This is reversible, so any information in (a,b,c) before mix() is
138
still in (a,b,c) after mix().
139
140
If four pairs of (a,b,c) inputs are run through mix(), or through
141
mix() in reverse, there are at least 32 bits of the output that
142
are sometimes the same for one pair and different for another pair.
143
This was tested for:
144
* pairs that differed by one bit, by two bits, in any combination
145
  of top bits of (a,b,c), or in any combination of bottom bits of
146
  (a,b,c).
147
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
148
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
149
  is commonly produced by subtraction) look like a single 1-bit
150
  difference.
151
* the base values were pseudorandom, all zero but one bit set, or
152
  all zero plus a counter that starts at zero.
153
154
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
155
satisfy this are
156
    4  6  8 16 19  4
157
    9 15  3 18 27 15
158
   14  9  3  7 17  3
159
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
160
for "differ" defined as + with a one-bit base and a two-bit delta.  I
161
used https://burtleburtle.net/bob/hash/avalanche.html to choose
162
the operations, constants, and arrangements of the variables.
163
164
This does not achieve avalanche.  There are input bits of (a,b,c)
165
that fail to affect some output bits of (a,b,c), especially of a.  The
166
most thoroughly mixed value is c, but it doesn't really even achieve
167
avalanche in c.
168
169
This allows some parallelism.  Read-after-writes are good at doubling
170
the number of bits affected, so the goal of mixing pulls in the opposite
171
direction as the goal of parallelism.  I did what I could.  Rotates
172
seem to cost as much as shifts on every machine I could lay my hands
173
on, and rotates are much kinder to the top and bottom bits, so I used
174
rotates.
175
-------------------------------------------------------------------------------
176
*/
177
/* clang-format off */
178
102k
#define mix(a,b,c) \
179
102k
{ \
180
102k
  a -= c;  a ^= rot(c, 4);  c += b; \
181
102k
  b -= a;  b ^= rot(a, 6);  a += c; \
182
102k
  c -= b;  c ^= rot(b, 8);  b += a; \
183
102k
  a -= c;  a ^= rot(c,16);  c += b; \
184
102k
  b -= a;  b ^= rot(a,19);  a += c; \
185
102k
  c -= b;  c ^= rot(b, 4);  b += a; \
186
102k
}
187
/* clang-format on */
188
189
/*
190
-------------------------------------------------------------------------------
191
final -- final mixing of 3 32-bit values (a,b,c) into c
192
193
Pairs of (a,b,c) values differing in only a few bits will usually
194
produce values of c that look totally different.  This was tested for
195
* pairs that differed by one bit, by two bits, in any combination
196
  of top bits of (a,b,c), or in any combination of bottom bits of
197
  (a,b,c).
198
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
199
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
200
  is commonly produced by subtraction) look like a single 1-bit
201
  difference.
202
* the base values were pseudorandom, all zero but one bit set, or
203
  all zero plus a counter that starts at zero.
204
205
These constants passed:
206
 14 11 25 16 4 14 24
207
 12 14 25 16 4 14 24
208
and these came close:
209
  4  8 15 26 3 22 24
210
 10  8 15 26 3 22 24
211
 11  8 15 26 3 22 24
212
-------------------------------------------------------------------------------
213
*/
214
/* clang-format off */
215
449k
#define final(a,b,c) \
216
449k
{ \
217
449k
  c ^= b; c -= rot(b,14); \
218
449k
  a ^= c; a -= rot(c,11); \
219
449k
  b ^= a; b -= rot(a,25); \
220
449k
  c ^= b; c -= rot(b,16); \
221
449k
  a ^= c; a -= rot(c,4);  \
222
449k
  b ^= a; b -= rot(a,14); \
223
449k
  c ^= b; c -= rot(b,24); \
224
449k
}
225
/* clang-format on */
226
227
/*
228
-------------------------------------------------------------------------------
229
hashlittle() -- hash a variable-length key into a 32-bit value
230
  k       : the key (the unaligned variable-length array of bytes)
231
  length  : the length of the key, counting by bytes
232
  initval : can be any 4-byte value
233
Returns a 32-bit value.  Every bit of the key affects every bit of
234
the return value.  Two keys differing by one or two bits will have
235
totally different hash values.
236
237
The best hash table sizes are powers of 2.  There is no need to do
238
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
239
use a bitmask.  For example, if you need only 10 bits, do
240
  h = (h & hashmask(10));
241
In which case, the hash table should have hashsize(10) elements.
242
243
If you are hashing n strings (uint8_t **)k, do it like this:
244
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
245
246
By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
247
code any way you wish, private, educational, or commercial.  It's free.
248
249
Use for hash table lookup, or anything where one collision in 2^^32 is
250
acceptable.  Do NOT use for cryptographic purposes.
251
-------------------------------------------------------------------------------
252
*/
253
254
/* clang-format off */
255
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval)
256
453k
{
257
453k
  uint32_t a,b,c; /* internal state */
258
453k
  union
259
453k
  {
260
453k
    const void *ptr;
261
453k
    size_t i;
262
453k
  } u; /* needed for Mac Powerbook G4 */
263
264
  /* Set up the internal state */
265
453k
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
266
267
453k
  u.ptr = key;
268
453k
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
269
280k
    const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
270
271
    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
272
370k
    while (length > 12)
273
89.7k
    {
274
89.7k
      a += k[0];
275
89.7k
      b += k[1];
276
89.7k
      c += k[2];
277
89.7k
      mix(a,b,c);
278
89.7k
      length -= 12;
279
89.7k
      k += 3;
280
89.7k
    }
281
282
    /*----------------------------- handle the last (probably partial) block */
283
    /*
284
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
285
     * then masks off the part it's not allowed to read.  Because the
286
     * string is aligned, the masked-off tail is in the same word as the
287
     * rest of the string.  Every machine with memory protection I've seen
288
     * does it on word boundaries, so is OK with this.  But VALGRIND will
289
     * still catch it and complain.  The masking trick does make the hash
290
     * noticeably faster for short strings (like English words).
291
     * AddressSanitizer is similarly picky about overrunning
292
     * the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html)
293
     */
294
#ifdef VALGRIND
295
#define PRECISE_MEMORY_ACCESS 1
296
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */
297
#define PRECISE_MEMORY_ACCESS 1
298
#elif defined(__has_feature)
299
#if __has_feature(address_sanitizer) /* Clang's ASAN */
300
#define PRECISE_MEMORY_ACCESS 1
301
#endif
302
280k
#endif
303
280k
#ifndef PRECISE_MEMORY_ACCESS
304
305
280k
    switch(length)
306
280k
    {
307
1.75k
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
308
2.21k
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
309
4.74k
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
310
38.5k
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
311
89.3k
    case 8 : b+=k[1]; a+=k[0]; break;
312
22.9k
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
313
30.4k
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
314
10.4k
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
315
26.7k
    case 4 : a+=k[0]; break;
316
3.29k
    case 3 : a+=k[0]&0xffffff; break;
317
6.10k
    case 2 : a+=k[0]&0xffff; break;
318
39.6k
    case 1 : a+=k[0]&0xff; break;
319
4.44k
    case 0 : return c; /* zero length strings require no mixing */
320
280k
    }
321
322
#else /* make valgrind happy */
323
324
    const uint8_t  *k8 = (const uint8_t *)k;
325
    switch(length)
326
    {
327
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
328
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
329
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
330
    case 9 : c+=k8[8];                   /* fall through */
331
    case 8 : b+=k[1]; a+=k[0]; break;
332
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
333
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
334
    case 5 : b+=k8[4];                   /* fall through */
335
    case 4 : a+=k[0]; break;
336
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
337
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
338
    case 1 : a+=k8[0]; break;
339
    case 0 : return c;
340
    }
341
342
#endif /* !valgrind */
343
344
280k
  }
345
173k
  else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0))
346
65.5k
  {
347
65.5k
    const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
348
65.5k
    const uint8_t  *k8;
349
350
    /*--------------- all but last block: aligned reads and different mixing */
351
77.9k
    while (length > 12)
352
12.4k
    {
353
12.4k
      a += k[0] + (((uint32_t)k[1])<<16);
354
12.4k
      b += k[2] + (((uint32_t)k[3])<<16);
355
12.4k
      c += k[4] + (((uint32_t)k[5])<<16);
356
12.4k
      mix(a,b,c);
357
12.4k
      length -= 12;
358
12.4k
      k += 6;
359
12.4k
    }
360
361
    /*----------------------------- handle the last (probably partial) block */
362
65.5k
    k8 = (const uint8_t *)k;
363
65.5k
    switch(length)
364
65.5k
    {
365
0
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
366
0
       b+=k[2]+(((uint32_t)k[3])<<16);
367
0
       a+=k[0]+(((uint32_t)k[1])<<16);
368
0
       break;
369
0
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
370
26
    case 10: c+=k[4];
371
26
       b+=k[2]+(((uint32_t)k[3])<<16);
372
26
       a+=k[0]+(((uint32_t)k[1])<<16);
373
26
       break;
374
0
    case 9 : c+=k8[8];                      /* fall through */
375
0
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
376
0
       a+=k[0]+(((uint32_t)k[1])<<16);
377
0
       break;
378
0
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
379
53.0k
    case 6 : b+=k[2];
380
53.0k
       a+=k[0]+(((uint32_t)k[1])<<16);
381
53.0k
       break;
382
4
    case 5 : b+=k8[4];                      /* fall through */
383
4
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
384
4
       break;
385
0
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
386
0
    case 2 : a+=k[0];
387
0
       break;
388
12.4k
    case 1 : a+=k8[0];
389
12.4k
       break;
390
0
    case 0 : return c;                     /* zero length requires no mixing */
391
65.5k
    }
392
393
65.5k
  }
394
107k
  else
395
107k
  {
396
    /* need to read the key one byte at a time */
397
107k
    const uint8_t *k = (const uint8_t *)key;
398
399
    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
400
107k
    while (length > 12)
401
8
    {
402
8
      a += k[0];
403
8
      a += ((uint32_t)k[1])<<8;
404
8
      a += ((uint32_t)k[2])<<16;
405
8
      a += ((uint32_t)k[3])<<24;
406
8
      b += k[4];
407
8
      b += ((uint32_t)k[5])<<8;
408
8
      b += ((uint32_t)k[6])<<16;
409
8
      b += ((uint32_t)k[7])<<24;
410
8
      c += k[8];
411
8
      c += ((uint32_t)k[9])<<8;
412
8
      c += ((uint32_t)k[10])<<16;
413
8
      c += ((uint32_t)k[11])<<24;
414
8
      mix(a,b,c);
415
8
      length -= 12;
416
8
      k += 12;
417
8
    }
418
419
    /*-------------------------------- last block: affect all 32 bits of (c) */
420
107k
    switch(length) /* all the case statements fall through */
421
107k
    {
422
20.2k
    case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */
423
22.5k
    case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */
424
22.5k
    case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */
425
22.5k
    case 9 : c+=k[8]; /* FALLTHRU */
426
22.5k
    case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */
427
22.5k
    case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */
428
49.0k
    case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */
429
86.5k
    case 5 : b+=k[4]; /* FALLTHRU */
430
107k
    case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */
431
107k
    case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */
432
107k
    case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */
433
107k
    case 1 : a+=k[0];
434
107k
       break;
435
0
    case 0 : return c;
436
107k
    }
437
107k
  }
438
439
449k
  final(a,b,c);
440
449k
  return c;
441
453k
}
442
/* clang-format on */
443
444
/* a simple hash function similar to what perl does for strings.
445
 * for good results, the string should not be excessively large.
446
 */
447
static unsigned long lh_perllike_str_hash(const void *k)
448
0
{
449
0
  const char *rkey = (const char *)k;
450
0
  unsigned hashval = 1;
451
452
0
  while (*rkey)
453
0
    hashval = hashval * 33 + *rkey++;
454
455
0
  return hashval;
456
0
}
457
458
static unsigned long lh_char_hash(const void *k)
459
453k
{
460
#if defined _MSC_VER || defined __MINGW32__
461
#define RANDOM_SEED_TYPE LONG
462
#else
463
453k
#define RANDOM_SEED_TYPE int
464
453k
#endif
465
453k
  static volatile RANDOM_SEED_TYPE random_seed = -1;
466
467
453k
  if (random_seed == -1)
468
2
  {
469
2
    RANDOM_SEED_TYPE seed;
470
    /* we can't use -1 as it is the uninitialized sentinel */
471
2
    while ((seed = json_c_get_random_seed()) == -1) {}
472
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
473
#define USE_SYNC_COMPARE_AND_SWAP 1
474
#endif
475
2
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
476
2
#define USE_SYNC_COMPARE_AND_SWAP 1
477
2
#endif
478
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
479
#define USE_SYNC_COMPARE_AND_SWAP 1
480
#endif
481
2
#if defined USE_SYNC_COMPARE_AND_SWAP
482
2
    (void)__sync_val_compare_and_swap(&random_seed, -1, seed);
483
#elif defined _MSC_VER || defined __MINGW32__
484
    InterlockedCompareExchange(&random_seed, seed, -1);
485
#else
486
    //#warning "racy random seed initialization if used by multiple threads"
487
    random_seed = seed; /* potentially racy */
488
#endif
489
2
  }
490
491
453k
  return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed);
492
453k
}
493
494
int lh_char_equal(const void *k1, const void *k2)
495
316k
{
496
316k
  return (strcmp((const char *)k1, (const char *)k2) == 0);
497
316k
}
498
499
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn,
500
                              lh_equal_fn *equal_fn)
501
74.5k
{
502
74.5k
  int i;
503
74.5k
  struct lh_table *t;
504
505
  /* Allocate space for elements to avoid divisions by zero. */
506
74.5k
  assert(size > 0);
507
74.5k
  t = (struct lh_table *)calloc(1, sizeof(struct lh_table));
508
74.5k
  if (!t)
509
0
    return NULL;
510
511
74.5k
  t->count = 0;
512
74.5k
  t->size = size;
513
74.5k
  t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry));
514
74.5k
  if (!t->table)
515
0
  {
516
0
    free(t);
517
0
    return NULL;
518
0
  }
519
74.5k
  t->free_fn = free_fn;
520
74.5k
  t->hash_fn = hash_fn;
521
74.5k
  t->equal_fn = equal_fn;
522
1.29M
  for (i = 0; i < size; i++)
523
1.22M
    t->table[i].k = LH_EMPTY;
524
74.5k
  return t;
525
74.5k
}
526
527
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn)
528
73.4k
{
529
73.4k
  return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal);
530
73.4k
}
531
532
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn)
533
0
{
534
0
  return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal);
535
0
}
536
537
int lh_table_resize(struct lh_table *t, int new_size)
538
1.09k
{
539
1.09k
  struct lh_table *new_t;
540
1.09k
  struct lh_entry *ent;
541
542
1.09k
  new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn);
543
1.09k
  if (new_t == NULL)
544
0
    return -1;
545
546
18.1k
  for (ent = t->head; ent != NULL; ent = ent->next)
547
17.0k
  {
548
17.0k
    unsigned long h = lh_get_hash(new_t, ent->k);
549
17.0k
    unsigned int opts = 0;
550
17.0k
    if (ent->k_is_constant)
551
0
      opts = JSON_C_OBJECT_ADD_CONSTANT_KEY;
552
17.0k
    if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0)
553
0
    {
554
0
      lh_table_free(new_t);
555
0
      return -1;
556
0
    }
557
17.0k
  }
558
1.09k
  free(t->table);
559
1.09k
  t->table = new_t->table;
560
1.09k
  t->size = new_size;
561
1.09k
  t->head = new_t->head;
562
1.09k
  t->tail = new_t->tail;
563
1.09k
  free(new_t);
564
565
1.09k
  return 0;
566
1.09k
}
567
568
void lh_table_free(struct lh_table *t)
569
73.4k
{
570
73.4k
  struct lh_entry *c;
571
73.4k
  if (t->free_fn)
572
73.4k
  {
573
223k
    for (c = t->head; c != NULL; c = c->next)
574
149k
      t->free_fn(c);
575
73.4k
  }
576
73.4k
  free(t->table);
577
73.4k
  free(t);
578
73.4k
}
579
580
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h,
581
                           const unsigned opts)
582
167k
{
583
167k
  unsigned long n;
584
585
167k
  if (t->count >= t->size * LH_LOAD_FACTOR)
586
1.09k
  {
587
    /* Avoid signed integer overflow with large tables. */
588
1.09k
    int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
589
1.09k
    if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0)
590
0
      return -1;
591
1.09k
  }
592
593
167k
  n = h % t->size;
594
595
195k
  while (1)
596
195k
  {
597
195k
    if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
598
167k
      break;
599
28.1k
    if ((int)++n == t->size)
600
653
      n = 0;
601
28.1k
  }
602
603
167k
  t->table[n].k = k;
604
167k
  t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY);
605
167k
  t->table[n].v = v;
606
167k
  t->count++;
607
608
167k
  if (t->head == NULL)
609
44.7k
  {
610
44.7k
    t->head = t->tail = &t->table[n];
611
44.7k
    t->table[n].next = t->table[n].prev = NULL;
612
44.7k
  }
613
122k
  else
614
122k
  {
615
122k
    t->tail->next = &t->table[n];
616
122k
    t->table[n].prev = t->tail;
617
122k
    t->table[n].next = NULL;
618
122k
    t->tail = &t->table[n];
619
122k
  }
620
621
167k
  return 0;
622
167k
}
623
int lh_table_insert(struct lh_table *t, const void *k, const void *v)
624
0
{
625
0
  return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0);
626
0
}
627
628
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k,
629
                                              const unsigned long h)
630
436k
{
631
436k
  unsigned long n = h % t->size;
632
436k
  int count = 0;
633
634
500k
  while (count < t->size)
635
500k
  {
636
500k
    if (t->table[n].k == LH_EMPTY)
637
183k
      return NULL;
638
316k
    if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k))
639
253k
      return &t->table[n];
640
63.4k
    if ((int)++n == t->size)
641
791
      n = 0;
642
63.4k
    count++;
643
63.4k
  }
644
0
  return NULL;
645
436k
}
646
647
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k)
648
281k
{
649
281k
  return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k));
650
281k
}
651
652
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v)
653
280k
{
654
280k
  struct lh_entry *e = lh_table_lookup_entry(t, k);
655
280k
  if (e != NULL)
656
247k
  {
657
247k
    if (v != NULL)
658
241k
      *v = lh_entry_v(e);
659
247k
    return 1; /* key found */
660
247k
  }
661
33.2k
  if (v != NULL)
662
32.5k
    *v = NULL;
663
33.2k
  return 0; /* key not found */
664
280k
}
665
666
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
667
455
{
668
  /* CAW: fixed to be 64bit nice, still need the crazy negative case... */
669
455
  ptrdiff_t n = (ptrdiff_t)(e - t->table);
670
671
  /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
672
455
  if (n < 0)
673
0
  {
674
0
    return -2;
675
0
  }
676
677
455
  if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
678
0
    return -1;
679
455
  t->count--;
680
455
  if (t->free_fn)
681
455
    t->free_fn(e);
682
455
  t->table[n].v = NULL;
683
455
  t->table[n].k = LH_FREED;
684
455
  if (t->tail == &t->table[n] && t->head == &t->table[n])
685
0
  {
686
0
    t->head = t->tail = NULL;
687
0
  }
688
455
  else if (t->head == &t->table[n])
689
5
  {
690
5
    t->head->next->prev = NULL;
691
5
    t->head = t->head->next;
692
5
  }
693
450
  else if (t->tail == &t->table[n])
694
59
  {
695
59
    t->tail->prev->next = NULL;
696
59
    t->tail = t->tail->prev;
697
59
  }
698
391
  else
699
391
  {
700
391
    t->table[n].prev->next = t->table[n].next;
701
391
    t->table[n].next->prev = t->table[n].prev;
702
391
  }
703
455
  t->table[n].next = t->table[n].prev = NULL;
704
455
  return 0;
705
455
}
706
707
int lh_table_delete(struct lh_table *t, const void *k)
708
455
{
709
455
  struct lh_entry *e = lh_table_lookup_entry(t, k);
710
455
  if (!e)
711
0
    return -1;
712
455
  return lh_table_delete_entry(t, e);
713
455
}
714
715
int lh_table_length(struct lh_table *t)
716
12.6k
{
717
12.6k
  return t->count;
718
12.6k
}