Coverage Report

Created: 2025-11-07 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/sha/sha256.c
Line
Count
Source
1
/*
2
 * Copyright 2004-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * SHA256 low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <openssl/opensslconf.h>
17
18
#include <stdlib.h>
19
#include <string.h>
20
21
#include <openssl/crypto.h>
22
#include <openssl/sha.h>
23
#include <openssl/opensslv.h>
24
#include "internal/endian.h"
25
#include "crypto/sha.h"
26
27
int SHA224_Init(SHA256_CTX *c)
28
46
{
29
46
    memset(c, 0, sizeof(*c));
30
46
    c->h[0] = 0xc1059ed8UL;
31
46
    c->h[1] = 0x367cd507UL;
32
46
    c->h[2] = 0x3070dd17UL;
33
46
    c->h[3] = 0xf70e5939UL;
34
46
    c->h[4] = 0xffc00b31UL;
35
46
    c->h[5] = 0x68581511UL;
36
46
    c->h[6] = 0x64f98fa7UL;
37
46
    c->h[7] = 0xbefa4fa4UL;
38
46
    c->md_len = SHA224_DIGEST_LENGTH;
39
46
    return 1;
40
46
}
41
42
int SHA256_Init(SHA256_CTX *c)
43
28.6k
{
44
28.6k
    memset(c, 0, sizeof(*c));
45
28.6k
    c->h[0] = 0x6a09e667UL;
46
28.6k
    c->h[1] = 0xbb67ae85UL;
47
28.6k
    c->h[2] = 0x3c6ef372UL;
48
28.6k
    c->h[3] = 0xa54ff53aUL;
49
28.6k
    c->h[4] = 0x510e527fUL;
50
28.6k
    c->h[5] = 0x9b05688cUL;
51
28.6k
    c->h[6] = 0x1f83d9abUL;
52
28.6k
    c->h[7] = 0x5be0cd19UL;
53
28.6k
    c->md_len = SHA256_DIGEST_LENGTH;
54
28.6k
    return 1;
55
28.6k
}
56
57
int ossl_sha256_192_init(SHA256_CTX *c)
58
0
{
59
0
    SHA256_Init(c);
60
0
    c->md_len = SHA256_192_DIGEST_LENGTH;
61
0
    return 1;
62
0
}
63
64
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
65
46
{
66
46
    return SHA256_Update(c, data, len);
67
46
}
68
69
int SHA224_Final(unsigned char *md, SHA256_CTX *c)
70
23
{
71
23
    return SHA256_Final(md, c);
72
23
}
73
74
#define DATA_ORDER_IS_BIG_ENDIAN
75
76
172M
#define HASH_LONG               SHA_LONG
77
#define HASH_CTX                SHA256_CTX
78
353M
#define HASH_CBLOCK             SHA_CBLOCK
79
80
/*
81
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
82
 * default: case below covers for it. It's not clear however if it's
83
 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
84
 * but if it is, then default: case shall be extended. For reference.
85
 * Idea behind separate cases for pre-defined lengths is to let the
86
 * compiler decide if it's appropriate to unroll small loops.
87
 */
88
14.1k
#define HASH_MAKE_STRING(c,s)   do {    \
89
14.1k
        unsigned long ll;               \
90
14.1k
        unsigned int  nn;               \
91
14.1k
        switch ((c)->md_len) {          \
92
0
            case SHA256_192_DIGEST_LENGTH: \
93
0
                for (nn=0;nn<SHA256_192_DIGEST_LENGTH/4;nn++) { \
94
0
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
95
0
                }                       \
96
0
                break;                  \
97
23
            case SHA224_DIGEST_LENGTH:  \
98
184
                for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) {     \
99
161
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
100
161
                }                       \
101
23
                break;                  \
102
14.1k
            case SHA256_DIGEST_LENGTH:  \
103
127k
                for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) {     \
104
113k
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
105
113k
                }                       \
106
14.1k
                break;                  \
107
0
            default:                    \
108
0
                if ((c)->md_len > SHA256_DIGEST_LENGTH) \
109
0
                    return 0;                           \
110
0
                for (nn=0;nn<(c)->md_len/4;nn++) {              \
111
0
                    ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));      \
112
0
                }                       \
113
0
                break;                  \
114
14.1k
        }                               \
115
14.1k
    } while (0)
116
117
#define HASH_UPDATE             SHA256_Update
118
#define HASH_TRANSFORM          SHA256_Transform
119
#define HASH_FINAL              SHA256_Final
120
2.73M
#define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
121
#ifndef SHA256_ASM
122
static
123
#else
124
# ifdef INCLUDE_C_SHA256
125
void sha256_block_data_order_c(SHA256_CTX *ctx, const void *in, size_t num);
126
# endif /* INCLUDE_C_SHA256 */
127
#endif /* SHA256_ASM */
128
void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
129
130
#include "crypto/md32_common.h"
131
132
#if !defined(SHA256_ASM) || defined(INCLUDE_C_SHA256)
133
static const SHA_LONG K256[64] = {
134
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
135
    0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
136
    0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
137
    0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
138
    0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
139
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
140
    0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
141
    0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
142
    0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
143
    0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
144
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
145
    0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
146
    0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
147
    0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
148
    0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
149
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
150
};
151
152
# ifndef PEDANTIC
153
#  if defined(__GNUC__) && __GNUC__>=2 && \
154
      !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
155
#   if defined(__riscv_zknh)
156
#    define Sigma0(x) ({ MD32_REG_T ret;            \
157
                        asm ("sha256sum0 %0, %1"    \
158
                        : "=r"(ret)                 \
159
                        : "r"(x)); ret;             })
160
#    define Sigma1(x) ({ MD32_REG_T ret;            \
161
                        asm ("sha256sum1 %0, %1"    \
162
                        : "=r"(ret)                 \
163
                        : "r"(x)); ret;             })
164
#    define sigma0(x) ({ MD32_REG_T ret;            \
165
                        asm ("sha256sig0 %0, %1"    \
166
                        : "=r"(ret)                 \
167
                        : "r"(x)); ret;             })
168
#    define sigma1(x) ({ MD32_REG_T ret;            \
169
                        asm ("sha256sig1 %0, %1"    \
170
                        : "=r"(ret)                 \
171
                        : "r"(x)); ret;             })
172
#   endif
173
#   if defined(__riscv_zbt) || defined(__riscv_zpn)
174
#    define Ch(x,y,z) ({  MD32_REG_T ret;                           \
175
                        asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
176
                        : "=r"(ret)                                 \
177
                        : "r"(x), "r"(y), "r"(z)); ret;             })
178
#    define Maj(x,y,z) ({ MD32_REG_T ret;                           \
179
                        asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
180
                        : "=r"(ret)                                 \
181
                        : "r"(x^z), "r"(y), "r"(x)); ret;           })
182
#   endif
183
#  endif
184
# endif
185
186
/*
187
 * FIPS specification refers to right rotations, while our ROTATE macro
188
 * is left one. This is why you might notice that rotation coefficients
189
 * differ from those observed in FIPS document by 32-N...
190
 */
191
# ifndef Sigma0
192
767M
#  define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
193
# endif
194
# ifndef Sigma1
195
767M
#  define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
196
# endif
197
# ifndef sigma0
198
575M
#  define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
199
# endif
200
# ifndef sigma1
201
575M
#  define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
202
# endif
203
# ifndef Ch
204
767M
#  define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
205
# endif
206
# ifndef Maj
207
767M
#  define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
208
# endif
209
210
# ifdef OPENSSL_SMALL_FOOTPRINT
211
212
static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
213
                                    size_t num)
214
{
215
    unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
216
    SHA_LONG X[16], l;
217
    int i;
218
    const unsigned char *data = in;
219
220
    while (num--) {
221
222
        a = ctx->h[0];
223
        b = ctx->h[1];
224
        c = ctx->h[2];
225
        d = ctx->h[3];
226
        e = ctx->h[4];
227
        f = ctx->h[5];
228
        g = ctx->h[6];
229
        h = ctx->h[7];
230
231
        for (i = 0; i < 16; i++) {
232
            (void)HOST_c2l(data, l);
233
            T1 = X[i] = l;
234
            T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
235
            T2 = Sigma0(a) + Maj(a, b, c);
236
            h = g;
237
            g = f;
238
            f = e;
239
            e = d + T1;
240
            d = c;
241
            c = b;
242
            b = a;
243
            a = T1 + T2;
244
        }
245
246
        for (; i < 64; i++) {
247
            s0 = X[(i + 1) & 0x0f];
248
            s0 = sigma0(s0);
249
            s1 = X[(i + 14) & 0x0f];
250
            s1 = sigma1(s1);
251
252
            T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
253
            T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
254
            T2 = Sigma0(a) + Maj(a, b, c);
255
            h = g;
256
            g = f;
257
            f = e;
258
            e = d + T1;
259
            d = c;
260
            c = b;
261
            b = a;
262
            a = T1 + T2;
263
        }
264
265
        ctx->h[0] += a;
266
        ctx->h[1] += b;
267
        ctx->h[2] += c;
268
        ctx->h[3] += d;
269
        ctx->h[4] += e;
270
        ctx->h[5] += f;
271
        ctx->h[6] += g;
272
        ctx->h[7] += h;
273
274
    }
275
}
276
277
# else
278
279
767M
#  define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
280
767M
        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
281
767M
        h = Sigma0(a) + Maj(a,b,c);                     \
282
767M
        d += T1;        h += T1;                } while (0)
283
284
575M
#  define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
285
575M
        s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
286
575M
        s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
287
575M
        T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
288
575M
        ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
289
290
#ifdef INCLUDE_C_SHA256
291
void sha256_block_data_order_c(SHA256_CTX *ctx, const void *in, size_t num)
292
#else
293
static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
294
                                    size_t num)
295
#endif
296
2.73M
{
297
2.73M
    unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
298
2.73M
    SHA_LONG X[16];
299
2.73M
    int i;
300
2.73M
    const unsigned char *data = in;
301
2.73M
    DECLARE_IS_ENDIAN;
302
303
14.7M
    while (num--) {
304
305
11.9M
        a = ctx->h[0];
306
11.9M
        b = ctx->h[1];
307
11.9M
        c = ctx->h[2];
308
11.9M
        d = ctx->h[3];
309
11.9M
        e = ctx->h[4];
310
11.9M
        f = ctx->h[5];
311
11.9M
        g = ctx->h[6];
312
11.9M
        h = ctx->h[7];
313
314
11.9M
        if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
315
0
            && ((size_t)in % 4) == 0) {
316
0
            const SHA_LONG *W = (const SHA_LONG *)data;
317
318
0
            T1 = X[0] = W[0];
319
0
            ROUND_00_15(0, a, b, c, d, e, f, g, h);
320
0
            T1 = X[1] = W[1];
321
0
            ROUND_00_15(1, h, a, b, c, d, e, f, g);
322
0
            T1 = X[2] = W[2];
323
0
            ROUND_00_15(2, g, h, a, b, c, d, e, f);
324
0
            T1 = X[3] = W[3];
325
0
            ROUND_00_15(3, f, g, h, a, b, c, d, e);
326
0
            T1 = X[4] = W[4];
327
0
            ROUND_00_15(4, e, f, g, h, a, b, c, d);
328
0
            T1 = X[5] = W[5];
329
0
            ROUND_00_15(5, d, e, f, g, h, a, b, c);
330
0
            T1 = X[6] = W[6];
331
0
            ROUND_00_15(6, c, d, e, f, g, h, a, b);
332
0
            T1 = X[7] = W[7];
333
0
            ROUND_00_15(7, b, c, d, e, f, g, h, a);
334
0
            T1 = X[8] = W[8];
335
0
            ROUND_00_15(8, a, b, c, d, e, f, g, h);
336
0
            T1 = X[9] = W[9];
337
0
            ROUND_00_15(9, h, a, b, c, d, e, f, g);
338
0
            T1 = X[10] = W[10];
339
0
            ROUND_00_15(10, g, h, a, b, c, d, e, f);
340
0
            T1 = X[11] = W[11];
341
0
            ROUND_00_15(11, f, g, h, a, b, c, d, e);
342
0
            T1 = X[12] = W[12];
343
0
            ROUND_00_15(12, e, f, g, h, a, b, c, d);
344
0
            T1 = X[13] = W[13];
345
0
            ROUND_00_15(13, d, e, f, g, h, a, b, c);
346
0
            T1 = X[14] = W[14];
347
0
            ROUND_00_15(14, c, d, e, f, g, h, a, b);
348
0
            T1 = X[15] = W[15];
349
0
            ROUND_00_15(15, b, c, d, e, f, g, h, a);
350
351
0
            data += SHA256_CBLOCK;
352
11.9M
        } else {
353
11.9M
            SHA_LONG l;
354
355
11.9M
            (void)HOST_c2l(data, l);
356
11.9M
            T1 = X[0] = l;
357
11.9M
            ROUND_00_15(0, a, b, c, d, e, f, g, h);
358
11.9M
            (void)HOST_c2l(data, l);
359
11.9M
            T1 = X[1] = l;
360
11.9M
            ROUND_00_15(1, h, a, b, c, d, e, f, g);
361
11.9M
            (void)HOST_c2l(data, l);
362
11.9M
            T1 = X[2] = l;
363
11.9M
            ROUND_00_15(2, g, h, a, b, c, d, e, f);
364
11.9M
            (void)HOST_c2l(data, l);
365
11.9M
            T1 = X[3] = l;
366
11.9M
            ROUND_00_15(3, f, g, h, a, b, c, d, e);
367
11.9M
            (void)HOST_c2l(data, l);
368
11.9M
            T1 = X[4] = l;
369
11.9M
            ROUND_00_15(4, e, f, g, h, a, b, c, d);
370
11.9M
            (void)HOST_c2l(data, l);
371
11.9M
            T1 = X[5] = l;
372
11.9M
            ROUND_00_15(5, d, e, f, g, h, a, b, c);
373
11.9M
            (void)HOST_c2l(data, l);
374
11.9M
            T1 = X[6] = l;
375
11.9M
            ROUND_00_15(6, c, d, e, f, g, h, a, b);
376
11.9M
            (void)HOST_c2l(data, l);
377
11.9M
            T1 = X[7] = l;
378
11.9M
            ROUND_00_15(7, b, c, d, e, f, g, h, a);
379
11.9M
            (void)HOST_c2l(data, l);
380
11.9M
            T1 = X[8] = l;
381
11.9M
            ROUND_00_15(8, a, b, c, d, e, f, g, h);
382
11.9M
            (void)HOST_c2l(data, l);
383
11.9M
            T1 = X[9] = l;
384
11.9M
            ROUND_00_15(9, h, a, b, c, d, e, f, g);
385
11.9M
            (void)HOST_c2l(data, l);
386
11.9M
            T1 = X[10] = l;
387
11.9M
            ROUND_00_15(10, g, h, a, b, c, d, e, f);
388
11.9M
            (void)HOST_c2l(data, l);
389
11.9M
            T1 = X[11] = l;
390
11.9M
            ROUND_00_15(11, f, g, h, a, b, c, d, e);
391
11.9M
            (void)HOST_c2l(data, l);
392
11.9M
            T1 = X[12] = l;
393
11.9M
            ROUND_00_15(12, e, f, g, h, a, b, c, d);
394
11.9M
            (void)HOST_c2l(data, l);
395
11.9M
            T1 = X[13] = l;
396
11.9M
            ROUND_00_15(13, d, e, f, g, h, a, b, c);
397
11.9M
            (void)HOST_c2l(data, l);
398
11.9M
            T1 = X[14] = l;
399
11.9M
            ROUND_00_15(14, c, d, e, f, g, h, a, b);
400
11.9M
            (void)HOST_c2l(data, l);
401
11.9M
            T1 = X[15] = l;
402
11.9M
            ROUND_00_15(15, b, c, d, e, f, g, h, a);
403
11.9M
        }
404
405
83.9M
        for (i = 16; i < 64; i += 8) {
406
71.9M
            ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
407
71.9M
            ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
408
71.9M
            ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
409
71.9M
            ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
410
71.9M
            ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
411
71.9M
            ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
412
71.9M
            ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
413
71.9M
            ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
414
71.9M
        }
415
416
11.9M
        ctx->h[0] += a;
417
11.9M
        ctx->h[1] += b;
418
11.9M
        ctx->h[2] += c;
419
11.9M
        ctx->h[3] += d;
420
11.9M
        ctx->h[4] += e;
421
11.9M
        ctx->h[5] += f;
422
11.9M
        ctx->h[6] += g;
423
11.9M
        ctx->h[7] += h;
424
425
11.9M
    }
426
2.73M
}
427
428
# endif
429
#endif                         /* SHA256_ASM */