Coverage Report

Created: 2025-11-25 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/json-c/linkhash.c
Line
Count
Source
1
/*
2
 * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
3
 *
4
 * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
5
 * Michael Clark <michael@metaparadigm.com>
6
 * Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
7
 *
8
 * This library is free software; you can redistribute it and/or modify
9
 * it under the terms of the MIT license. See COPYING for details.
10
 *
11
 */
12
13
#include "config.h"
14
15
#include <assert.h>
16
#include <limits.h>
17
#include <stdarg.h>
18
#include <stddef.h>
19
#include <stdio.h>
20
#include <stdlib.h>
21
#include <string.h>
22
23
#ifdef HAVE_ENDIAN_H
24
#include <endian.h> /* attempt to define endianness */
25
#endif
26
27
#if defined(_MSC_VER) || defined(__MINGW32__)
28
#ifndef WIN32_LEAN_AND_MEAN
29
#define WIN32_LEAN_AND_MEAN
30
#endif
31
#include <windows.h> /* Get InterlockedCompareExchange */
32
#endif
33
34
#include "linkhash.h"
35
#include "random_seed.h"
36
37
/* hash functions */
38
static unsigned long lh_char_hash(const void *k);
39
static unsigned long lh_perllike_str_hash(const void *k);
40
static lh_hash_fn *char_hash_fn = lh_char_hash;
41
42
/* comparison functions */
43
int lh_char_equal(const void *k1, const void *k2);
44
int lh_ptr_equal(const void *k1, const void *k2);
45
46
int json_global_set_string_hash(const int h)
47
0
{
48
0
  switch (h)
49
0
  {
50
0
  case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break;
51
0
  case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break;
52
0
  default: return -1;
53
0
  }
54
0
  return 0;
55
0
}
56
57
static unsigned long lh_ptr_hash(const void *k)
58
0
{
59
  /* CAW: refactored to be 64bit nice */
60
0
  return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
61
0
}
62
63
int lh_ptr_equal(const void *k1, const void *k2)
64
0
{
65
0
  return (k1 == k2);
66
0
}
67
68
/*
69
 * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
70
 * https://burtleburtle.net/bob/c/lookup3.c
71
 * minor modifications to make functions static so no symbols are exported
72
 * minor modifications to compile with -Werror
73
 */
74
75
/*
76
-------------------------------------------------------------------------------
77
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
78
79
These are functions for producing 32-bit hashes for hash table lookup.
80
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
81
are externally useful functions.  Routines to test the hash are included
82
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
83
the public domain.  It has no warranty.
84
85
You probably want to use hashlittle().  hashlittle() and hashbig()
86
hash byte arrays.  hashlittle() is faster than hashbig() on
87
little-endian machines.  Intel and AMD are little-endian machines.
88
On second thought, you probably want hashlittle2(), which is identical to
89
hashlittle() except it returns two 32-bit hashes for the price of one.
90
You could implement hashbig2() if you wanted but I haven't bothered here.
91
92
If you want to find a hash of, say, exactly 7 integers, do
93
  a = i1;  b = i2;  c = i3;
94
  mix(a,b,c);
95
  a += i4; b += i5; c += i6;
96
  mix(a,b,c);
97
  a += i7;
98
  final(a,b,c);
99
then use c as the hash value.  If you have a variable length array of
100
4-byte integers to hash, use hashword().  If you have a byte array (like
101
a character string), use hashlittle().  If you have several byte arrays, or
102
a mix of things, see the comments above hashlittle().
103
104
Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
105
then mix those integers.  This is fast (you can do a lot more thorough
106
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
107
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
108
-------------------------------------------------------------------------------
109
*/
110
111
/*
112
 * My best guess at if you are big-endian or little-endian.  This may
113
 * need adjustment.
114
 */
115
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \
116
    (defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) ||          \
117
     defined(__i686__) || defined(vax) || defined(MIPSEL))
118
1.13M
#define HASH_LITTLE_ENDIAN 1
119
#define HASH_BIG_ENDIAN 0
120
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \
121
    (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
122
#define HASH_LITTLE_ENDIAN 0
123
#define HASH_BIG_ENDIAN 1
124
#else
125
#define HASH_LITTLE_ENDIAN 0
126
#define HASH_BIG_ENDIAN 0
127
#endif
128
129
#define hashsize(n) ((uint32_t)1 << (n))
130
#define hashmask(n) (hashsize(n) - 1)
131
3.23M
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
132
133
/*
134
-------------------------------------------------------------------------------
135
mix -- mix 3 32-bit values reversibly.
136
137
This is reversible, so any information in (a,b,c) before mix() is
138
still in (a,b,c) after mix().
139
140
If four pairs of (a,b,c) inputs are run through mix(), or through
141
mix() in reverse, there are at least 32 bits of the output that
142
are sometimes the same for one pair and different for another pair.
143
This was tested for:
144
* pairs that differed by one bit, by two bits, in any combination
145
  of top bits of (a,b,c), or in any combination of bottom bits of
146
  (a,b,c).
147
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
148
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
149
  is commonly produced by subtraction) look like a single 1-bit
150
  difference.
151
* the base values were pseudorandom, all zero but one bit set, or
152
  all zero plus a counter that starts at zero.
153
154
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
155
satisfy this are
156
    4  6  8 16 19  4
157
    9 15  3 18 27 15
158
   14  9  3  7 17  3
159
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
160
for "differ" defined as + with a one-bit base and a two-bit delta.  I
161
used https://burtleburtle.net/bob/hash/avalanche.html to choose
162
the operations, constants, and arrangements of the variables.
163
164
This does not achieve avalanche.  There are input bits of (a,b,c)
165
that fail to affect some output bits of (a,b,c), especially of a.  The
166
most thoroughly mixed value is c, but it doesn't really even achieve
167
avalanche in c.
168
169
This allows some parallelism.  Read-after-writes are good at doubling
170
the number of bits affected, so the goal of mixing pulls in the opposite
171
direction as the goal of parallelism.  I did what I could.  Rotates
172
seem to cost as much as shifts on every machine I could lay my hands
173
on, and rotates are much kinder to the top and bottom bits, so I used
174
rotates.
175
-------------------------------------------------------------------------------
176
*/
177
/* clang-format off */
178
88.9k
#define mix(a,b,c) \
179
88.9k
{ \
180
88.9k
  a -= c;  a ^= rot(c, 4);  c += b; \
181
88.9k
  b -= a;  b ^= rot(a, 6);  a += c; \
182
88.9k
  c -= b;  c ^= rot(b, 8);  b += a; \
183
88.9k
  a -= c;  a ^= rot(c,16);  c += b; \
184
88.9k
  b -= a;  b ^= rot(a,19);  a += c; \
185
88.9k
  c -= b;  c ^= rot(b, 4);  b += a; \
186
88.9k
}
187
/* clang-format on */
188
189
/*
190
-------------------------------------------------------------------------------
191
final -- final mixing of 3 32-bit values (a,b,c) into c
192
193
Pairs of (a,b,c) values differing in only a few bits will usually
194
produce values of c that look totally different.  This was tested for
195
* pairs that differed by one bit, by two bits, in any combination
196
  of top bits of (a,b,c), or in any combination of bottom bits of
197
  (a,b,c).
198
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
199
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
200
  is commonly produced by subtraction) look like a single 1-bit
201
  difference.
202
* the base values were pseudorandom, all zero but one bit set, or
203
  all zero plus a counter that starts at zero.
204
205
These constants passed:
206
 14 11 25 16 4 14 24
207
 12 14 25 16 4 14 24
208
and these came close:
209
  4  8 15 26 3 22 24
210
 10  8 15 26 3 22 24
211
 11  8 15 26 3 22 24
212
-------------------------------------------------------------------------------
213
*/
214
/* clang-format off */
215
386k
#define final(a,b,c) \
216
386k
{ \
217
386k
  c ^= b; c -= rot(b,14); \
218
386k
  a ^= c; a -= rot(c,11); \
219
386k
  b ^= a; b -= rot(a,25); \
220
386k
  c ^= b; c -= rot(b,16); \
221
386k
  a ^= c; a -= rot(c,4);  \
222
386k
  b ^= a; b -= rot(a,14); \
223
386k
  c ^= b; c -= rot(b,24); \
224
386k
}
225
/* clang-format on */
226
227
/*
228
-------------------------------------------------------------------------------
229
hashlittle() -- hash a variable-length key into a 32-bit value
230
  k       : the key (the unaligned variable-length array of bytes)
231
  length  : the length of the key, counting by bytes
232
  initval : can be any 4-byte value
233
Returns a 32-bit value.  Every bit of the key affects every bit of
234
the return value.  Two keys differing by one or two bits will have
235
totally different hash values.
236
237
The best hash table sizes are powers of 2.  There is no need to do
238
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
239
use a bitmask.  For example, if you need only 10 bits, do
240
  h = (h & hashmask(10));
241
In which case, the hash table should have hashsize(10) elements.
242
243
If you are hashing n strings (uint8_t **)k, do it like this:
244
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
245
246
By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
247
code any way you wish, private, educational, or commercial.  It's free.
248
249
Use for hash table lookup, or anything where one collision in 2^^32 is
250
acceptable.  Do NOT use for cryptographic purposes.
251
-------------------------------------------------------------------------------
252
*/
253
254
/* clang-format off */
255
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval)
256
390k
{
257
390k
  uint32_t a,b,c; /* internal state */
258
390k
  union
259
390k
  {
260
390k
    const void *ptr;
261
390k
    size_t i;
262
390k
  } u; /* needed for Mac Powerbook G4 */
263
264
  /* Set up the internal state */
265
390k
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
266
267
390k
  u.ptr = key;
268
390k
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
269
216k
    const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
270
271
    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
272
294k
    while (length > 12)
273
78.2k
    {
274
78.2k
      a += k[0];
275
78.2k
      b += k[1];
276
78.2k
      c += k[2];
277
78.2k
      mix(a,b,c);
278
78.2k
      length -= 12;
279
78.2k
      k += 3;
280
78.2k
    }
281
282
    /*----------------------------- handle the last (probably partial) block */
283
    /*
284
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
285
     * then masks off the part it's not allowed to read.  Because the
286
     * string is aligned, the masked-off tail is in the same word as the
287
     * rest of the string.  Every machine with memory protection I've seen
288
     * does it on word boundaries, so is OK with this.  But VALGRIND will
289
     * still catch it and complain.  The masking trick does make the hash
290
     * noticeably faster for short strings (like English words).
291
     * AddressSanitizer is similarly picky about overrunning
292
     * the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html)
293
     */
294
#ifdef VALGRIND
295
#define PRECISE_MEMORY_ACCESS 1
296
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */
297
#define PRECISE_MEMORY_ACCESS 1
298
#elif defined(__has_feature)
299
#if __has_feature(address_sanitizer) /* Clang's ASAN */
300
#define PRECISE_MEMORY_ACCESS 1
301
#endif
302
216k
#endif
303
216k
#ifndef PRECISE_MEMORY_ACCESS
304
305
216k
    switch(length)
306
216k
    {
307
1.49k
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
308
3.64k
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
309
3.67k
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
310
32.9k
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
311
49.1k
    case 8 : b+=k[1]; a+=k[0]; break;
312
19.7k
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
313
25.6k
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
314
8.93k
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
315
22.7k
    case 4 : a+=k[0]; break;
316
2.73k
    case 3 : a+=k[0]&0xffffff; break;
317
5.73k
    case 2 : a+=k[0]&0xffff; break;
318
35.2k
    case 1 : a+=k[0]&0xff; break;
319
4.57k
    case 0 : return c; /* zero length strings require no mixing */
320
216k
    }
321
322
#else /* make valgrind happy */
323
324
    const uint8_t  *k8 = (const uint8_t *)k;
325
    switch(length)
326
    {
327
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
328
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
329
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
330
    case 9 : c+=k8[8];                   /* fall through */
331
    case 8 : b+=k[1]; a+=k[0]; break;
332
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
333
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
334
    case 5 : b+=k8[4];                   /* fall through */
335
    case 4 : a+=k[0]; break;
336
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
337
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
338
    case 1 : a+=k8[0]; break;
339
    case 0 : return c;
340
    }
341
342
#endif /* !valgrind */
343
344
216k
  }
345
174k
  else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0))
346
56.3k
  {
347
56.3k
    const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
348
56.3k
    const uint8_t  *k8;
349
350
    /*--------------- all but last block: aligned reads and different mixing */
351
66.9k
    while (length > 12)
352
10.6k
    {
353
10.6k
      a += k[0] + (((uint32_t)k[1])<<16);
354
10.6k
      b += k[2] + (((uint32_t)k[3])<<16);
355
10.6k
      c += k[4] + (((uint32_t)k[5])<<16);
356
10.6k
      mix(a,b,c);
357
10.6k
      length -= 12;
358
10.6k
      k += 6;
359
10.6k
    }
360
361
    /*----------------------------- handle the last (probably partial) block */
362
56.3k
    k8 = (const uint8_t *)k;
363
56.3k
    switch(length)
364
56.3k
    {
365
0
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
366
0
       b+=k[2]+(((uint32_t)k[3])<<16);
367
0
       a+=k[0]+(((uint32_t)k[1])<<16);
368
0
       break;
369
0
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
370
26
    case 10: c+=k[4];
371
26
       b+=k[2]+(((uint32_t)k[3])<<16);
372
26
       a+=k[0]+(((uint32_t)k[1])<<16);
373
26
       break;
374
0
    case 9 : c+=k8[8];                      /* fall through */
375
0
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
376
0
       a+=k[0]+(((uint32_t)k[1])<<16);
377
0
       break;
378
0
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
379
45.6k
    case 6 : b+=k[2];
380
45.6k
       a+=k[0]+(((uint32_t)k[1])<<16);
381
45.6k
       break;
382
4
    case 5 : b+=k8[4];                      /* fall through */
383
4
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
384
4
       break;
385
0
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
386
0
    case 2 : a+=k[0];
387
0
       break;
388
10.6k
    case 1 : a+=k8[0];
389
10.6k
       break;
390
0
    case 0 : return c;                     /* zero length requires no mixing */
391
56.3k
    }
392
393
56.3k
  }
394
118k
  else
395
118k
  {
396
    /* need to read the key one byte at a time */
397
118k
    const uint8_t *k = (const uint8_t *)key;
398
399
    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
400
118k
    while (length > 12)
401
8
    {
402
8
      a += k[0];
403
8
      a += ((uint32_t)k[1])<<8;
404
8
      a += ((uint32_t)k[2])<<16;
405
8
      a += ((uint32_t)k[3])<<24;
406
8
      b += k[4];
407
8
      b += ((uint32_t)k[5])<<8;
408
8
      b += ((uint32_t)k[6])<<16;
409
8
      b += ((uint32_t)k[7])<<24;
410
8
      c += k[8];
411
8
      c += ((uint32_t)k[9])<<8;
412
8
      c += ((uint32_t)k[10])<<16;
413
8
      c += ((uint32_t)k[11])<<24;
414
8
      mix(a,b,c);
415
8
      length -= 12;
416
8
      k += 12;
417
8
    }
418
419
    /*-------------------------------- last block: affect all 32 bits of (c) */
420
118k
    switch(length) /* all the case statements fall through */
421
118k
    {
422
17.5k
    case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */
423
17.5k
    case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */
424
17.5k
    case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */
425
17.5k
    case 9 : c+=k[8]; /* FALLTHRU */
426
44.9k
    case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */
427
44.9k
    case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */
428
67.7k
    case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */
429
99.8k
    case 5 : b+=k[4]; /* FALLTHRU */
430
118k
    case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */
431
118k
    case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */
432
118k
    case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */
433
118k
    case 1 : a+=k[0];
434
118k
       break;
435
0
    case 0 : return c;
436
118k
    }
437
118k
  }
438
439
386k
  final(a,b,c);
440
386k
  return c;
441
390k
}
442
/* clang-format on */
443
444
/* a simple hash function similar to what perl does for strings.
445
 * for good results, the string should not be excessively large.
446
 */
447
static unsigned long lh_perllike_str_hash(const void *k)
448
0
{
449
0
  const char *rkey = (const char *)k;
450
0
  unsigned hashval = 1;
451
452
0
  while (*rkey)
453
0
    hashval = hashval * 33 + *rkey++;
454
455
0
  return hashval;
456
0
}
457
458
static unsigned long lh_char_hash(const void *k)
459
390k
{
460
#if defined _MSC_VER || defined __MINGW32__
461
#define RANDOM_SEED_TYPE LONG
462
#else
463
390k
#define RANDOM_SEED_TYPE int
464
390k
#endif
465
390k
  static volatile RANDOM_SEED_TYPE random_seed = -1;
466
467
390k
  if (random_seed == -1)
468
2
  {
469
2
    RANDOM_SEED_TYPE seed;
470
    /* we can't use -1 as it is the uninitialized sentinel */
471
2
    while ((seed = json_c_get_random_seed()) == -1) {}
472
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
473
#define USE_SYNC_COMPARE_AND_SWAP 1
474
#endif
475
2
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
476
2
#define USE_SYNC_COMPARE_AND_SWAP 1
477
2
#endif
478
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
479
#define USE_SYNC_COMPARE_AND_SWAP 1
480
#endif
481
2
#if defined USE_SYNC_COMPARE_AND_SWAP
482
2
    (void)__sync_val_compare_and_swap(&random_seed, -1, seed);
483
#elif defined _MSC_VER || defined __MINGW32__
484
    InterlockedCompareExchange(&random_seed, seed, -1);
485
#else
486
    //#warning "racy random seed initialization if used by multiple threads"
487
    random_seed = seed; /* potentially racy */
488
#endif
489
2
  }
490
491
390k
  return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed);
492
390k
}
493
494
int lh_char_equal(const void *k1, const void *k2)
495
289k
{
496
289k
  return (strcmp((const char *)k1, (const char *)k2) == 0);
497
289k
}
498
499
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn,
500
                              lh_equal_fn *equal_fn)
501
64.7k
{
502
64.7k
  int i;
503
64.7k
  struct lh_table *t;
504
505
  /* Allocate space for elements to avoid divisions by zero. */
506
64.7k
  assert(size > 0);
507
64.7k
  t = (struct lh_table *)calloc(1, sizeof(struct lh_table));
508
64.7k
  if (!t)
509
0
    return NULL;
510
511
64.7k
  t->count = 0;
512
64.7k
  t->size = size;
513
64.7k
  t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry));
514
64.7k
  if (!t->table)
515
0
  {
516
0
    free(t);
517
0
    return NULL;
518
0
  }
519
64.7k
  t->free_fn = free_fn;
520
64.7k
  t->hash_fn = hash_fn;
521
64.7k
  t->equal_fn = equal_fn;
522
1.12M
  for (i = 0; i < size; i++)
523
1.06M
    t->table[i].k = LH_EMPTY;
524
64.7k
  return t;
525
64.7k
}
526
527
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn)
528
63.7k
{
529
63.7k
  return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal);
530
63.7k
}
531
532
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn)
533
0
{
534
0
  return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal);
535
0
}
536
537
int lh_table_resize(struct lh_table *t, int new_size)
538
972
{
539
972
  struct lh_table *new_t;
540
972
  struct lh_entry *ent;
541
542
972
  new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn);
543
972
  if (new_t == NULL)
544
0
    return -1;
545
546
16.0k
  for (ent = t->head; ent != NULL; ent = ent->next)
547
15.0k
  {
548
15.0k
    unsigned long h = lh_get_hash(new_t, ent->k);
549
15.0k
    unsigned int opts = 0;
550
15.0k
    if (ent->k_is_constant)
551
0
      opts = JSON_C_OBJECT_ADD_CONSTANT_KEY;
552
15.0k
    if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0)
553
0
    {
554
0
      lh_table_free(new_t);
555
0
      return -1;
556
0
    }
557
15.0k
  }
558
972
  free(t->table);
559
972
  t->table = new_t->table;
560
972
  t->size = new_size;
561
972
  t->head = new_t->head;
562
972
  t->tail = new_t->tail;
563
972
  free(new_t);
564
565
972
  return 0;
566
972
}
567
568
void lh_table_free(struct lh_table *t)
569
63.7k
{
570
63.7k
  struct lh_entry *c;
571
63.7k
  if (t->free_fn)
572
63.7k
  {
573
192k
    for (c = t->head; c != NULL; c = c->next)
574
128k
      t->free_fn(c);
575
63.7k
  }
576
63.7k
  free(t->table);
577
63.7k
  free(t);
578
63.7k
}
579
580
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h,
581
                           const unsigned opts)
582
144k
{
583
144k
  unsigned long n;
584
585
144k
  if (t->count >= t->size * LH_LOAD_FACTOR)
586
972
  {
587
    /* Avoid signed integer overflow with large tables. */
588
972
    int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
589
972
    if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0)
590
0
      return -1;
591
972
  }
592
593
144k
  n = h % t->size;
594
595
167k
  while (1)
596
167k
  {
597
167k
    if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
598
144k
      break;
599
22.9k
    if ((int)++n == t->size)
600
434
      n = 0;
601
22.9k
  }
602
603
144k
  t->table[n].k = k;
604
144k
  t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY);
605
144k
  t->table[n].v = v;
606
144k
  t->count++;
607
608
144k
  if (t->head == NULL)
609
38.9k
  {
610
38.9k
    t->head = t->tail = &t->table[n];
611
38.9k
    t->table[n].next = t->table[n].prev = NULL;
612
38.9k
  }
613
105k
  else
614
105k
  {
615
105k
    t->tail->next = &t->table[n];
616
105k
    t->table[n].prev = t->tail;
617
105k
    t->table[n].next = NULL;
618
105k
    t->tail = &t->table[n];
619
105k
  }
620
621
144k
  return 0;
622
144k
}
623
int lh_table_insert(struct lh_table *t, const void *k, const void *v)
624
0
{
625
0
  return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0);
626
0
}
627
628
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k,
629
                                              const unsigned long h)
630
375k
{
631
375k
  unsigned long n = h % t->size;
632
375k
  int count = 0;
633
634
447k
  while (count < t->size)
635
447k
  {
636
447k
    if (t->table[n].k == LH_EMPTY)
637
158k
      return NULL;
638
289k
    if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k))
639
217k
      return &t->table[n];
640
71.6k
    if ((int)++n == t->size)
641
683
      n = 0;
642
71.6k
    count++;
643
71.6k
  }
644
0
  return NULL;
645
375k
}
646
647
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k)
648
241k
{
649
241k
  return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k));
650
241k
}
651
652
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v)
653
241k
{
654
241k
  struct lh_entry *e = lh_table_lookup_entry(t, k);
655
241k
  if (e != NULL)
656
212k
  {
657
212k
    if (v != NULL)
658
207k
      *v = lh_entry_v(e);
659
212k
    return 1; /* key found */
660
212k
  }
661
28.8k
  if (v != NULL)
662
28.3k
    *v = NULL;
663
28.8k
  return 0; /* key not found */
664
241k
}
665
666
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
667
364
{
668
  /* CAW: fixed to be 64bit nice, still need the crazy negative case... */
669
364
  ptrdiff_t n = (ptrdiff_t)(e - t->table);
670
671
  /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
672
364
  if (n < 0)
673
0
  {
674
0
    return -2;
675
0
  }
676
677
364
  if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
678
0
    return -1;
679
364
  t->count--;
680
364
  if (t->free_fn)
681
364
    t->free_fn(e);
682
364
  t->table[n].v = NULL;
683
364
  t->table[n].k = LH_FREED;
684
364
  if (t->tail == &t->table[n] && t->head == &t->table[n])
685
0
  {
686
0
    t->head = t->tail = NULL;
687
0
  }
688
364
  else if (t->head == &t->table[n])
689
5
  {
690
5
    t->head->next->prev = NULL;
691
5
    t->head = t->head->next;
692
5
  }
693
359
  else if (t->tail == &t->table[n])
694
43
  {
695
43
    t->tail->prev->next = NULL;
696
43
    t->tail = t->tail->prev;
697
43
  }
698
316
  else
699
316
  {
700
316
    t->table[n].prev->next = t->table[n].next;
701
316
    t->table[n].next->prev = t->table[n].prev;
702
316
  }
703
364
  t->table[n].next = t->table[n].prev = NULL;
704
364
  return 0;
705
364
}
706
707
int lh_table_delete(struct lh_table *t, const void *k)
708
364
{
709
364
  struct lh_entry *e = lh_table_lookup_entry(t, k);
710
364
  if (!e)
711
0
    return -1;
712
364
  return lh_table_delete_entry(t, e);
713
364
}
714
715
int lh_table_length(struct lh_table *t)
716
10.8k
{
717
10.8k
  return t->count;
718
10.8k
}