/src/openssl/crypto/bn/bn_rsa_fips186_5.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * According to NIST SP800-131A "Transitioning the use of cryptographic |
13 | | * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer |
14 | | * allowed for signatures (Table 2) or key transport (Table 5). In the code |
15 | | * below any attempt to generate 1024 bit RSA keys will result in an error (Note |
16 | | * that digital signature verification can still use deprecated 1024 bit keys). |
17 | | * |
18 | | * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that |
19 | | * must be generated before the module generates the RSA primes p and q. |
20 | | * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and |
21 | | * 3072 bits only, the min/max total length of the auxiliary primes. |
22 | | * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been |
23 | | * included here. |
24 | | */ |
25 | | #include <stdio.h> |
26 | | #include <openssl/bn.h> |
27 | | #include "bn_local.h" |
28 | | #include "crypto/bn.h" |
29 | | #include "internal/nelem.h" |
30 | | |
31 | | #if BN_BITS2 == 64 |
32 | | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo |
33 | | #else |
34 | | # define BN_DEF(lo, hi) lo, hi |
35 | | #endif |
36 | | |
37 | | /* 1 / sqrt(2) * 2^256, rounded up */ |
38 | | static const BN_ULONG inv_sqrt_2_val[] = { |
39 | | BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL), |
40 | | BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL) |
41 | | }; |
42 | | |
43 | | const BIGNUM ossl_bn_inv_sqrt_2 = { |
44 | | (BN_ULONG *)inv_sqrt_2_val, |
45 | | OSSL_NELEM(inv_sqrt_2_val), |
46 | | OSSL_NELEM(inv_sqrt_2_val), |
47 | | 0, |
48 | | BN_FLG_STATIC_DATA |
49 | | }; |
50 | | |
51 | | /* |
52 | | * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin |
53 | | * required for generation of RSA aux primes (p1, p2, q1 and q2). |
54 | | */ |
55 | | static int bn_rsa_fips186_5_aux_prime_MR_rounds(int nbits) |
56 | 0 | { |
57 | 0 | if (nbits >= 4096) |
58 | 0 | return 44; |
59 | 0 | if (nbits >= 3072) |
60 | 0 | return 41; |
61 | 0 | if (nbits >= 2048) |
62 | 0 | return 38; |
63 | 0 | return 0; /* Error */ |
64 | 0 | } |
65 | | |
66 | | /* |
67 | | * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin |
68 | | * required for generation of RSA primes (p and q) |
69 | | */ |
70 | | static int bn_rsa_fips186_5_prime_MR_rounds(int nbits) |
71 | 0 | { |
72 | 0 | if (nbits >= 3072) |
73 | 0 | return 4; |
74 | 0 | if (nbits >= 2048) |
75 | 0 | return 5; |
76 | 0 | return 0; /* Error */ |
77 | 0 | } |
78 | | |
79 | | /* |
80 | | * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2". |
81 | | * (FIPS 186-5 has an entry for >= 4096 bits). |
82 | | * |
83 | | * Params: |
84 | | * nbits The key size in bits. |
85 | | * Returns: |
86 | | * The minimum size of the auxiliary primes or 0 if nbits is invalid. |
87 | | */ |
88 | | static int bn_rsa_fips186_5_aux_prime_min_size(int nbits) |
89 | 0 | { |
90 | 0 | if (nbits >= 4096) |
91 | 0 | return 201; |
92 | 0 | if (nbits >= 3072) |
93 | 0 | return 171; |
94 | 0 | if (nbits >= 2048) |
95 | 0 | return 141; |
96 | 0 | return 0; |
97 | 0 | } |
98 | | |
99 | | /* |
100 | | * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and |
101 | | * len(q1) + len(q2) for p,q Probable Primes". |
102 | | * (FIPS 186-5 has an entry for >= 4096 bits). |
103 | | * Params: |
104 | | * nbits The key size in bits. |
105 | | * c If this is non zero then the probable prime is congruent to c mod 8 |
106 | | * and is 3 bits smaller |
107 | | * Returns: |
108 | | * The maximum length or 0 if nbits is invalid. |
109 | | */ |
110 | | static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits, |
111 | | uint32_t c) |
112 | 0 | { |
113 | 0 | int reduce_bits = (c == 0) ? 0 : 3; |
114 | |
|
115 | 0 | if (nbits >= 4096) |
116 | 0 | return 2030 - reduce_bits; |
117 | 0 | if (nbits >= 3072) |
118 | 0 | return 1518 - reduce_bits; |
119 | 0 | if (nbits >= 2048) |
120 | 0 | return 1007 - reduce_bits; |
121 | 0 | return 0; |
122 | 0 | } |
123 | | |
124 | | /* |
125 | | * Find the first odd integer that is a probable prime. |
126 | | * |
127 | | * See section FIPS 186-5 A.1.6 (Steps 4.2/5.2). |
128 | | * |
129 | | * Params: |
130 | | * Xp1 The passed in starting point to find a probably prime. |
131 | | * p1 The returned probable prime (first odd integer >= Xp1) |
132 | | * ctx A BN_CTX object. |
133 | | * rounds The number of Miller Rabin rounds |
134 | | * cb An optional BIGNUM callback. |
135 | | * Returns: 1 on success otherwise it returns 0. |
136 | | */ |
137 | | static int bn_rsa_fips186_5_find_aux_prob_prime(const BIGNUM *Xp1, |
138 | | BIGNUM *p1, BN_CTX *ctx, |
139 | | int rounds, |
140 | | BN_GENCB *cb) |
141 | 0 | { |
142 | 0 | int ret = 0; |
143 | 0 | int i = 0; |
144 | 0 | int tmp = 0; |
145 | |
|
146 | 0 | if (BN_copy(p1, Xp1) == NULL) |
147 | 0 | return 0; |
148 | 0 | BN_set_flags(p1, BN_FLG_CONSTTIME); |
149 | | |
150 | | /* Find the first odd number >= Xp1 that is probably prime */ |
151 | 0 | for (;;) { |
152 | 0 | i++; |
153 | 0 | BN_GENCB_call(cb, 0, i); |
154 | | /* MR test with trial division */ |
155 | 0 | tmp = ossl_bn_check_generated_prime(p1, rounds, ctx, cb); |
156 | 0 | if (tmp > 0) |
157 | 0 | break; |
158 | 0 | if (tmp < 0) |
159 | 0 | goto err; |
160 | | /* Get next odd number */ |
161 | 0 | if (!BN_add_word(p1, 2)) |
162 | 0 | goto err; |
163 | 0 | } |
164 | 0 | BN_GENCB_call(cb, 2, i); |
165 | 0 | ret = 1; |
166 | 0 | err: |
167 | 0 | return ret; |
168 | 0 | } |
169 | | |
170 | | /* |
171 | | * Generate a probable prime (p or q). |
172 | | * |
173 | | * See FIPS 186-5 A.1.6 (Steps 4 & 5) |
174 | | * |
175 | | * Params: |
176 | | * p The returned probable prime. |
177 | | * Xpout An optionally returned random number used during generation of p. |
178 | | * p1, p2 The returned auxiliary primes. If NULL they are not returned. |
179 | | * Xp An optional passed in value (that is random number used during |
180 | | * generation of p). |
181 | | * Xp1, Xp2 Optional passed in values that are normally generated |
182 | | * internally. Used to find p1, p2. |
183 | | * nlen The bit length of the modulus (the key size). |
184 | | * e The public exponent. |
185 | | * ctx A BN_CTX object. |
186 | | * cb An optional BIGNUM callback. |
187 | | * c An optional number with a value of 0, 1, 3, 5 or 7 that may be used |
188 | | * to add the requirement p is congruent to c mod 8. The value is ignored |
189 | | * if it is zero. |
190 | | * Returns: 1 on success otherwise it returns 0. |
191 | | */ |
192 | | int ossl_bn_rsa_fips186_5_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, |
193 | | BIGNUM *p1, BIGNUM *p2, |
194 | | const BIGNUM *Xp, const BIGNUM *Xp1, |
195 | | const BIGNUM *Xp2, int nlen, |
196 | | const BIGNUM *e, BN_CTX *ctx, |
197 | | BN_GENCB *cb, uint32_t c) |
198 | 0 | { |
199 | 0 | int ret = 0; |
200 | 0 | BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; |
201 | 0 | int bitlen, rounds; |
202 | |
|
203 | 0 | if (p == NULL || Xpout == NULL) |
204 | 0 | return 0; |
205 | | |
206 | 0 | BN_CTX_start(ctx); |
207 | |
|
208 | 0 | p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); |
209 | 0 | p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); |
210 | 0 | Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); |
211 | 0 | Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); |
212 | 0 | if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) |
213 | 0 | goto err; |
214 | | |
215 | 0 | bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen); |
216 | 0 | if (bitlen == 0) |
217 | 0 | goto err; |
218 | 0 | rounds = bn_rsa_fips186_5_aux_prime_MR_rounds(nlen); |
219 | | |
220 | | /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ |
221 | 0 | if (Xp1 == NULL) { |
222 | | /* Set the top and bottom bits to make it odd and the correct size */ |
223 | 0 | if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, |
224 | 0 | 0, ctx)) |
225 | 0 | goto err; |
226 | 0 | } |
227 | | /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ |
228 | 0 | if (Xp2 == NULL) { |
229 | | /* Set the top and bottom bits to make it odd and the correct size */ |
230 | 0 | if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, |
231 | 0 | 0, ctx)) |
232 | 0 | goto err; |
233 | 0 | } |
234 | | |
235 | | /* (Steps 4.2/5.2) - find first auxiliary probable primes */ |
236 | 0 | if (!bn_rsa_fips186_5_find_aux_prob_prime(Xp1i, p1i, ctx, rounds, cb) |
237 | 0 | || !bn_rsa_fips186_5_find_aux_prob_prime(Xp2i, p2i, ctx, rounds, cb)) |
238 | 0 | goto err; |
239 | | /* (FIPS 186-5 Table A.1) auxiliary prime Max length check */ |
240 | 0 | if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= |
241 | 0 | bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen, c)) |
242 | 0 | goto err; |
243 | | /* (Steps 4.3/5.3) - generate prime */ |
244 | 0 | if (!ossl_bn_rsa_fips186_5_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, |
245 | 0 | ctx, cb, c)) |
246 | 0 | goto err; |
247 | 0 | ret = 1; |
248 | 0 | err: |
249 | | /* Zeroize any internally generated values that are not returned */ |
250 | 0 | if (p1 == NULL) |
251 | 0 | BN_clear(p1i); |
252 | 0 | if (p2 == NULL) |
253 | 0 | BN_clear(p2i); |
254 | 0 | if (Xp1 == NULL) |
255 | 0 | BN_clear(Xp1i); |
256 | 0 | if (Xp2 == NULL) |
257 | 0 | BN_clear(Xp2i); |
258 | 0 | BN_CTX_end(ctx); |
259 | 0 | return ret; |
260 | 0 | } |
261 | | |
262 | | static ossl_inline |
263 | | int get_multiple_of_y_congruent_to_cmod8(BIGNUM *y, const BIGNUM *r1r2x2, int c) |
264 | 0 | { |
265 | 0 | int i = 0; |
266 | |
|
267 | 0 | for (i = 0; i < 3; ++i) { |
268 | | /* Check for Y = c mod 8 */ |
269 | 0 | if ((int)(*bn_get_words(y) & 7) == c) |
270 | 0 | return 1; |
271 | | /* Y = Y + 2r1r2 */ |
272 | 0 | if (!BN_add(y, y, r1r2x2)) |
273 | 0 | return 0; |
274 | 0 | } |
275 | | /* Fall through for y = y + 6 * r1r2 */ |
276 | 0 | return 1; |
277 | 0 | } |
278 | | |
279 | | /* |
280 | | * Constructs a probable prime (a candidate for p or q) using 2 auxiliary |
281 | | * prime numbers and the Chinese Remainder Theorem. |
282 | | * |
283 | | * See FIPS 186-5 B.9 "Compute a Probable Prime Factor Based on Auxiliary |
284 | | * Primes". Used by FIPS 186-5 A.1.6 Section (4.3) for p and Section (5.3) for q. |
285 | | * |
286 | | * Params: |
287 | | * Y The returned prime factor (private_prime_factor) of the modulus n. |
288 | | * X The returned random number used during generation of the prime factor. |
289 | | * Xin An optional passed in value for X used for testing purposes. |
290 | | * r1 An auxiliary prime. |
291 | | * r2 An auxiliary prime. |
292 | | * nlen The desired length of n (the RSA modulus). |
293 | | * e The public exponent. |
294 | | * ctx A BN_CTX object. |
295 | | * cb An optional BIGNUM callback object. |
296 | | * c An optional parameter from the set {0, 1, 3, 5, 7} that |
297 | | * may be used to add the further requirement that the computed |
298 | | * prime is congruent to c mod 8. A value of 0 indicates that the option |
299 | | * is ignored. |
300 | | * Returns: 1 on success otherwise it returns 0. |
301 | | * Assumptions: |
302 | | * Y, X, r1, r2, e are not NULL. |
303 | | */ |
304 | | int ossl_bn_rsa_fips186_5_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, |
305 | | const BIGNUM *r1, const BIGNUM *r2, |
306 | | int nlen, const BIGNUM *e, |
307 | | BN_CTX *ctx, BN_GENCB *cb, uint32_t c) |
308 | 0 | { |
309 | 0 | int ret = 0; |
310 | 0 | int i, imax, rounds; |
311 | 0 | int bits = nlen >> 1; |
312 | 0 | BIGNUM *tmp, *R, *r1r2x2, *r1r2x8, *y1, *r1x2; |
313 | 0 | BIGNUM *base, *range, *r1r2x2_step; |
314 | |
|
315 | 0 | BN_CTX_start(ctx); |
316 | |
|
317 | 0 | base = BN_CTX_get(ctx); |
318 | 0 | range = BN_CTX_get(ctx); |
319 | 0 | R = BN_CTX_get(ctx); |
320 | 0 | tmp = BN_CTX_get(ctx); |
321 | 0 | r1r2x2 = BN_CTX_get(ctx); |
322 | 0 | r1r2x8 = BN_CTX_get(ctx); |
323 | 0 | y1 = BN_CTX_get(ctx); |
324 | 0 | r1x2 = BN_CTX_get(ctx); |
325 | 0 | if (r1x2 == NULL) |
326 | 0 | goto err; |
327 | | |
328 | 0 | if (Xin != NULL && BN_copy(X, Xin) == NULL) |
329 | 0 | goto err; |
330 | | |
331 | | /* |
332 | | * We need to generate a random number X in the range |
333 | | * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2). |
334 | | * We can rewrite that as: |
335 | | * base = 1/sqrt(2) * 2^(nlen/2) |
336 | | * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2)) |
337 | | * X = base + random(range) |
338 | | * We only have the first 256 bit of 1/sqrt(2) |
339 | | */ |
340 | 0 | if (Xin == NULL) { |
341 | 0 | if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2)) |
342 | 0 | goto err; |
343 | 0 | if (!BN_lshift(base, &ossl_bn_inv_sqrt_2, |
344 | 0 | bits - BN_num_bits(&ossl_bn_inv_sqrt_2)) |
345 | 0 | || !BN_lshift(range, BN_value_one(), bits) |
346 | 0 | || !BN_sub(range, range, base)) |
347 | 0 | goto err; |
348 | 0 | } |
349 | | |
350 | | /* |
351 | | * (Step 1) GCD(2r1, r2) = 1. |
352 | | * Note: This algorithm was doing a gcd(2r1, r2)=1 test before doing an |
353 | | * mod_inverse(2r1, r2) which are effectively the same operation. |
354 | | * (The algorithm assumed that the gcd test would be faster). Since the |
355 | | * mod_inverse is currently faster than calling the constant time |
356 | | * BN_gcd(), the call to BN_gcd() has been omitted. The inverse result |
357 | | * is used further down. |
358 | | */ |
359 | 0 | if (!(BN_lshift1(r1x2, r1) |
360 | 0 | && (BN_mod_inverse(tmp, r1x2, r2, ctx) != NULL) |
361 | | /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ |
362 | 0 | && (BN_mod_inverse(R, r2, r1x2, ctx) != NULL) |
363 | 0 | && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ |
364 | 0 | && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ |
365 | 0 | && BN_sub(R, R, tmp) |
366 | | /* Calculate 2r1r2 */ |
367 | 0 | && BN_mul(r1r2x2, r1x2, r2, ctx))) |
368 | 0 | goto err; |
369 | | /* Make positive by adding the modulus */ |
370 | 0 | if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) |
371 | 0 | goto err; |
372 | | |
373 | 0 | if (c == 0) { |
374 | 0 | r1r2x2_step = r1r2x2; |
375 | 0 | } else { |
376 | 0 | if (!BN_lshift(r1r2x8, r1r2x2, 2)) |
377 | 0 | goto err; |
378 | 0 | r1r2x2_step = r1r2x8; |
379 | 0 | } |
380 | | |
381 | | /* |
382 | | * In FIPS 186-4 imax was set to 5 * nlen/2. |
383 | | * Analysis by Allen Roginsky |
384 | | * (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf |
385 | | * page 68) indicates this has a 1 in 2 million chance of failure. |
386 | | * The number has been updated to 20 * nlen/2 as used in |
387 | | * FIPS186-5 Appendix B.9 Step 9. |
388 | | */ |
389 | 0 | rounds = bn_rsa_fips186_5_prime_MR_rounds(nlen); |
390 | 0 | imax = 20 * bits; /* max = 20/2 * nbits */ |
391 | 0 | for (;;) { |
392 | 0 | if (Xin == NULL) { |
393 | | /* |
394 | | * (Step 3) Choose Random X such that |
395 | | * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1. |
396 | | */ |
397 | 0 | if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base)) |
398 | 0 | goto err; |
399 | 0 | } |
400 | | /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ |
401 | 0 | if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) |
402 | 0 | goto err; |
403 | | /* |
404 | | * (Step 4.1) If there is an optional requirement that the |
405 | | * computed prime is equal to c mod 8, then chose the value |
406 | | * Y, Y + 2r1r2, Y + 4r1r2 OR Y + 6r1r2 that satisfies the requirement. |
407 | | */ |
408 | 0 | if (c != 0) { |
409 | 0 | if (!get_multiple_of_y_congruent_to_cmod8(Y, r1r2x2, c)) |
410 | 0 | goto err; |
411 | 0 | } |
412 | | /* (Step 5) */ |
413 | 0 | i = 0; |
414 | 0 | for (;;) { |
415 | | /* (Step 6) */ |
416 | 0 | if (BN_num_bits(Y) > bits) { |
417 | 0 | if (Xin == NULL) |
418 | 0 | break; /* Randomly Generated X so Go back to Step 3 */ |
419 | 0 | else |
420 | 0 | goto err; /* X is not random so it will always fail */ |
421 | 0 | } |
422 | 0 | BN_GENCB_call(cb, 0, 2); |
423 | | |
424 | | /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ |
425 | 0 | if (BN_copy(y1, Y) == NULL |
426 | 0 | || !BN_sub_word(y1, 1)) |
427 | 0 | goto err; |
428 | | |
429 | 0 | if (BN_are_coprime(y1, e, ctx)) { |
430 | 0 | int rv = ossl_bn_check_generated_prime(Y, rounds, ctx, cb); |
431 | |
|
432 | 0 | if (rv > 0) |
433 | 0 | goto end; |
434 | 0 | if (rv < 0) |
435 | 0 | goto err; |
436 | 0 | } |
437 | | /* (Step 8-10) */ |
438 | 0 | if (++i >= imax) { |
439 | 0 | ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE); |
440 | 0 | goto err; |
441 | 0 | } |
442 | 0 | if (!BN_add(Y, Y, r1r2x2_step)) |
443 | 0 | goto err; |
444 | 0 | } |
445 | 0 | } |
446 | 0 | end: |
447 | 0 | ret = 1; |
448 | 0 | BN_GENCB_call(cb, 3, 0); |
449 | 0 | err: |
450 | 0 | BN_clear(y1); |
451 | 0 | BN_CTX_end(ctx); |
452 | 0 | return ret; |
453 | 0 | } |