/src/cryptsetup/lib/crypto_backend/cipher_check.c
Line | Count | Source |
1 | | // SPDX-License-Identifier: LGPL-2.1-or-later |
2 | | /* |
3 | | * Cipher performance check |
4 | | * |
5 | | * Copyright (C) 2018-2025 Red Hat, Inc. All rights reserved. |
6 | | * Copyright (C) 2018-2025 Milan Broz |
7 | | */ |
8 | | |
9 | | #include <errno.h> |
10 | | #include <time.h> |
11 | | #include "crypto_backend_internal.h" |
12 | | |
13 | | #ifndef CLOCK_MONOTONIC_RAW |
14 | | #define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC |
15 | | #endif |
16 | | |
17 | | /* |
18 | | * This is not simulating storage, so using disk block causes extreme overhead. |
19 | | * Let's use some fixed block size where results are more reliable... |
20 | | */ |
21 | 0 | #define CIPHER_BLOCK_BYTES 65536 |
22 | | |
23 | | /* |
24 | | * If the measured value is lower, encrypted buffer is probably too small |
25 | | * and calculated values are not reliable. |
26 | | */ |
27 | 0 | #define CIPHER_TIME_MIN_MS 0.001 |
28 | | |
29 | | /* |
30 | | * The whole test depends on Linux kernel usermode crypto API for now. |
31 | | * (The same implementations are used in dm-crypt though.) |
32 | | */ |
33 | | |
34 | | static int time_ms(struct timespec *start, struct timespec *end, double *ms) |
35 | 0 | { |
36 | 0 | double start_ms, end_ms; |
37 | |
|
38 | 0 | start_ms = start->tv_sec * 1000.0 + start->tv_nsec / (1000.0 * 1000); |
39 | 0 | end_ms = end->tv_sec * 1000.0 + end->tv_nsec / (1000.0 * 1000); |
40 | |
|
41 | 0 | *ms = end_ms - start_ms; |
42 | 0 | return 0; |
43 | 0 | } |
44 | | |
45 | | static int cipher_perf_one(struct crypt_cipher_kernel *cipher, char *buffer, size_t buffer_size, |
46 | | const char *iv, size_t iv_size, int enc) |
47 | 0 | { |
48 | 0 | size_t done = 0, block = CIPHER_BLOCK_BYTES; |
49 | 0 | int r; |
50 | |
|
51 | 0 | if (buffer_size < block) |
52 | 0 | block = buffer_size; |
53 | |
|
54 | 0 | while (done < buffer_size) { |
55 | 0 | if ((done + block) > buffer_size) |
56 | 0 | block = buffer_size - done; |
57 | |
|
58 | 0 | if (enc) |
59 | 0 | r = crypt_cipher_encrypt_kernel(cipher, &buffer[done], &buffer[done], |
60 | 0 | block, iv, iv_size); |
61 | 0 | else |
62 | 0 | r = crypt_cipher_decrypt_kernel(cipher, &buffer[done], &buffer[done], |
63 | 0 | block, iv, iv_size); |
64 | 0 | if (r < 0) |
65 | 0 | return r; |
66 | | |
67 | 0 | done += block; |
68 | 0 | } |
69 | | |
70 | 0 | return 0; |
71 | 0 | } |
72 | | |
73 | | static int cipher_measure(struct crypt_cipher_kernel *cipher, char *buffer, size_t buffer_size, |
74 | | const char *iv, size_t iv_size, int encrypt, double *ms) |
75 | 0 | { |
76 | 0 | struct timespec start, end; |
77 | 0 | int r; |
78 | | |
79 | | /* |
80 | | * Using getrusage would be better here but the precision |
81 | | * is not adequate, so better stick with CLOCK_MONOTONIC |
82 | | */ |
83 | 0 | if (clock_gettime(CLOCK_MONOTONIC_RAW, &start) < 0) |
84 | 0 | return -EINVAL; |
85 | | |
86 | 0 | r = cipher_perf_one(cipher, buffer, buffer_size, iv, iv_size, encrypt); |
87 | 0 | if (r < 0) |
88 | 0 | return r; |
89 | | |
90 | 0 | if (clock_gettime(CLOCK_MONOTONIC_RAW, &end) < 0) |
91 | 0 | return -EINVAL; |
92 | | |
93 | 0 | r = time_ms(&start, &end, ms); |
94 | 0 | if (r < 0) |
95 | 0 | return r; |
96 | | |
97 | 0 | if (*ms < CIPHER_TIME_MIN_MS) |
98 | 0 | return -ERANGE; |
99 | | |
100 | 0 | return 0; |
101 | 0 | } |
102 | | |
103 | | static double speed_mbs(unsigned long bytes, double ms) |
104 | 0 | { |
105 | 0 | double speed = bytes, s = ms / 1000.; |
106 | |
|
107 | 0 | return speed / (1024 * 1024) / s; |
108 | 0 | } |
109 | | |
110 | | int crypt_cipher_perf_kernel(const char *name, const char *mode, char *buffer, size_t buffer_size, |
111 | | const char *key, size_t key_size, const char *iv, size_t iv_size, |
112 | | double *encryption_mbs, double *decryption_mbs) |
113 | 0 | { |
114 | 0 | struct crypt_cipher_kernel cipher; |
115 | 0 | double ms_enc, ms_dec, ms; |
116 | 0 | int r, repeat_enc, repeat_dec; |
117 | |
|
118 | 0 | r = crypt_cipher_init_kernel(&cipher, name, mode, key, key_size); |
119 | 0 | if (r < 0) |
120 | 0 | return r; |
121 | | |
122 | 0 | ms_enc = 0.0; |
123 | 0 | repeat_enc = 1; |
124 | 0 | while (ms_enc < 1000.0) { |
125 | 0 | r = cipher_measure(&cipher, buffer, buffer_size, iv, iv_size, 1, &ms); |
126 | 0 | if (r < 0) |
127 | 0 | goto out; |
128 | 0 | ms_enc += ms; |
129 | 0 | repeat_enc++; |
130 | 0 | } |
131 | | |
132 | 0 | ms_dec = 0.0; |
133 | 0 | repeat_dec = 1; |
134 | 0 | while (ms_dec < 1000.0) { |
135 | 0 | r = cipher_measure(&cipher, buffer, buffer_size, iv, iv_size, 0, &ms); |
136 | 0 | if (r < 0) |
137 | 0 | goto out; |
138 | 0 | ms_dec += ms; |
139 | 0 | repeat_dec++; |
140 | 0 | } |
141 | | |
142 | 0 | *encryption_mbs = speed_mbs(buffer_size * repeat_enc, ms_enc); |
143 | 0 | *decryption_mbs = speed_mbs(buffer_size * repeat_dec, ms_dec); |
144 | |
|
145 | 0 | r = 0; |
146 | 0 | out: |
147 | 0 | crypt_cipher_destroy_kernel(&cipher); |
148 | 0 | return r; |
149 | 0 | } |