Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/json-c/linkhash.c
Line
Count
Source
1
/*
2
 * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
3
 *
4
 * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
5
 * Michael Clark <michael@metaparadigm.com>
6
 * Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
7
 *
8
 * This library is free software; you can redistribute it and/or modify
9
 * it under the terms of the MIT license. See COPYING for details.
10
 *
11
 */
12
13
#include "config.h"
14
15
#include <assert.h>
16
#include <limits.h>
17
#include <stdarg.h>
18
#include <stddef.h>
19
#include <stdio.h>
20
#include <stdlib.h>
21
#include <string.h>
22
23
#ifdef HAVE_ENDIAN_H
24
#include <endian.h> /* attempt to define endianness */
25
#endif
26
27
#if defined(_MSC_VER) || defined(__MINGW32__)
28
#ifndef WIN32_LEAN_AND_MEAN
29
#define WIN32_LEAN_AND_MEAN
30
#endif
31
#include <windows.h> /* Get InterlockedCompareExchange */
32
#endif
33
34
#include "linkhash.h"
35
#include "random_seed.h"
36
37
/* hash functions */
38
static unsigned long lh_char_hash(const void *k);
39
static unsigned long lh_perllike_str_hash(const void *k);
40
static lh_hash_fn *char_hash_fn = lh_char_hash;
41
42
/* comparison functions */
43
int lh_char_equal(const void *k1, const void *k2);
44
int lh_ptr_equal(const void *k1, const void *k2);
45
46
int json_global_set_string_hash(const int h)
47
0
{
48
0
  switch (h)
49
0
  {
50
0
  case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break;
51
0
  case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break;
52
0
  default: return -1;
53
0
  }
54
0
  return 0;
55
0
}
56
57
static unsigned long lh_ptr_hash(const void *k)
58
0
{
59
  /* CAW: refactored to be 64bit nice */
60
0
  return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
61
0
}
62
63
int lh_ptr_equal(const void *k1, const void *k2)
64
0
{
65
0
  return (k1 == k2);
66
0
}
67
68
/*
69
 * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
70
 * https://burtleburtle.net/bob/c/lookup3.c
71
 * minor modifications to make functions static so no symbols are exported
72
 * minor modifications to compile with -Werror
73
 */
74
75
/*
76
-------------------------------------------------------------------------------
77
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
78
79
These are functions for producing 32-bit hashes for hash table lookup.
80
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
81
are externally useful functions.  Routines to test the hash are included
82
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
83
the public domain.  It has no warranty.
84
85
You probably want to use hashlittle().  hashlittle() and hashbig()
86
hash byte arrays.  hashlittle() is faster than hashbig() on
87
little-endian machines.  Intel and AMD are little-endian machines.
88
On second thought, you probably want hashlittle2(), which is identical to
89
hashlittle() except it returns two 32-bit hashes for the price of one.
90
You could implement hashbig2() if you wanted but I haven't bothered here.
91
92
If you want to find a hash of, say, exactly 7 integers, do
93
  a = i1;  b = i2;  c = i3;
94
  mix(a,b,c);
95
  a += i4; b += i5; c += i6;
96
  mix(a,b,c);
97
  a += i7;
98
  final(a,b,c);
99
then use c as the hash value.  If you have a variable length array of
100
4-byte integers to hash, use hashword().  If you have a byte array (like
101
a character string), use hashlittle().  If you have several byte arrays, or
102
a mix of things, see the comments above hashlittle().
103
104
Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
105
then mix those integers.  This is fast (you can do a lot more thorough
106
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
107
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
108
-------------------------------------------------------------------------------
109
*/
110
111
/*
112
 * My best guess at if you are big-endian or little-endian.  This may
113
 * need adjustment.
114
 */
115
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \
116
    (defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) ||          \
117
     defined(__i686__) || defined(vax) || defined(MIPSEL))
118
1.26M
#define HASH_LITTLE_ENDIAN 1
119
#define HASH_BIG_ENDIAN 0
120
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \
121
    (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
122
#define HASH_LITTLE_ENDIAN 0
123
#define HASH_BIG_ENDIAN 1
124
#else
125
#define HASH_LITTLE_ENDIAN 0
126
#define HASH_BIG_ENDIAN 0
127
#endif
128
129
#define hashsize(n) ((uint32_t)1 << (n))
130
#define hashmask(n) (hashsize(n) - 1)
131
3.62M
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
132
133
/*
134
-------------------------------------------------------------------------------
135
mix -- mix 3 32-bit values reversibly.
136
137
This is reversible, so any information in (a,b,c) before mix() is
138
still in (a,b,c) after mix().
139
140
If four pairs of (a,b,c) inputs are run through mix(), or through
141
mix() in reverse, there are at least 32 bits of the output that
142
are sometimes the same for one pair and different for another pair.
143
This was tested for:
144
* pairs that differed by one bit, by two bits, in any combination
145
  of top bits of (a,b,c), or in any combination of bottom bits of
146
  (a,b,c).
147
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
148
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
149
  is commonly produced by subtraction) look like a single 1-bit
150
  difference.
151
* the base values were pseudorandom, all zero but one bit set, or
152
  all zero plus a counter that starts at zero.
153
154
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
155
satisfy this are
156
    4  6  8 16 19  4
157
    9 15  3 18 27 15
158
   14  9  3  7 17  3
159
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
160
for "differ" defined as + with a one-bit base and a two-bit delta.  I
161
used https://burtleburtle.net/bob/hash/avalanche.html to choose
162
the operations, constants, and arrangements of the variables.
163
164
This does not achieve avalanche.  There are input bits of (a,b,c)
165
that fail to affect some output bits of (a,b,c), especially of a.  The
166
most thoroughly mixed value is c, but it doesn't really even achieve
167
avalanche in c.
168
169
This allows some parallelism.  Read-after-writes are good at doubling
170
the number of bits affected, so the goal of mixing pulls in the opposite
171
direction as the goal of parallelism.  I did what I could.  Rotates
172
seem to cost as much as shifts on every machine I could lay my hands
173
on, and rotates are much kinder to the top and bottom bits, so I used
174
rotates.
175
-------------------------------------------------------------------------------
176
*/
177
/* clang-format off */
178
101k
#define mix(a,b,c) \
179
101k
{ \
180
101k
  a -= c;  a ^= rot(c, 4);  c += b; \
181
101k
  b -= a;  b ^= rot(a, 6);  a += c; \
182
101k
  c -= b;  c ^= rot(b, 8);  b += a; \
183
101k
  a -= c;  a ^= rot(c,16);  c += b; \
184
101k
  b -= a;  b ^= rot(a,19);  a += c; \
185
101k
  c -= b;  c ^= rot(b, 4);  b += a; \
186
101k
}
187
/* clang-format on */
188
189
/*
190
-------------------------------------------------------------------------------
191
final -- final mixing of 3 32-bit values (a,b,c) into c
192
193
Pairs of (a,b,c) values differing in only a few bits will usually
194
produce values of c that look totally different.  This was tested for
195
* pairs that differed by one bit, by two bits, in any combination
196
  of top bits of (a,b,c), or in any combination of bottom bits of
197
  (a,b,c).
198
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
199
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
200
  is commonly produced by subtraction) look like a single 1-bit
201
  difference.
202
* the base values were pseudorandom, all zero but one bit set, or
203
  all zero plus a counter that starts at zero.
204
205
These constants passed:
206
 14 11 25 16 4 14 24
207
 12 14 25 16 4 14 24
208
and these came close:
209
  4  8 15 26 3 22 24
210
 10  8 15 26 3 22 24
211
 11  8 15 26 3 22 24
212
-------------------------------------------------------------------------------
213
*/
214
/* clang-format off */
215
431k
#define final(a,b,c) \
216
431k
{ \
217
431k
  c ^= b; c -= rot(b,14); \
218
431k
  a ^= c; a -= rot(c,11); \
219
431k
  b ^= a; b -= rot(a,25); \
220
431k
  c ^= b; c -= rot(b,16); \
221
431k
  a ^= c; a -= rot(c,4);  \
222
431k
  b ^= a; b -= rot(a,14); \
223
431k
  c ^= b; c -= rot(b,24); \
224
431k
}
225
/* clang-format on */
226
227
/*
228
-------------------------------------------------------------------------------
229
hashlittle() -- hash a variable-length key into a 32-bit value
230
  k       : the key (the unaligned variable-length array of bytes)
231
  length  : the length of the key, counting by bytes
232
  initval : can be any 4-byte value
233
Returns a 32-bit value.  Every bit of the key affects every bit of
234
the return value.  Two keys differing by one or two bits will have
235
totally different hash values.
236
237
The best hash table sizes are powers of 2.  There is no need to do
238
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
239
use a bitmask.  For example, if you need only 10 bits, do
240
  h = (h & hashmask(10));
241
In which case, the hash table should have hashsize(10) elements.
242
243
If you are hashing n strings (uint8_t **)k, do it like this:
244
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
245
246
By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
247
code any way you wish, private, educational, or commercial.  It's free.
248
249
Use for hash table lookup, or anything where one collision in 2^^32 is
250
acceptable.  Do NOT use for cryptographic purposes.
251
-------------------------------------------------------------------------------
252
*/
253
254
/* clang-format off */
255
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval)
256
435k
{
257
435k
  uint32_t a,b,c; /* internal state */
258
435k
  union
259
435k
  {
260
435k
    const void *ptr;
261
435k
    size_t i;
262
435k
  } u; /* needed for Mac Powerbook G4 */
263
264
  /* Set up the internal state */
265
435k
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
266
267
435k
  u.ptr = key;
268
435k
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
269
240k
    const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
270
271
    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
272
330k
    while (length > 12)
273
89.7k
    {
274
89.7k
      a += k[0];
275
89.7k
      b += k[1];
276
89.7k
      c += k[2];
277
89.7k
      mix(a,b,c);
278
89.7k
      length -= 12;
279
89.7k
      k += 3;
280
89.7k
    }
281
282
    /*----------------------------- handle the last (probably partial) block */
283
    /*
284
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
285
     * then masks off the part it's not allowed to read.  Because the
286
     * string is aligned, the masked-off tail is in the same word as the
287
     * rest of the string.  Every machine with memory protection I've seen
288
     * does it on word boundaries, so is OK with this.  But VALGRIND will
289
     * still catch it and complain.  The masking trick does make the hash
290
     * noticeably faster for short strings (like English words).
291
     * AddressSanitizer is similarly picky about overrunning
292
     * the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html)
293
     */
294
#ifdef VALGRIND
295
#define PRECISE_MEMORY_ACCESS 1
296
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */
297
#define PRECISE_MEMORY_ACCESS 1
298
#elif defined(__has_feature)
299
#if __has_feature(address_sanitizer) /* Clang's ASAN */
300
#define PRECISE_MEMORY_ACCESS 1
301
#endif
302
240k
#endif
303
240k
#ifndef PRECISE_MEMORY_ACCESS
304
305
240k
    switch(length)
306
240k
    {
307
1.61k
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
308
4.41k
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
309
4.47k
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
310
36.7k
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
311
55.0k
    case 8 : b+=k[1]; a+=k[0]; break;
312
22.2k
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
313
28.6k
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
314
10.0k
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
315
25.4k
    case 4 : a+=k[0]; break;
316
3.25k
    case 3 : a+=k[0]&0xffffff; break;
317
5.81k
    case 2 : a+=k[0]&0xffff; break;
318
38.3k
    case 1 : a+=k[0]&0xff; break;
319
4.64k
    case 0 : return c; /* zero length strings require no mixing */
320
240k
    }
321
322
#else /* make valgrind happy */
323
324
    const uint8_t  *k8 = (const uint8_t *)k;
325
    switch(length)
326
    {
327
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
328
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
329
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
330
    case 9 : c+=k8[8];                   /* fall through */
331
    case 8 : b+=k[1]; a+=k[0]; break;
332
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
333
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
334
    case 5 : b+=k8[4];                   /* fall through */
335
    case 4 : a+=k[0]; break;
336
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
337
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
338
    case 1 : a+=k8[0]; break;
339
    case 0 : return c;
340
    }
341
342
#endif /* !valgrind */
343
344
240k
  }
345
195k
  else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0))
346
63.0k
  {
347
63.0k
    const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
348
63.0k
    const uint8_t  *k8;
349
350
    /*--------------- all but last block: aligned reads and different mixing */
351
75.0k
    while (length > 12)
352
11.9k
    {
353
11.9k
      a += k[0] + (((uint32_t)k[1])<<16);
354
11.9k
      b += k[2] + (((uint32_t)k[3])<<16);
355
11.9k
      c += k[4] + (((uint32_t)k[5])<<16);
356
11.9k
      mix(a,b,c);
357
11.9k
      length -= 12;
358
11.9k
      k += 6;
359
11.9k
    }
360
361
    /*----------------------------- handle the last (probably partial) block */
362
63.0k
    k8 = (const uint8_t *)k;
363
63.0k
    switch(length)
364
63.0k
    {
365
0
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
366
0
       b+=k[2]+(((uint32_t)k[3])<<16);
367
0
       a+=k[0]+(((uint32_t)k[1])<<16);
368
0
       break;
369
0
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
370
26
    case 10: c+=k[4];
371
26
       b+=k[2]+(((uint32_t)k[3])<<16);
372
26
       a+=k[0]+(((uint32_t)k[1])<<16);
373
26
       break;
374
0
    case 9 : c+=k8[8];                      /* fall through */
375
0
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
376
0
       a+=k[0]+(((uint32_t)k[1])<<16);
377
0
       break;
378
0
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
379
51.0k
    case 6 : b+=k[2];
380
51.0k
       a+=k[0]+(((uint32_t)k[1])<<16);
381
51.0k
       break;
382
4
    case 5 : b+=k8[4];                      /* fall through */
383
4
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
384
4
       break;
385
0
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
386
0
    case 2 : a+=k[0];
387
0
       break;
388
11.9k
    case 1 : a+=k8[0];
389
11.9k
       break;
390
0
    case 0 : return c;                     /* zero length requires no mixing */
391
63.0k
    }
392
393
63.0k
  }
394
132k
  else
395
132k
  {
396
    /* need to read the key one byte at a time */
397
132k
    const uint8_t *k = (const uint8_t *)key;
398
399
    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
400
132k
    while (length > 12)
401
8
    {
402
8
      a += k[0];
403
8
      a += ((uint32_t)k[1])<<8;
404
8
      a += ((uint32_t)k[2])<<16;
405
8
      a += ((uint32_t)k[3])<<24;
406
8
      b += k[4];
407
8
      b += ((uint32_t)k[5])<<8;
408
8
      b += ((uint32_t)k[6])<<16;
409
8
      b += ((uint32_t)k[7])<<24;
410
8
      c += k[8];
411
8
      c += ((uint32_t)k[9])<<8;
412
8
      c += ((uint32_t)k[10])<<16;
413
8
      c += ((uint32_t)k[11])<<24;
414
8
      mix(a,b,c);
415
8
      length -= 12;
416
8
      k += 12;
417
8
    }
418
419
    /*-------------------------------- last block: affect all 32 bits of (c) */
420
132k
    switch(length) /* all the case statements fall through */
421
132k
    {
422
19.4k
    case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */
423
19.4k
    case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */
424
19.4k
    case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */
425
19.5k
    case 9 : c+=k[8]; /* FALLTHRU */
426
50.1k
    case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */
427
50.1k
    case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */
428
75.7k
    case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */
429
111k
    case 5 : b+=k[4]; /* FALLTHRU */
430
132k
    case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */
431
132k
    case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */
432
132k
    case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */
433
132k
    case 1 : a+=k[0];
434
132k
       break;
435
0
    case 0 : return c;
436
132k
    }
437
132k
  }
438
439
431k
  final(a,b,c);
440
431k
  return c;
441
435k
}
442
/* clang-format on */
443
444
/* a simple hash function similar to what perl does for strings.
445
 * for good results, the string should not be excessively large.
446
 */
447
static unsigned long lh_perllike_str_hash(const void *k)
448
0
{
449
0
  const char *rkey = (const char *)k;
450
0
  unsigned hashval = 1;
451
452
0
  while (*rkey)
453
0
    hashval = hashval * 33 + *rkey++;
454
455
0
  return hashval;
456
0
}
457
458
static unsigned long lh_char_hash(const void *k)
459
435k
{
460
#if defined _MSC_VER || defined __MINGW32__
461
#define RANDOM_SEED_TYPE LONG
462
#else
463
435k
#define RANDOM_SEED_TYPE int
464
435k
#endif
465
435k
  static volatile RANDOM_SEED_TYPE random_seed = -1;
466
467
435k
  if (random_seed == -1)
468
2
  {
469
2
    RANDOM_SEED_TYPE seed;
470
    /* we can't use -1 as it is the uninitialized sentinel */
471
2
    while ((seed = json_c_get_random_seed()) == -1) {}
472
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
473
#define USE_SYNC_COMPARE_AND_SWAP 1
474
#endif
475
2
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
476
2
#define USE_SYNC_COMPARE_AND_SWAP 1
477
2
#endif
478
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
479
#define USE_SYNC_COMPARE_AND_SWAP 1
480
#endif
481
2
#if defined USE_SYNC_COMPARE_AND_SWAP
482
2
    (void)__sync_val_compare_and_swap(&random_seed, -1, seed);
483
#elif defined _MSC_VER || defined __MINGW32__
484
    InterlockedCompareExchange(&random_seed, seed, -1);
485
#else
486
    //#warning "racy random seed initialization if used by multiple threads"
487
    random_seed = seed; /* potentially racy */
488
#endif
489
2
  }
490
491
435k
  return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed);
492
435k
}
493
494
int lh_char_equal(const void *k1, const void *k2)
495
306k
{
496
306k
  return (strcmp((const char *)k1, (const char *)k2) == 0);
497
306k
}
498
499
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn,
500
                              lh_equal_fn *equal_fn)
501
71.4k
{
502
71.4k
  int i;
503
71.4k
  struct lh_table *t;
504
505
  /* Allocate space for elements to avoid divisions by zero. */
506
71.4k
  assert(size > 0);
507
71.4k
  t = (struct lh_table *)calloc(1, sizeof(struct lh_table));
508
71.4k
  if (!t)
509
0
    return NULL;
510
511
71.4k
  t->count = 0;
512
71.4k
  t->size = size;
513
71.4k
  t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry));
514
71.4k
  if (!t->table)
515
0
  {
516
0
    free(t);
517
0
    return NULL;
518
0
  }
519
71.4k
  t->free_fn = free_fn;
520
71.4k
  t->hash_fn = hash_fn;
521
71.4k
  t->equal_fn = equal_fn;
522
1.24M
  for (i = 0; i < size; i++)
523
1.17M
    t->table[i].k = LH_EMPTY;
524
71.4k
  return t;
525
71.4k
}
526
527
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn)
528
70.4k
{
529
70.4k
  return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal);
530
70.4k
}
531
532
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn)
533
0
{
534
0
  return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal);
535
0
}
536
537
int lh_table_resize(struct lh_table *t, int new_size)
538
1.03k
{
539
1.03k
  struct lh_table *new_t;
540
1.03k
  struct lh_entry *ent;
541
542
1.03k
  new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn);
543
1.03k
  if (new_t == NULL)
544
0
    return -1;
545
546
17.9k
  for (ent = t->head; ent != NULL; ent = ent->next)
547
16.9k
  {
548
16.9k
    unsigned long h = lh_get_hash(new_t, ent->k);
549
16.9k
    unsigned int opts = 0;
550
16.9k
    if (ent->k_is_constant)
551
0
      opts = JSON_C_OBJECT_ADD_CONSTANT_KEY;
552
16.9k
    if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0)
553
0
    {
554
0
      lh_table_free(new_t);
555
0
      return -1;
556
0
    }
557
16.9k
  }
558
1.03k
  free(t->table);
559
1.03k
  t->table = new_t->table;
560
1.03k
  t->size = new_size;
561
1.03k
  t->head = new_t->head;
562
1.03k
  t->tail = new_t->tail;
563
1.03k
  free(new_t);
564
565
1.03k
  return 0;
566
1.03k
}
567
568
void lh_table_free(struct lh_table *t)
569
70.4k
{
570
70.4k
  struct lh_entry *c;
571
70.4k
  if (t->free_fn)
572
70.4k
  {
573
213k
    for (c = t->head; c != NULL; c = c->next)
574
143k
      t->free_fn(c);
575
70.4k
  }
576
70.4k
  free(t->table);
577
70.4k
  free(t);
578
70.4k
}
579
580
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h,
581
                           const unsigned opts)
582
160k
{
583
160k
  unsigned long n;
584
585
160k
  if (t->count >= t->size * LH_LOAD_FACTOR)
586
1.03k
  {
587
    /* Avoid signed integer overflow with large tables. */
588
1.03k
    int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
589
1.03k
    if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0)
590
0
      return -1;
591
1.03k
  }
592
593
160k
  n = h % t->size;
594
595
195k
  while (1)
596
195k
  {
597
195k
    if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
598
160k
      break;
599
34.8k
    if ((int)++n == t->size)
600
522
      n = 0;
601
34.8k
  }
602
603
160k
  t->table[n].k = k;
604
160k
  t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY);
605
160k
  t->table[n].v = v;
606
160k
  t->count++;
607
608
160k
  if (t->head == NULL)
609
42.9k
  {
610
42.9k
    t->head = t->tail = &t->table[n];
611
42.9k
    t->table[n].next = t->table[n].prev = NULL;
612
42.9k
  }
613
117k
  else
614
117k
  {
615
117k
    t->tail->next = &t->table[n];
616
117k
    t->table[n].prev = t->tail;
617
117k
    t->table[n].next = NULL;
618
117k
    t->tail = &t->table[n];
619
117k
  }
620
621
160k
  return 0;
622
160k
}
623
int lh_table_insert(struct lh_table *t, const void *k, const void *v)
624
0
{
625
0
  return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0);
626
0
}
627
628
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k,
629
                                              const unsigned long h)
630
418k
{
631
418k
  unsigned long n = h % t->size;
632
418k
  int count = 0;
633
634
482k
  while (count < t->size)
635
482k
  {
636
482k
    if (t->table[n].k == LH_EMPTY)
637
175k
      return NULL;
638
306k
    if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k))
639
242k
      return &t->table[n];
640
63.7k
    if ((int)++n == t->size)
641
559
      n = 0;
642
63.7k
    count++;
643
63.7k
  }
644
0
  return NULL;
645
418k
}
646
647
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k)
648
270k
{
649
270k
  return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k));
650
270k
}
651
652
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v)
653
269k
{
654
269k
  struct lh_entry *e = lh_table_lookup_entry(t, k);
655
269k
  if (e != NULL)
656
237k
  {
657
237k
    if (v != NULL)
658
231k
      *v = lh_entry_v(e);
659
237k
    return 1; /* key found */
660
237k
  }
661
32.3k
  if (v != NULL)
662
31.5k
    *v = NULL;
663
32.3k
  return 0; /* key not found */
664
269k
}
665
666
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
667
373
{
668
  /* CAW: fixed to be 64bit nice, still need the crazy negative case... */
669
373
  ptrdiff_t n = (ptrdiff_t)(e - t->table);
670
671
  /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
672
373
  if (n < 0)
673
0
  {
674
0
    return -2;
675
0
  }
676
677
373
  if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
678
0
    return -1;
679
373
  t->count--;
680
373
  if (t->free_fn)
681
373
    t->free_fn(e);
682
373
  t->table[n].v = NULL;
683
373
  t->table[n].k = LH_FREED;
684
373
  if (t->tail == &t->table[n] && t->head == &t->table[n])
685
0
  {
686
0
    t->head = t->tail = NULL;
687
0
  }
688
373
  else if (t->head == &t->table[n])
689
5
  {
690
5
    t->head->next->prev = NULL;
691
5
    t->head = t->head->next;
692
5
  }
693
368
  else if (t->tail == &t->table[n])
694
46
  {
695
46
    t->tail->prev->next = NULL;
696
46
    t->tail = t->tail->prev;
697
46
  }
698
322
  else
699
322
  {
700
322
    t->table[n].prev->next = t->table[n].next;
701
322
    t->table[n].next->prev = t->table[n].prev;
702
322
  }
703
373
  t->table[n].next = t->table[n].prev = NULL;
704
373
  return 0;
705
373
}
706
707
int lh_table_delete(struct lh_table *t, const void *k)
708
373
{
709
373
  struct lh_entry *e = lh_table_lookup_entry(t, k);
710
373
  if (!e)
711
0
    return -1;
712
373
  return lh_table_delete_entry(t, e);
713
373
}
714
715
int lh_table_length(struct lh_table *t)
716
12.1k
{
717
12.1k
  return t->count;
718
12.1k
}