Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/bn/bn_div.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <assert.h>
11
#include <openssl/bn.h>
12
#include "internal/cryptlib.h"
13
#include "bn_local.h"
14
15
/* The old slow way */
16
#if 0
17
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
18
           BN_CTX *ctx)
19
{
20
    int i, nm, nd;
21
    int ret = 0;
22
    BIGNUM *D;
23
24
    bn_check_top(m);
25
    bn_check_top(d);
26
    if (BN_is_zero(d)) {
27
        ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
28
        return 0;
29
    }
30
31
    if (BN_ucmp(m, d) < 0) {
32
        if (rem != NULL) {
33
            if (BN_copy(rem, m) == NULL)
34
                return 0;
35
        }
36
        if (dv != NULL)
37
            BN_zero(dv);
38
        return 1;
39
    }
40
41
    BN_CTX_start(ctx);
42
    D = BN_CTX_get(ctx);
43
    if (dv == NULL)
44
        dv = BN_CTX_get(ctx);
45
    if (rem == NULL)
46
        rem = BN_CTX_get(ctx);
47
    if (D == NULL || dv == NULL || rem == NULL)
48
        goto end;
49
50
    nd = BN_num_bits(d);
51
    nm = BN_num_bits(m);
52
    if (BN_copy(D, d) == NULL)
53
        goto end;
54
    if (BN_copy(rem, m) == NULL)
55
        goto end;
56
57
    /*
58
     * The next 2 are needed so we can do a dv->d[0]|=1 later since
59
     * BN_lshift1 will only work once there is a value :-)
60
     */
61
    BN_zero(dv);
62
    if (bn_wexpand(dv, 1) == NULL)
63
        goto end;
64
    dv->top = 1;
65
66
    if (!BN_lshift(D, D, nm - nd))
67
        goto end;
68
    for (i = nm - nd; i >= 0; i--) {
69
        if (!BN_lshift1(dv, dv))
70
            goto end;
71
        if (BN_ucmp(rem, D) >= 0) {
72
            dv->d[0] |= 1;
73
            if (!BN_usub(rem, rem, D))
74
                goto end;
75
        }
76
/* CAN IMPROVE (and have now :=) */
77
        if (!BN_rshift1(D, D))
78
            goto end;
79
    }
80
    rem->neg = BN_is_zero(rem) ? 0 : m->neg;
81
    dv->neg = m->neg ^ d->neg;
82
    ret = 1;
83
 end:
84
    BN_CTX_end(ctx);
85
    return ret;
86
}
87
88
#else
89
90
#if defined(BN_DIV3W)
91
BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
92
#elif 0
93
/*
94
 * This is #if-ed away, because it's a reference for assembly implementations,
95
 * where it can and should be made constant-time. But if you want to test it,
96
 * just replace 0 with 1.
97
 */
98
#if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16
99
#undef BN_ULLONG
100
#define BN_ULLONG uint128_t
101
#define BN_LLONG
102
#endif
103
104
#ifdef BN_LLONG
105
#define BN_DIV3W
106
/*
107
 * Interface is somewhat quirky, |m| is pointer to most significant limb,
108
 * and less significant limb is referred at |m[-1]|. This means that caller
109
 * is responsible for ensuring that |m[-1]| is valid. Second condition that
110
 * has to be met is that |d0|'s most significant bit has to be set. Or in
111
 * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top
112
 * does all this. The subroutine considers four limbs, two of which are
113
 * "overlapping," hence the name...
114
 */
115
static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
116
{
117
    BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1];
118
    BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1;
119
    BN_ULONG Q = 0, mask;
120
    int i;
121
122
    for (i = 0; i < BN_BITS2; i++) {
123
        Q <<= 1;
124
        if (R >= D) {
125
            Q |= 1;
126
            R -= D;
127
        }
128
        D >>= 1;
129
    }
130
131
    mask = 0 - (Q >> (BN_BITS2 - 1)); /* does it overflow? */
132
133
    Q <<= 1;
134
    Q |= (R >= D);
135
136
    return (Q | mask) & BN_MASK2;
137
}
138
#endif
139
#endif
140
141
static int bn_left_align(BIGNUM *num)
142
0
{
143
0
    BN_ULONG *d = num->d, n, m, rmask;
144
0
    int top = num->top;
145
0
    int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
146
147
0
    lshift = BN_BITS2 - rshift;
148
0
    rshift %= BN_BITS2; /* say no to undefined behaviour */
149
0
    rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */
150
0
    rmask |= rmask >> 8;
151
152
0
    for (i = 0, m = 0; i < top; i++) {
153
0
        n = d[i];
154
0
        d[i] = ((n << lshift) | m) & BN_MASK2;
155
0
        m = (n >> rshift) & rmask;
156
0
    }
157
158
0
    return lshift;
159
0
}
160
161
#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
162
    && !defined(PEDANTIC) && !defined(BN_DIV3W)
163
#if defined(__GNUC__) && __GNUC__ >= 2
164
#if defined(__i386) || defined(__i386__)
165
/*-
166
 * There were two reasons for implementing this template:
167
 * - GNU C generates a call to a function (__udivdi3 to be exact)
168
 *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
169
 *   understand why...);
170
 * - divl doesn't only calculate quotient, but also leaves
171
 *   remainder in %edx which we can definitely use here:-)
172
 */
173
#undef bn_div_words
174
#define bn_div_words(n0, n1, d0)        \
175
    ({                                  \
176
        asm volatile(                   \
177
            "divl   %4"                 \
178
            : "=a"(q), "=d"(rem)        \
179
            : "a"(n1), "d"(n0), "r"(d0) \
180
            : "cc");                    \
181
        q;                              \
182
    })
183
#define REMAINDER_IS_ALREADY_CALCULATED
184
#elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
185
/*
186
 * Same story here, but it's 128-bit by 64-bit division. Wow!
187
 */
188
#undef bn_div_words
189
#define bn_div_words(n0, n1, d0)        \
190
    ({                                  \
191
        asm volatile(                   \
192
            "divq   %4"                 \
193
            : "=a"(q), "=d"(rem)        \
194
            : "a"(n1), "d"(n0), "r"(d0) \
195
            : "cc");                    \
196
        q;                              \
197
    })
198
#define REMAINDER_IS_ALREADY_CALCULATED
199
#endif /* __<cpu> */
200
#endif /* __GNUC__ */
201
#endif /* OPENSSL_NO_ASM */
202
203
/*-
204
 * BN_div computes  dv := num / divisor, rounding towards
205
 * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
206
 * Thus:
207
 *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
208
 *     rm->neg == num->neg                 (unless the remainder is zero)
209
 * If 'dv' or 'rm' is NULL, the respective value is not returned.
210
 */
211
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
212
    BN_CTX *ctx)
213
0
{
214
0
    int ret;
215
216
0
    if (BN_is_zero(divisor)) {
217
0
        ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
218
0
        return 0;
219
0
    }
220
221
    /*
222
     * Invalid zero-padding would have particularly bad consequences so don't
223
     * just rely on bn_check_top() here (bn_check_top() works only for
224
     * BN_DEBUG builds)
225
     */
226
0
    if (divisor->d[divisor->top - 1] == 0) {
227
0
        ERR_raise(ERR_LIB_BN, BN_R_NOT_INITIALIZED);
228
0
        return 0;
229
0
    }
230
231
0
    ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
232
233
0
    if (ret) {
234
0
        if (dv != NULL)
235
0
            bn_correct_top(dv);
236
0
        if (rm != NULL)
237
0
            bn_correct_top(rm);
238
0
    }
239
240
0
    return ret;
241
0
}
242
243
/*
244
 * It's argued that *length* of *significant* part of divisor is public.
245
 * Even if it's private modulus that is. Again, *length* is assumed
246
 * public, but not *value*. Former is likely to be pre-defined by
247
 * algorithm with bit granularity, though below subroutine is invariant
248
 * of limb length. Thanks to this assumption we can require that |divisor|
249
 * may not be zero-padded, yet claim this subroutine "constant-time"(*).
250
 * This is because zero-padded dividend, |num|, is tolerated, so that
251
 * caller can pass dividend of public length(*), but with smaller amount
252
 * of significant limbs. This naturally means that quotient, |dv|, would
253
 * contain correspongly less significant limbs as well, and will be zero-
254
 * padded accordingly. Returned remainder, |rm|, will have same bit length
255
 * as divisor, also zero-padded if needed. These actually leave sign bits
256
 * in ambiguous state. In sense that we try to avoid negative zeros, while
257
 * zero-padded zeros would retain sign.
258
 *
259
 * (*) "Constant-time-ness" has two pre-conditions:
260
 *
261
 *     - availability of constant-time bn_div_3_words;
262
 *     - dividend is at least as "wide" as divisor, limb-wise, zero-padded
263
 *       if so required, which shouldn't be a privacy problem, because
264
 *       divisor's length is considered public;
265
 */
266
int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
267
    const BIGNUM *divisor, BN_CTX *ctx)
268
0
{
269
0
    int norm_shift, i, j, loop;
270
0
    BIGNUM *tmp, *snum, *sdiv, *res;
271
0
    BN_ULONG *resp, *wnum, *wnumtop;
272
0
    BN_ULONG d0, d1;
273
0
    int num_n, div_n, num_neg;
274
275
0
    assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
276
277
0
    bn_check_top(num);
278
0
    bn_check_top(divisor);
279
0
    bn_check_top(dv);
280
0
    bn_check_top(rm);
281
282
0
    BN_CTX_start(ctx);
283
0
    res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
284
0
    tmp = BN_CTX_get(ctx);
285
0
    snum = BN_CTX_get(ctx);
286
0
    sdiv = BN_CTX_get(ctx);
287
0
    if (sdiv == NULL)
288
0
        goto err;
289
290
    /* First we normalise the numbers */
291
0
    if (!BN_copy(sdiv, divisor))
292
0
        goto err;
293
0
    norm_shift = bn_left_align(sdiv);
294
0
    sdiv->neg = 0;
295
    /*
296
     * Note that bn_lshift_fixed_top's output is always one limb longer
297
     * than input, even when norm_shift is zero. This means that amount of
298
     * inner loop iterations is invariant of dividend value, and that one
299
     * doesn't need to compare dividend and divisor if they were originally
300
     * of the same bit length.
301
     */
302
0
    if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
303
0
        goto err;
304
305
0
    div_n = sdiv->top;
306
0
    num_n = snum->top;
307
308
0
    if (num_n <= div_n) {
309
        /* caller didn't pad dividend -> no constant-time guarantee... */
310
0
        if (bn_wexpand(snum, div_n + 1) == NULL)
311
0
            goto err;
312
0
        memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
313
0
        snum->top = num_n = div_n + 1;
314
0
    }
315
316
0
    loop = num_n - div_n;
317
    /*
318
     * Lets setup a 'window' into snum This is the part that corresponds to
319
     * the current 'area' being divided
320
     */
321
0
    wnum = &(snum->d[loop]);
322
0
    wnumtop = &(snum->d[num_n - 1]);
323
324
    /* Get the top 2 words of sdiv */
325
0
    d0 = sdiv->d[div_n - 1];
326
0
    d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
327
328
    /* Setup quotient */
329
0
    if (!bn_wexpand(res, loop))
330
0
        goto err;
331
0
    num_neg = num->neg;
332
0
    res->neg = (num_neg ^ divisor->neg);
333
0
    res->top = loop;
334
0
    res->flags |= BN_FLG_FIXED_TOP;
335
0
    resp = &(res->d[loop]);
336
337
    /* space for temp */
338
0
    if (!bn_wexpand(tmp, (div_n + 1)))
339
0
        goto err;
340
341
0
    for (i = 0; i < loop; i++, wnumtop--) {
342
0
        BN_ULONG q, l0;
343
        /*
344
         * the first part of the loop uses the top two words of snum and sdiv
345
         * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
346
         */
347
#if defined(BN_DIV3W)
348
        q = bn_div_3_words(wnumtop, d1, d0);
349
#else
350
0
        BN_ULONG n0, n1, rem = 0;
351
352
0
        n0 = wnumtop[0];
353
0
        n1 = wnumtop[-1];
354
0
        if (n0 == d0)
355
0
            q = BN_MASK2;
356
0
        else { /* n0 < d0 */
357
0
            BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
358
#ifdef BN_LLONG
359
            BN_ULLONG t2;
360
361
#if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
362
            q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
363
#else
364
            q = bn_div_words(n0, n1, d0);
365
#endif
366
367
#ifndef REMAINDER_IS_ALREADY_CALCULATED
368
            /*
369
             * rem doesn't have to be BN_ULLONG. The least we
370
             * know it's less that d0, isn't it?
371
             */
372
            rem = (n1 - q * d0) & BN_MASK2;
373
#endif
374
            t2 = (BN_ULLONG)d1 * q;
375
376
            for (;;) {
377
                if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | n2))
378
                    break;
379
                q--;
380
                rem += d0;
381
                if (rem < d0)
382
                    break; /* don't let rem overflow */
383
                t2 -= d1;
384
            }
385
#else /* !BN_LLONG */
386
0
            BN_ULONG t2l, t2h;
387
388
0
            q = bn_div_words(n0, n1, d0);
389
0
#ifndef REMAINDER_IS_ALREADY_CALCULATED
390
0
            rem = (n1 - q * d0) & BN_MASK2;
391
0
#endif
392
393
#if defined(BN_UMULT_LOHI)
394
            BN_UMULT_LOHI(t2l, t2h, d1, q);
395
#elif defined(BN_UMULT_HIGH)
396
            t2l = d1 * q;
397
            t2h = BN_UMULT_HIGH(d1, q);
398
#else
399
0
            {
400
0
                BN_ULONG ql, qh;
401
0
                t2l = LBITS(d1);
402
0
                t2h = HBITS(d1);
403
0
                ql = LBITS(q);
404
0
                qh = HBITS(q);
405
0
                mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
406
0
            }
407
0
#endif
408
409
0
            for (;;) {
410
0
                if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
411
0
                    break;
412
0
                q--;
413
0
                rem += d0;
414
0
                if (rem < d0)
415
0
                    break; /* don't let rem overflow */
416
0
                if (t2l < d1)
417
0
                    t2h--;
418
0
                t2l -= d1;
419
0
            }
420
0
#endif /* !BN_LLONG */
421
0
        }
422
0
#endif /* !BN_DIV3W */
423
424
0
        l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
425
0
        tmp->d[div_n] = l0;
426
0
        wnum--;
427
        /*
428
         * ignore top values of the bignums just sub the two BN_ULONG arrays
429
         * with bn_sub_words
430
         */
431
0
        l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
432
0
        q -= l0;
433
        /*
434
         * Note: As we have considered only the leading two BN_ULONGs in
435
         * the calculation of q, sdiv * q might be greater than wnum (but
436
         * then (q-1) * sdiv is less or equal than wnum)
437
         */
438
0
        for (l0 = 0 - l0, j = 0; j < div_n; j++)
439
0
            tmp->d[j] = sdiv->d[j] & l0;
440
0
        l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
441
0
        (*wnumtop) += l0;
442
0
        assert((*wnumtop) == 0);
443
444
        /* store part of the result */
445
0
        *--resp = q;
446
0
    }
447
    /* snum holds remainder, it's as wide as divisor */
448
0
    snum->neg = num_neg;
449
0
    snum->top = div_n;
450
0
    snum->flags |= BN_FLG_FIXED_TOP;
451
452
0
    if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0)
453
0
        goto err;
454
455
0
    BN_CTX_end(ctx);
456
0
    return 1;
457
0
err:
458
0
    bn_check_top(rm);
459
0
    BN_CTX_end(ctx);
460
0
    return 0;
461
0
}
462
#endif