/src/openssl/crypto/bn/bn_gf2m.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2002-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <assert.h> |
12 | | #include <limits.h> |
13 | | #include <stdio.h> |
14 | | #include "internal/cryptlib.h" |
15 | | #include "bn_local.h" |
16 | | |
17 | | #ifndef OPENSSL_NO_EC2M |
18 | | #include <openssl/ec.h> |
19 | | |
20 | | /* |
21 | | * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should |
22 | | * fail. |
23 | | */ |
24 | 0 | #define MAX_ITERATIONS 50 |
25 | | |
26 | 0 | #define SQR_nibble(w) ((((w) & 8) << 3) \ |
27 | 0 | | (((w) & 4) << 2) \ |
28 | 0 | | (((w) & 2) << 1) \ |
29 | 0 | | ((w) & 1)) |
30 | | |
31 | | /* Platform-specific macros to accelerate squaring. */ |
32 | | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
33 | | #define SQR1(w) \ |
34 | 0 | SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32) |
35 | | #define SQR0(w) \ |
36 | 0 | SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w)) |
37 | | #endif |
38 | | #ifdef THIRTY_TWO_BIT |
39 | | #define SQR1(w) \ |
40 | | SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16) |
41 | | #define SQR0(w) \ |
42 | | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w)) |
43 | | #endif |
44 | | |
45 | | #if !defined(OPENSSL_BN_ASM_GF2m) |
46 | | /* |
47 | | * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is |
48 | | * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that |
49 | | * the variables have the right amount of space allocated. |
50 | | */ |
51 | | #ifdef THIRTY_TWO_BIT |
52 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
53 | | const BN_ULONG b) |
54 | | { |
55 | | register BN_ULONG h, l, s; |
56 | | BN_ULONG tab[8], top2b = a >> 30; |
57 | | register BN_ULONG a1, a2, a4; |
58 | | |
59 | | a1 = a & (0x3FFFFFFF); |
60 | | a2 = a1 << 1; |
61 | | a4 = a2 << 1; |
62 | | |
63 | | tab[0] = 0; |
64 | | tab[1] = a1; |
65 | | tab[2] = a2; |
66 | | tab[3] = a1 ^ a2; |
67 | | tab[4] = a4; |
68 | | tab[5] = a1 ^ a4; |
69 | | tab[6] = a2 ^ a4; |
70 | | tab[7] = a1 ^ a2 ^ a4; |
71 | | |
72 | | s = tab[b & 0x7]; |
73 | | l = s; |
74 | | s = tab[b >> 3 & 0x7]; |
75 | | l ^= s << 3; |
76 | | h = s >> 29; |
77 | | s = tab[b >> 6 & 0x7]; |
78 | | l ^= s << 6; |
79 | | h ^= s >> 26; |
80 | | s = tab[b >> 9 & 0x7]; |
81 | | l ^= s << 9; |
82 | | h ^= s >> 23; |
83 | | s = tab[b >> 12 & 0x7]; |
84 | | l ^= s << 12; |
85 | | h ^= s >> 20; |
86 | | s = tab[b >> 15 & 0x7]; |
87 | | l ^= s << 15; |
88 | | h ^= s >> 17; |
89 | | s = tab[b >> 18 & 0x7]; |
90 | | l ^= s << 18; |
91 | | h ^= s >> 14; |
92 | | s = tab[b >> 21 & 0x7]; |
93 | | l ^= s << 21; |
94 | | h ^= s >> 11; |
95 | | s = tab[b >> 24 & 0x7]; |
96 | | l ^= s << 24; |
97 | | h ^= s >> 8; |
98 | | s = tab[b >> 27 & 0x7]; |
99 | | l ^= s << 27; |
100 | | h ^= s >> 5; |
101 | | s = tab[b >> 30]; |
102 | | l ^= s << 30; |
103 | | h ^= s >> 2; |
104 | | |
105 | | /* compensate for the top two bits of a */ |
106 | | |
107 | | if (top2b & 01) { |
108 | | l ^= b << 30; |
109 | | h ^= b >> 2; |
110 | | } |
111 | | if (top2b & 02) { |
112 | | l ^= b << 31; |
113 | | h ^= b >> 1; |
114 | | } |
115 | | |
116 | | *r1 = h; |
117 | | *r0 = l; |
118 | | } |
119 | | #endif |
120 | | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
121 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
122 | | const BN_ULONG b) |
123 | 0 | { |
124 | 0 | register BN_ULONG h, l, s; |
125 | 0 | BN_ULONG tab[16], top3b = a >> 61; |
126 | 0 | register BN_ULONG a1, a2, a4, a8; |
127 | |
|
128 | 0 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
129 | 0 | a2 = a1 << 1; |
130 | 0 | a4 = a2 << 1; |
131 | 0 | a8 = a4 << 1; |
132 | |
|
133 | 0 | tab[0] = 0; |
134 | 0 | tab[1] = a1; |
135 | 0 | tab[2] = a2; |
136 | 0 | tab[3] = a1 ^ a2; |
137 | 0 | tab[4] = a4; |
138 | 0 | tab[5] = a1 ^ a4; |
139 | 0 | tab[6] = a2 ^ a4; |
140 | 0 | tab[7] = a1 ^ a2 ^ a4; |
141 | 0 | tab[8] = a8; |
142 | 0 | tab[9] = a1 ^ a8; |
143 | 0 | tab[10] = a2 ^ a8; |
144 | 0 | tab[11] = a1 ^ a2 ^ a8; |
145 | 0 | tab[12] = a4 ^ a8; |
146 | 0 | tab[13] = a1 ^ a4 ^ a8; |
147 | 0 | tab[14] = a2 ^ a4 ^ a8; |
148 | 0 | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
149 | |
|
150 | 0 | s = tab[b & 0xF]; |
151 | 0 | l = s; |
152 | 0 | s = tab[b >> 4 & 0xF]; |
153 | 0 | l ^= s << 4; |
154 | 0 | h = s >> 60; |
155 | 0 | s = tab[b >> 8 & 0xF]; |
156 | 0 | l ^= s << 8; |
157 | 0 | h ^= s >> 56; |
158 | 0 | s = tab[b >> 12 & 0xF]; |
159 | 0 | l ^= s << 12; |
160 | 0 | h ^= s >> 52; |
161 | 0 | s = tab[b >> 16 & 0xF]; |
162 | 0 | l ^= s << 16; |
163 | 0 | h ^= s >> 48; |
164 | 0 | s = tab[b >> 20 & 0xF]; |
165 | 0 | l ^= s << 20; |
166 | 0 | h ^= s >> 44; |
167 | 0 | s = tab[b >> 24 & 0xF]; |
168 | 0 | l ^= s << 24; |
169 | 0 | h ^= s >> 40; |
170 | 0 | s = tab[b >> 28 & 0xF]; |
171 | 0 | l ^= s << 28; |
172 | 0 | h ^= s >> 36; |
173 | 0 | s = tab[b >> 32 & 0xF]; |
174 | 0 | l ^= s << 32; |
175 | 0 | h ^= s >> 32; |
176 | 0 | s = tab[b >> 36 & 0xF]; |
177 | 0 | l ^= s << 36; |
178 | 0 | h ^= s >> 28; |
179 | 0 | s = tab[b >> 40 & 0xF]; |
180 | 0 | l ^= s << 40; |
181 | 0 | h ^= s >> 24; |
182 | 0 | s = tab[b >> 44 & 0xF]; |
183 | 0 | l ^= s << 44; |
184 | 0 | h ^= s >> 20; |
185 | 0 | s = tab[b >> 48 & 0xF]; |
186 | 0 | l ^= s << 48; |
187 | 0 | h ^= s >> 16; |
188 | 0 | s = tab[b >> 52 & 0xF]; |
189 | 0 | l ^= s << 52; |
190 | 0 | h ^= s >> 12; |
191 | 0 | s = tab[b >> 56 & 0xF]; |
192 | 0 | l ^= s << 56; |
193 | 0 | h ^= s >> 8; |
194 | 0 | s = tab[b >> 60]; |
195 | 0 | l ^= s << 60; |
196 | 0 | h ^= s >> 4; |
197 | | |
198 | | /* compensate for the top three bits of a */ |
199 | |
|
200 | 0 | if (top3b & 01) { |
201 | 0 | l ^= b << 61; |
202 | 0 | h ^= b >> 3; |
203 | 0 | } |
204 | 0 | if (top3b & 02) { |
205 | 0 | l ^= b << 62; |
206 | 0 | h ^= b >> 2; |
207 | 0 | } |
208 | 0 | if (top3b & 04) { |
209 | 0 | l ^= b << 63; |
210 | 0 | h ^= b >> 1; |
211 | 0 | } |
212 | |
|
213 | 0 | *r1 = h; |
214 | 0 | *r0 = l; |
215 | 0 | } |
216 | | #endif |
217 | | |
218 | | /* |
219 | | * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
220 | | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST |
221 | | * ensure that the variables have the right amount of space allocated. |
222 | | */ |
223 | | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
224 | | const BN_ULONG b1, const BN_ULONG b0) |
225 | 0 | { |
226 | 0 | BN_ULONG m1, m0; |
227 | | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
228 | 0 | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
229 | 0 | bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
230 | 0 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
231 | | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
232 | 0 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
233 | 0 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
234 | 0 | } |
235 | | #else |
236 | | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
237 | | BN_ULONG b0); |
238 | | #endif |
239 | | |
240 | | /* |
241 | | * Add polynomials a and b and store result in r; r could be a or b, a and b |
242 | | * could be equal; r is the bitwise XOR of a and b. |
243 | | */ |
244 | | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
245 | 0 | { |
246 | 0 | int i; |
247 | 0 | const BIGNUM *at, *bt; |
248 | |
|
249 | 0 | bn_check_top(a); |
250 | 0 | bn_check_top(b); |
251 | |
|
252 | 0 | if (a->top < b->top) { |
253 | 0 | at = b; |
254 | 0 | bt = a; |
255 | 0 | } else { |
256 | 0 | at = a; |
257 | 0 | bt = b; |
258 | 0 | } |
259 | |
|
260 | 0 | if (bn_wexpand(r, at->top) == NULL) |
261 | 0 | return 0; |
262 | | |
263 | 0 | for (i = 0; i < bt->top; i++) { |
264 | 0 | r->d[i] = at->d[i] ^ bt->d[i]; |
265 | 0 | } |
266 | 0 | for (; i < at->top; i++) { |
267 | 0 | r->d[i] = at->d[i]; |
268 | 0 | } |
269 | |
|
270 | 0 | r->top = at->top; |
271 | 0 | bn_correct_top(r); |
272 | |
|
273 | 0 | return 1; |
274 | 0 | } |
275 | | |
276 | | /*- |
277 | | * Some functions allow for representation of the irreducible polynomials |
278 | | * as an int[], say p. The irreducible f(t) is then of the form: |
279 | | * t^p[0] + t^p[1] + ... + t^p[k] |
280 | | * where m = p[0] > p[1] > ... > p[k] = 0. |
281 | | */ |
282 | | |
283 | | /* Performs modular reduction of a and store result in r. r could be a. */ |
284 | | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
285 | 0 | { |
286 | 0 | int j, k; |
287 | 0 | int n, dN, d0, d1; |
288 | 0 | BN_ULONG zz, *z; |
289 | |
|
290 | 0 | bn_check_top(a); |
291 | |
|
292 | 0 | if (p[0] == 0) { |
293 | | /* reduction mod 1 => return 0 */ |
294 | 0 | BN_zero(r); |
295 | 0 | return 1; |
296 | 0 | } |
297 | | |
298 | | /* |
299 | | * Since the algorithm does reduction in the r value, if a != r, copy the |
300 | | * contents of a into r so we can do reduction in r. |
301 | | */ |
302 | 0 | if (a != r) { |
303 | 0 | if (!bn_wexpand(r, a->top)) |
304 | 0 | return 0; |
305 | 0 | for (j = 0; j < a->top; j++) { |
306 | 0 | r->d[j] = a->d[j]; |
307 | 0 | } |
308 | 0 | r->top = a->top; |
309 | 0 | } |
310 | 0 | z = r->d; |
311 | | |
312 | | /* start reduction */ |
313 | 0 | dN = p[0] / BN_BITS2; |
314 | 0 | for (j = r->top - 1; j > dN;) { |
315 | 0 | zz = z[j]; |
316 | 0 | if (z[j] == 0) { |
317 | 0 | j--; |
318 | 0 | continue; |
319 | 0 | } |
320 | 0 | z[j] = 0; |
321 | |
|
322 | 0 | for (k = 1; p[k] != 0; k++) { |
323 | | /* reducing component t^p[k] */ |
324 | 0 | n = p[0] - p[k]; |
325 | 0 | d0 = n % BN_BITS2; |
326 | 0 | d1 = BN_BITS2 - d0; |
327 | 0 | n /= BN_BITS2; |
328 | 0 | z[j - n] ^= (zz >> d0); |
329 | 0 | if (d0) |
330 | 0 | z[j - n - 1] ^= (zz << d1); |
331 | 0 | } |
332 | | |
333 | | /* reducing component t^0 */ |
334 | 0 | n = dN; |
335 | 0 | d0 = p[0] % BN_BITS2; |
336 | 0 | d1 = BN_BITS2 - d0; |
337 | 0 | z[j - n] ^= (zz >> d0); |
338 | 0 | if (ossl_likely(d0)) |
339 | 0 | z[j - n - 1] ^= (zz << d1); |
340 | 0 | } |
341 | | |
342 | | /* final round of reduction */ |
343 | 0 | while (j == dN) { |
344 | |
|
345 | 0 | d0 = p[0] % BN_BITS2; |
346 | 0 | zz = z[dN] >> d0; |
347 | 0 | if (zz == 0) |
348 | 0 | break; |
349 | 0 | d1 = BN_BITS2 - d0; |
350 | | |
351 | | /* clear up the top d1 bits */ |
352 | 0 | if (ossl_likely(d0)) |
353 | 0 | z[dN] = (z[dN] << d1) >> d1; |
354 | 0 | else |
355 | 0 | z[dN] = 0; |
356 | 0 | z[0] ^= zz; /* reduction t^0 component */ |
357 | |
|
358 | 0 | for (k = 1; p[k] != 0; k++) { |
359 | 0 | BN_ULONG tmp_ulong; |
360 | | |
361 | | /* reducing component t^p[k] */ |
362 | 0 | n = p[k] / BN_BITS2; |
363 | 0 | d0 = p[k] % BN_BITS2; |
364 | 0 | d1 = BN_BITS2 - d0; |
365 | 0 | z[n] ^= (zz << d0); |
366 | 0 | if (d0 && (tmp_ulong = zz >> d1)) |
367 | 0 | z[n + 1] ^= tmp_ulong; |
368 | 0 | } |
369 | 0 | } |
370 | |
|
371 | 0 | bn_correct_top(r); |
372 | 0 | return 1; |
373 | 0 | } |
374 | | |
375 | | /* |
376 | | * Performs modular reduction of a by p and store result in r. r could be a. |
377 | | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
378 | | * function is only provided for convenience; for best performance, use the |
379 | | * BN_GF2m_mod_arr function. |
380 | | */ |
381 | | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
382 | 0 | { |
383 | 0 | int ret = 0; |
384 | 0 | int arr[6]; |
385 | 0 | bn_check_top(a); |
386 | 0 | bn_check_top(p); |
387 | 0 | ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); |
388 | 0 | if (!ret || ret > (int)OSSL_NELEM(arr)) { |
389 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
390 | 0 | return 0; |
391 | 0 | } |
392 | 0 | ret = BN_GF2m_mod_arr(r, a, arr); |
393 | 0 | bn_check_top(r); |
394 | 0 | return ret; |
395 | 0 | } |
396 | | |
397 | | /* |
398 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
399 | | * the result in r. r could be a or b; a could be b. |
400 | | */ |
401 | | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
402 | | const int p[], BN_CTX *ctx) |
403 | 0 | { |
404 | 0 | int zlen, i, j, k, ret = 0; |
405 | 0 | BIGNUM *s; |
406 | 0 | BN_ULONG x1, x0, y1, y0, zz[4]; |
407 | |
|
408 | 0 | bn_check_top(a); |
409 | 0 | bn_check_top(b); |
410 | |
|
411 | 0 | if (a == b) { |
412 | 0 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
413 | 0 | } |
414 | | |
415 | 0 | BN_CTX_start(ctx); |
416 | 0 | if ((s = BN_CTX_get(ctx)) == NULL) |
417 | 0 | goto err; |
418 | | |
419 | 0 | zlen = a->top + b->top + 4; |
420 | 0 | if (!bn_wexpand(s, zlen)) |
421 | 0 | goto err; |
422 | 0 | s->top = zlen; |
423 | |
|
424 | 0 | for (i = 0; i < zlen; i++) |
425 | 0 | s->d[i] = 0; |
426 | |
|
427 | 0 | for (j = 0; j < b->top; j += 2) { |
428 | 0 | y0 = b->d[j]; |
429 | 0 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
430 | 0 | for (i = 0; i < a->top; i += 2) { |
431 | 0 | x0 = a->d[i]; |
432 | 0 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
433 | 0 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
434 | 0 | for (k = 0; k < 4; k++) |
435 | 0 | s->d[i + j + k] ^= zz[k]; |
436 | 0 | } |
437 | 0 | } |
438 | |
|
439 | 0 | bn_correct_top(s); |
440 | 0 | if (BN_GF2m_mod_arr(r, s, p)) |
441 | 0 | ret = 1; |
442 | 0 | bn_check_top(r); |
443 | |
|
444 | 0 | err: |
445 | 0 | BN_CTX_end(ctx); |
446 | 0 | return ret; |
447 | 0 | } |
448 | | |
449 | | /* |
450 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
451 | | * the result in r. r could be a or b; a could equal b. This function calls |
452 | | * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is |
453 | | * only provided for convenience; for best performance, use the |
454 | | * BN_GF2m_mod_mul_arr function. |
455 | | */ |
456 | | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
457 | | const BIGNUM *p, BN_CTX *ctx) |
458 | 0 | { |
459 | 0 | int ret = 0; |
460 | 0 | const int max = BN_num_bits(p) + 1; |
461 | 0 | int *arr; |
462 | |
|
463 | 0 | bn_check_top(a); |
464 | 0 | bn_check_top(b); |
465 | 0 | bn_check_top(p); |
466 | |
|
467 | 0 | arr = OPENSSL_malloc_array(max, sizeof(*arr)); |
468 | 0 | if (arr == NULL) |
469 | 0 | return 0; |
470 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
471 | 0 | if (!ret || ret > max) { |
472 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
473 | 0 | goto err; |
474 | 0 | } |
475 | 0 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
476 | 0 | bn_check_top(r); |
477 | 0 | err: |
478 | 0 | OPENSSL_free(arr); |
479 | 0 | return ret; |
480 | 0 | } |
481 | | |
482 | | /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
483 | | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
484 | | BN_CTX *ctx) |
485 | 0 | { |
486 | 0 | int i, ret = 0; |
487 | 0 | BIGNUM *s; |
488 | |
|
489 | 0 | bn_check_top(a); |
490 | 0 | BN_CTX_start(ctx); |
491 | 0 | if ((s = BN_CTX_get(ctx)) == NULL) |
492 | 0 | goto err; |
493 | 0 | if (!bn_wexpand(s, 2 * a->top)) |
494 | 0 | goto err; |
495 | | |
496 | 0 | for (i = a->top - 1; i >= 0; i--) { |
497 | 0 | s->d[2 * i + 1] = SQR1(a->d[i]); |
498 | 0 | s->d[2 * i] = SQR0(a->d[i]); |
499 | 0 | } |
500 | |
|
501 | 0 | s->top = 2 * a->top; |
502 | 0 | bn_correct_top(s); |
503 | 0 | if (!BN_GF2m_mod_arr(r, s, p)) |
504 | 0 | goto err; |
505 | 0 | bn_check_top(r); |
506 | 0 | ret = 1; |
507 | 0 | err: |
508 | 0 | BN_CTX_end(ctx); |
509 | 0 | return ret; |
510 | 0 | } |
511 | | |
512 | | /* |
513 | | * Square a, reduce the result mod p, and store it in a. r could be a. This |
514 | | * function calls down to the BN_GF2m_mod_sqr_arr implementation; this |
515 | | * wrapper function is only provided for convenience; for best performance, |
516 | | * use the BN_GF2m_mod_sqr_arr function. |
517 | | */ |
518 | | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
519 | 0 | { |
520 | 0 | int ret = 0; |
521 | 0 | const int max = BN_num_bits(p) + 1; |
522 | 0 | int *arr; |
523 | |
|
524 | 0 | bn_check_top(a); |
525 | 0 | bn_check_top(p); |
526 | |
|
527 | 0 | arr = OPENSSL_malloc_array(max, sizeof(*arr)); |
528 | 0 | if (arr == NULL) |
529 | 0 | return 0; |
530 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
531 | 0 | if (!ret || ret > max) { |
532 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
533 | 0 | goto err; |
534 | 0 | } |
535 | 0 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
536 | 0 | bn_check_top(r); |
537 | 0 | err: |
538 | 0 | OPENSSL_free(arr); |
539 | 0 | return ret; |
540 | 0 | } |
541 | | |
542 | | /* |
543 | | * Invert a, reduce modulo p, and store the result in r. r could be a. Uses |
544 | | * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., |
545 | | * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic |
546 | | * Curve Cryptography Over Binary Fields". |
547 | | */ |
548 | | static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, |
549 | | const BIGNUM *p, BN_CTX *ctx) |
550 | 0 | { |
551 | 0 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
552 | 0 | int ret = 0; |
553 | |
|
554 | 0 | bn_check_top(a); |
555 | 0 | bn_check_top(p); |
556 | |
|
557 | 0 | BN_CTX_start(ctx); |
558 | |
|
559 | 0 | b = BN_CTX_get(ctx); |
560 | 0 | c = BN_CTX_get(ctx); |
561 | 0 | u = BN_CTX_get(ctx); |
562 | 0 | v = BN_CTX_get(ctx); |
563 | 0 | if (v == NULL) |
564 | 0 | goto err; |
565 | | |
566 | 0 | if (!BN_GF2m_mod(u, a, p)) |
567 | 0 | goto err; |
568 | 0 | if (BN_is_zero(u)) |
569 | 0 | goto err; |
570 | | |
571 | 0 | if (!BN_copy(v, p)) |
572 | 0 | goto err; |
573 | | #if 0 |
574 | | if (!BN_one(b)) |
575 | | goto err; |
576 | | |
577 | | while (1) { |
578 | | while (!BN_is_odd(u)) { |
579 | | if (BN_is_zero(u)) |
580 | | goto err; |
581 | | if (!BN_rshift1(u, u)) |
582 | | goto err; |
583 | | if (BN_is_odd(b)) { |
584 | | if (!BN_GF2m_add(b, b, p)) |
585 | | goto err; |
586 | | } |
587 | | if (!BN_rshift1(b, b)) |
588 | | goto err; |
589 | | } |
590 | | |
591 | | if (BN_abs_is_word(u, 1)) |
592 | | break; |
593 | | |
594 | | if (BN_num_bits(u) < BN_num_bits(v)) { |
595 | | tmp = u; |
596 | | u = v; |
597 | | v = tmp; |
598 | | tmp = b; |
599 | | b = c; |
600 | | c = tmp; |
601 | | } |
602 | | |
603 | | if (!BN_GF2m_add(u, u, v)) |
604 | | goto err; |
605 | | if (!BN_GF2m_add(b, b, c)) |
606 | | goto err; |
607 | | } |
608 | | #else |
609 | 0 | { |
610 | 0 | int i; |
611 | 0 | int ubits = BN_num_bits(u); |
612 | 0 | int vbits = BN_num_bits(v); /* v is copy of p */ |
613 | 0 | int top = p->top; |
614 | 0 | BN_ULONG *udp, *bdp, *vdp, *cdp; |
615 | |
|
616 | 0 | if (!bn_wexpand(u, top)) |
617 | 0 | goto err; |
618 | 0 | udp = u->d; |
619 | 0 | for (i = u->top; i < top; i++) |
620 | 0 | udp[i] = 0; |
621 | 0 | u->top = top; |
622 | 0 | if (!bn_wexpand(b, top)) |
623 | 0 | goto err; |
624 | 0 | bdp = b->d; |
625 | 0 | bdp[0] = 1; |
626 | 0 | for (i = 1; i < top; i++) |
627 | 0 | bdp[i] = 0; |
628 | 0 | b->top = top; |
629 | 0 | if (!bn_wexpand(c, top)) |
630 | 0 | goto err; |
631 | 0 | cdp = c->d; |
632 | 0 | for (i = 0; i < top; i++) |
633 | 0 | cdp[i] = 0; |
634 | 0 | c->top = top; |
635 | 0 | vdp = v->d; /* It pays off to "cache" *->d pointers, |
636 | | * because it allows optimizer to be more |
637 | | * aggressive. But we don't have to "cache" |
638 | | * p->d, because *p is declared 'const'... */ |
639 | 0 | while (1) { |
640 | 0 | while (ubits && !(udp[0] & 1)) { |
641 | 0 | BN_ULONG u0, u1, b0, b1, mask; |
642 | |
|
643 | 0 | u0 = udp[0]; |
644 | 0 | b0 = bdp[0]; |
645 | 0 | mask = (BN_ULONG)0 - (b0 & 1); |
646 | 0 | b0 ^= p->d[0] & mask; |
647 | 0 | for (i = 0; i < top - 1; i++) { |
648 | 0 | u1 = udp[i + 1]; |
649 | 0 | udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
650 | 0 | u0 = u1; |
651 | 0 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
652 | 0 | bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
653 | 0 | b0 = b1; |
654 | 0 | } |
655 | 0 | udp[i] = u0 >> 1; |
656 | 0 | bdp[i] = b0 >> 1; |
657 | 0 | ubits--; |
658 | 0 | } |
659 | |
|
660 | 0 | if (ubits <= BN_BITS2) { |
661 | 0 | if (udp[0] == 0) /* poly was reducible */ |
662 | 0 | goto err; |
663 | 0 | if (udp[0] == 1) |
664 | 0 | break; |
665 | 0 | } |
666 | | |
667 | 0 | if (ubits < vbits) { |
668 | 0 | i = ubits; |
669 | 0 | ubits = vbits; |
670 | 0 | vbits = i; |
671 | 0 | tmp = u; |
672 | 0 | u = v; |
673 | 0 | v = tmp; |
674 | 0 | tmp = b; |
675 | 0 | b = c; |
676 | 0 | c = tmp; |
677 | 0 | udp = vdp; |
678 | 0 | vdp = v->d; |
679 | 0 | bdp = cdp; |
680 | 0 | cdp = c->d; |
681 | 0 | } |
682 | 0 | for (i = 0; i < top; i++) { |
683 | 0 | udp[i] ^= vdp[i]; |
684 | 0 | bdp[i] ^= cdp[i]; |
685 | 0 | } |
686 | 0 | if (ubits == vbits) { |
687 | 0 | BN_ULONG ul; |
688 | 0 | int utop = (ubits - 1) / BN_BITS2; |
689 | |
|
690 | 0 | while ((ul = udp[utop]) == 0 && utop) |
691 | 0 | utop--; |
692 | 0 | ubits = utop * BN_BITS2 + BN_num_bits_word(ul); |
693 | 0 | } |
694 | 0 | } |
695 | 0 | bn_correct_top(b); |
696 | 0 | } |
697 | 0 | #endif |
698 | | |
699 | 0 | if (!BN_copy(r, b)) |
700 | 0 | goto err; |
701 | 0 | bn_check_top(r); |
702 | 0 | ret = 1; |
703 | |
|
704 | 0 | err: |
705 | | #ifdef BN_DEBUG |
706 | | /* BN_CTX_end would complain about the expanded form */ |
707 | | bn_correct_top(c); |
708 | | bn_correct_top(u); |
709 | | bn_correct_top(v); |
710 | | #endif |
711 | 0 | BN_CTX_end(ctx); |
712 | 0 | return ret; |
713 | 0 | } |
714 | | |
715 | | /*- |
716 | | * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. |
717 | | * This is not constant time. |
718 | | * But it does eliminate first order deduction on the input. |
719 | | */ |
720 | | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
721 | 0 | { |
722 | 0 | BIGNUM *b = NULL; |
723 | 0 | int ret = 0; |
724 | 0 | int numbits; |
725 | |
|
726 | 0 | BN_CTX_start(ctx); |
727 | 0 | if ((b = BN_CTX_get(ctx)) == NULL) |
728 | 0 | goto err; |
729 | | |
730 | | /* Fail on a non-sensical input p value */ |
731 | 0 | numbits = BN_num_bits(p); |
732 | 0 | if (numbits <= 1) |
733 | 0 | goto err; |
734 | | |
735 | | /* generate blinding value */ |
736 | 0 | do { |
737 | 0 | if (!BN_priv_rand_ex(b, numbits - 1, |
738 | 0 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) |
739 | 0 | goto err; |
740 | 0 | } while (BN_is_zero(b)); |
741 | | |
742 | | /* r := a * b */ |
743 | 0 | if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) |
744 | 0 | goto err; |
745 | | |
746 | | /* r := 1/(a * b) */ |
747 | 0 | if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) |
748 | 0 | goto err; |
749 | | |
750 | | /* r := b/(a * b) = 1/a */ |
751 | 0 | if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) |
752 | 0 | goto err; |
753 | | |
754 | 0 | ret = 1; |
755 | |
|
756 | 0 | err: |
757 | 0 | BN_CTX_end(ctx); |
758 | 0 | return ret; |
759 | 0 | } |
760 | | |
761 | | /* |
762 | | * Invert xx, reduce modulo p, and store the result in r. r could be xx. |
763 | | * This function calls down to the BN_GF2m_mod_inv implementation; this |
764 | | * wrapper function is only provided for convenience; for best performance, |
765 | | * use the BN_GF2m_mod_inv function. |
766 | | */ |
767 | | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], |
768 | | BN_CTX *ctx) |
769 | 0 | { |
770 | 0 | BIGNUM *field; |
771 | 0 | int ret = 0; |
772 | |
|
773 | 0 | bn_check_top(xx); |
774 | 0 | BN_CTX_start(ctx); |
775 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
776 | 0 | goto err; |
777 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
778 | 0 | goto err; |
779 | | |
780 | 0 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
781 | 0 | bn_check_top(r); |
782 | |
|
783 | 0 | err: |
784 | 0 | BN_CTX_end(ctx); |
785 | 0 | return ret; |
786 | 0 | } |
787 | | |
788 | | /* |
789 | | * Divide y by x, reduce modulo p, and store the result in r. r could be x |
790 | | * or y, x could equal y. |
791 | | */ |
792 | | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
793 | | const BIGNUM *p, BN_CTX *ctx) |
794 | 0 | { |
795 | 0 | BIGNUM *xinv = NULL; |
796 | 0 | int ret = 0; |
797 | |
|
798 | 0 | bn_check_top(y); |
799 | 0 | bn_check_top(x); |
800 | 0 | bn_check_top(p); |
801 | |
|
802 | 0 | BN_CTX_start(ctx); |
803 | 0 | xinv = BN_CTX_get(ctx); |
804 | 0 | if (xinv == NULL) |
805 | 0 | goto err; |
806 | | |
807 | 0 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
808 | 0 | goto err; |
809 | 0 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
810 | 0 | goto err; |
811 | 0 | bn_check_top(r); |
812 | 0 | ret = 1; |
813 | |
|
814 | 0 | err: |
815 | 0 | BN_CTX_end(ctx); |
816 | 0 | return ret; |
817 | 0 | } |
818 | | |
819 | | /* |
820 | | * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
821 | | * * or yy, xx could equal yy. This function calls down to the |
822 | | * BN_GF2m_mod_div implementation; this wrapper function is only provided for |
823 | | * convenience; for best performance, use the BN_GF2m_mod_div function. |
824 | | */ |
825 | | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
826 | | const int p[], BN_CTX *ctx) |
827 | 0 | { |
828 | 0 | BIGNUM *field; |
829 | 0 | int ret = 0; |
830 | |
|
831 | 0 | bn_check_top(yy); |
832 | 0 | bn_check_top(xx); |
833 | |
|
834 | 0 | BN_CTX_start(ctx); |
835 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
836 | 0 | goto err; |
837 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
838 | 0 | goto err; |
839 | | |
840 | 0 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
841 | 0 | bn_check_top(r); |
842 | |
|
843 | 0 | err: |
844 | 0 | BN_CTX_end(ctx); |
845 | 0 | return ret; |
846 | 0 | } |
847 | | |
848 | | /* |
849 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
850 | | * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE |
851 | | * P1363. |
852 | | */ |
853 | | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
854 | | const int p[], BN_CTX *ctx) |
855 | 0 | { |
856 | 0 | int ret = 0, i, n; |
857 | 0 | BIGNUM *u; |
858 | |
|
859 | 0 | bn_check_top(a); |
860 | 0 | bn_check_top(b); |
861 | |
|
862 | 0 | if (BN_is_zero(b)) |
863 | 0 | return BN_one(r); |
864 | | |
865 | 0 | if (BN_abs_is_word(b, 1)) |
866 | 0 | return (BN_copy(r, a) != NULL); |
867 | | |
868 | 0 | BN_CTX_start(ctx); |
869 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
870 | 0 | goto err; |
871 | | |
872 | 0 | if (!BN_GF2m_mod_arr(u, a, p)) |
873 | 0 | goto err; |
874 | | |
875 | 0 | n = BN_num_bits(b) - 1; |
876 | 0 | for (i = n - 1; i >= 0; i--) { |
877 | 0 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
878 | 0 | goto err; |
879 | 0 | if (BN_is_bit_set(b, i)) { |
880 | 0 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
881 | 0 | goto err; |
882 | 0 | } |
883 | 0 | } |
884 | 0 | if (!BN_copy(r, u)) |
885 | 0 | goto err; |
886 | 0 | bn_check_top(r); |
887 | 0 | ret = 1; |
888 | 0 | err: |
889 | 0 | BN_CTX_end(ctx); |
890 | 0 | return ret; |
891 | 0 | } |
892 | | |
893 | | /* |
894 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
895 | | * could be a. This function calls down to the BN_GF2m_mod_exp_arr |
896 | | * implementation; this wrapper function is only provided for convenience; |
897 | | * for best performance, use the BN_GF2m_mod_exp_arr function. |
898 | | */ |
899 | | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
900 | | const BIGNUM *p, BN_CTX *ctx) |
901 | 0 | { |
902 | 0 | int ret = 0; |
903 | 0 | const int max = BN_num_bits(p) + 1; |
904 | 0 | int *arr; |
905 | |
|
906 | 0 | bn_check_top(a); |
907 | 0 | bn_check_top(b); |
908 | 0 | bn_check_top(p); |
909 | |
|
910 | 0 | arr = OPENSSL_malloc_array(max, sizeof(*arr)); |
911 | 0 | if (arr == NULL) |
912 | 0 | return 0; |
913 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
914 | 0 | if (!ret || ret > max) { |
915 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
916 | 0 | goto err; |
917 | 0 | } |
918 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
919 | 0 | bn_check_top(r); |
920 | 0 | err: |
921 | 0 | OPENSSL_free(arr); |
922 | 0 | return ret; |
923 | 0 | } |
924 | | |
925 | | /* |
926 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
927 | | * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
928 | | */ |
929 | | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
930 | | BN_CTX *ctx) |
931 | 0 | { |
932 | 0 | int ret = 0; |
933 | 0 | BIGNUM *u; |
934 | |
|
935 | 0 | bn_check_top(a); |
936 | |
|
937 | 0 | if (p[0] == 0) { |
938 | | /* reduction mod 1 => return 0 */ |
939 | 0 | BN_zero(r); |
940 | 0 | return 1; |
941 | 0 | } |
942 | | |
943 | 0 | BN_CTX_start(ctx); |
944 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
945 | 0 | goto err; |
946 | | |
947 | 0 | if (!BN_set_bit(u, p[0] - 1)) |
948 | 0 | goto err; |
949 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
950 | 0 | bn_check_top(r); |
951 | |
|
952 | 0 | err: |
953 | 0 | BN_CTX_end(ctx); |
954 | 0 | return ret; |
955 | 0 | } |
956 | | |
957 | | /* |
958 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
959 | | * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr |
960 | | * implementation; this wrapper function is only provided for convenience; |
961 | | * for best performance, use the BN_GF2m_mod_sqrt_arr function. |
962 | | */ |
963 | | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
964 | 0 | { |
965 | 0 | int ret = 0; |
966 | 0 | const int max = BN_num_bits(p) + 1; |
967 | 0 | int *arr; |
968 | |
|
969 | 0 | bn_check_top(a); |
970 | 0 | bn_check_top(p); |
971 | |
|
972 | 0 | arr = OPENSSL_malloc_array(max, sizeof(*arr)); |
973 | 0 | if (arr == NULL) |
974 | 0 | return 0; |
975 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
976 | 0 | if (!ret || ret > max) { |
977 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
978 | 0 | goto err; |
979 | 0 | } |
980 | 0 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
981 | 0 | bn_check_top(r); |
982 | 0 | err: |
983 | 0 | OPENSSL_free(arr); |
984 | 0 | return ret; |
985 | 0 | } |
986 | | |
987 | | /* |
988 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
989 | | * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
990 | | */ |
991 | | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
992 | | BN_CTX *ctx) |
993 | 0 | { |
994 | 0 | int ret = 0, count = 0, j; |
995 | 0 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
996 | |
|
997 | 0 | bn_check_top(a_); |
998 | |
|
999 | 0 | if (p[0] == 0) { |
1000 | | /* reduction mod 1 => return 0 */ |
1001 | 0 | BN_zero(r); |
1002 | 0 | return 1; |
1003 | 0 | } |
1004 | | |
1005 | 0 | BN_CTX_start(ctx); |
1006 | 0 | a = BN_CTX_get(ctx); |
1007 | 0 | z = BN_CTX_get(ctx); |
1008 | 0 | w = BN_CTX_get(ctx); |
1009 | 0 | if (w == NULL) |
1010 | 0 | goto err; |
1011 | | |
1012 | 0 | if (!BN_GF2m_mod_arr(a, a_, p)) |
1013 | 0 | goto err; |
1014 | | |
1015 | 0 | if (BN_is_zero(a)) { |
1016 | 0 | BN_zero(r); |
1017 | 0 | ret = 1; |
1018 | 0 | goto err; |
1019 | 0 | } |
1020 | | |
1021 | 0 | if (p[0] & 0x1) { /* m is odd */ |
1022 | | /* compute half-trace of a */ |
1023 | 0 | if (!BN_copy(z, a)) |
1024 | 0 | goto err; |
1025 | 0 | for (j = 1; j <= (p[0] - 1) / 2; j++) { |
1026 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1027 | 0 | goto err; |
1028 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1029 | 0 | goto err; |
1030 | 0 | if (!BN_GF2m_add(z, z, a)) |
1031 | 0 | goto err; |
1032 | 0 | } |
1033 | |
|
1034 | 0 | } else { /* m is even */ |
1035 | |
|
1036 | 0 | rho = BN_CTX_get(ctx); |
1037 | 0 | w2 = BN_CTX_get(ctx); |
1038 | 0 | tmp = BN_CTX_get(ctx); |
1039 | 0 | if (tmp == NULL) |
1040 | 0 | goto err; |
1041 | 0 | do { |
1042 | 0 | if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, |
1043 | 0 | 0, ctx)) |
1044 | 0 | goto err; |
1045 | 0 | if (!BN_GF2m_mod_arr(rho, rho, p)) |
1046 | 0 | goto err; |
1047 | 0 | BN_zero(z); |
1048 | 0 | if (!BN_copy(w, rho)) |
1049 | 0 | goto err; |
1050 | 0 | for (j = 1; j <= p[0] - 1; j++) { |
1051 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1052 | 0 | goto err; |
1053 | 0 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
1054 | 0 | goto err; |
1055 | 0 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
1056 | 0 | goto err; |
1057 | 0 | if (!BN_GF2m_add(z, z, tmp)) |
1058 | 0 | goto err; |
1059 | 0 | if (!BN_GF2m_add(w, w2, rho)) |
1060 | 0 | goto err; |
1061 | 0 | } |
1062 | 0 | count++; |
1063 | 0 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
1064 | 0 | if (BN_is_zero(w)) { |
1065 | 0 | ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS); |
1066 | 0 | goto err; |
1067 | 0 | } |
1068 | 0 | } |
1069 | | |
1070 | 0 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
1071 | 0 | goto err; |
1072 | 0 | if (!BN_GF2m_add(w, z, w)) |
1073 | 0 | goto err; |
1074 | 0 | if (BN_GF2m_cmp(w, a)) { |
1075 | 0 | ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION); |
1076 | 0 | goto err; |
1077 | 0 | } |
1078 | | |
1079 | 0 | if (!BN_copy(r, z)) |
1080 | 0 | goto err; |
1081 | 0 | bn_check_top(r); |
1082 | |
|
1083 | 0 | ret = 1; |
1084 | |
|
1085 | 0 | err: |
1086 | 0 | BN_CTX_end(ctx); |
1087 | 0 | return ret; |
1088 | 0 | } |
1089 | | |
1090 | | /* |
1091 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
1092 | | * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr |
1093 | | * implementation; this wrapper function is only provided for convenience; |
1094 | | * for best performance, use the BN_GF2m_mod_solve_quad_arr function. |
1095 | | */ |
1096 | | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
1097 | | BN_CTX *ctx) |
1098 | 0 | { |
1099 | 0 | int ret = 0; |
1100 | 0 | const int max = BN_num_bits(p) + 1; |
1101 | 0 | int *arr; |
1102 | |
|
1103 | 0 | bn_check_top(a); |
1104 | 0 | bn_check_top(p); |
1105 | |
|
1106 | 0 | arr = OPENSSL_malloc_array(max, sizeof(*arr)); |
1107 | 0 | if (arr == NULL) |
1108 | 0 | goto err; |
1109 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1110 | 0 | if (!ret || ret > max) { |
1111 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
1112 | 0 | goto err; |
1113 | 0 | } |
1114 | 0 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
1115 | 0 | bn_check_top(r); |
1116 | 0 | err: |
1117 | 0 | OPENSSL_free(arr); |
1118 | 0 | return ret; |
1119 | 0 | } |
1120 | | |
1121 | | /* |
1122 | | * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * |
1123 | | * x^i) into an array of integers corresponding to the bits with non-zero |
1124 | | * coefficient. The array is intended to be suitable for use with |
1125 | | * `BN_GF2m_mod_arr()`, and so the constant term of the polynomial must not be |
1126 | | * zero. This translates to a requirement that the input BIGNUM `a` is odd. |
1127 | | * |
1128 | | * Given sufficient room, the array is terminated with -1. Up to max elements |
1129 | | * of the array will be filled. |
1130 | | * |
1131 | | * The return value is total number of array elements that would be filled if |
1132 | | * array was large enough, including the terminating `-1`. It is `0` when `a` |
1133 | | * is not odd or the constant term is zero contrary to requirement. |
1134 | | * |
1135 | | * The return value is also `0` when the leading exponent exceeds |
1136 | | * `OPENSSL_ECC_MAX_FIELD_BITS`, this guards against CPU exhaustion attacks, |
1137 | | */ |
1138 | | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
1139 | 0 | { |
1140 | 0 | int i, j, k = 0; |
1141 | 0 | BN_ULONG mask; |
1142 | |
|
1143 | 0 | if (!BN_is_odd(a)) |
1144 | 0 | return 0; |
1145 | | |
1146 | 0 | for (i = a->top - 1; i >= 0; i--) { |
1147 | 0 | if (!a->d[i]) |
1148 | | /* skip word if a->d[i] == 0 */ |
1149 | 0 | continue; |
1150 | 0 | mask = BN_TBIT; |
1151 | 0 | for (j = BN_BITS2 - 1; j >= 0; j--) { |
1152 | 0 | if (a->d[i] & mask) { |
1153 | 0 | if (k < max) |
1154 | 0 | p[k] = BN_BITS2 * i + j; |
1155 | 0 | k++; |
1156 | 0 | } |
1157 | 0 | mask >>= 1; |
1158 | 0 | } |
1159 | 0 | } |
1160 | |
|
1161 | 0 | if (k > 0 && p[0] > OPENSSL_ECC_MAX_FIELD_BITS) |
1162 | 0 | return 0; |
1163 | | |
1164 | 0 | if (k < max) |
1165 | 0 | p[k] = -1; |
1166 | |
|
1167 | 0 | return k + 1; |
1168 | 0 | } |
1169 | | |
1170 | | /* |
1171 | | * Convert the coefficient array representation of a polynomial to a |
1172 | | * bit-string. The array must be terminated by -1. |
1173 | | */ |
1174 | | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
1175 | 0 | { |
1176 | 0 | int i; |
1177 | |
|
1178 | 0 | bn_check_top(a); |
1179 | 0 | BN_zero(a); |
1180 | 0 | for (i = 0; p[i] != -1; i++) { |
1181 | 0 | if (BN_set_bit(a, p[i]) == 0) |
1182 | 0 | return 0; |
1183 | 0 | } |
1184 | 0 | bn_check_top(a); |
1185 | |
|
1186 | 0 | return 1; |
1187 | 0 | } |
1188 | | |
1189 | | #endif |