Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/ec/curve448/curve448.c
Line
Count
Source
1
/*
2
 * Copyright 2017-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright 2015-2016 Cryptography Research, Inc.
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 *
10
 * Originally written by Mike Hamburg
11
 */
12
#include <openssl/crypto.h>
13
#include "word.h"
14
#include "field.h"
15
16
#include "point_448.h"
17
#include "ed448.h"
18
#include "crypto/ecx.h"
19
#include "curve448_local.h"
20
21
0
#define COFACTOR 4
22
23
0
#define C448_WNAF_FIXED_TABLE_BITS 5
24
0
#define C448_WNAF_VAR_TABLE_BITS 3
25
26
0
#define EDWARDS_D (-39081)
27
28
static const curve448_scalar_t precomputed_scalarmul_adjustment = {
29
    { { SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
30
        SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) } }
31
};
32
33
0
#define TWISTED_D (EDWARDS_D - 1)
34
35
0
#define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
36
37
/* Inverse. */
38
static void gf_invert(gf y, const gf x, int assert_nonzero)
39
0
{
40
0
    mask_t ret;
41
0
    gf t1, t2;
42
43
0
    ossl_gf_sqr(t1, x); /* o^2 */
44
0
    ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */
45
0
    (void)ret;
46
0
    if (assert_nonzero)
47
0
        assert(ret);
48
0
    ossl_gf_sqr(t1, t2);
49
0
    ossl_gf_mul(t2, t1, x); /* not direct to y in case of alias. */
50
0
    gf_copy(y, t2);
51
0
}
52
53
/** identity = (0,1) */
54
const curve448_point_t ossl_curve448_point_identity = {
55
    { { { { 0 } } }, { { { 1 } } }, { { { 1 } } }, { { { 0 } } } }
56
};
57
58
static void point_double_internal(curve448_point_t p, const curve448_point_t q,
59
    int before_double)
60
0
{
61
0
    gf a, b, c, d;
62
63
0
    ossl_gf_sqr(c, q->x);
64
0
    ossl_gf_sqr(a, q->y);
65
0
    gf_add_nr(d, c, a); /* 2+e */
66
0
    gf_add_nr(p->t, q->y, q->x); /* 2+e */
67
0
    ossl_gf_sqr(b, p->t);
68
0
    gf_subx_nr(b, b, d, 3); /* 4+e */
69
0
    gf_sub_nr(p->t, a, c); /* 3+e */
70
0
    ossl_gf_sqr(p->x, q->z);
71
0
    gf_add_nr(p->z, p->x, p->x); /* 2+e */
72
0
    gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
73
0
    if (GF_HEADROOM == 5)
74
0
        gf_weak_reduce(a); /* or 1+e */
75
0
    ossl_gf_mul(p->x, a, b);
76
0
    ossl_gf_mul(p->z, p->t, a);
77
0
    ossl_gf_mul(p->y, p->t, d);
78
0
    if (!before_double)
79
0
        ossl_gf_mul(p->t, b, d);
80
0
}
81
82
void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q)
83
0
{
84
0
    point_double_internal(p, q, 0);
85
0
}
86
87
/* Operations on [p]niels */
88
static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
89
0
{
90
0
    gf_cond_swap(n->a, n->b, neg);
91
0
    gf_cond_neg(n->c, neg);
92
0
}
93
94
static void pt_to_pniels(pniels_t b, const curve448_point_t a)
95
0
{
96
0
    gf_sub(b->n->a, a->y, a->x);
97
0
    gf_add(b->n->b, a->x, a->y);
98
0
    gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
99
0
    gf_add(b->z, a->z, a->z);
100
0
}
101
102
static void pniels_to_pt(curve448_point_t e, const pniels_t d)
103
0
{
104
0
    gf eu;
105
106
0
    gf_add(eu, d->n->b, d->n->a);
107
0
    gf_sub(e->y, d->n->b, d->n->a);
108
0
    ossl_gf_mul(e->t, e->y, eu);
109
0
    ossl_gf_mul(e->x, d->z, e->y);
110
0
    ossl_gf_mul(e->y, d->z, eu);
111
0
    ossl_gf_sqr(e->z, d->z);
112
0
}
113
114
static void niels_to_pt(curve448_point_t e, const niels_t n)
115
0
{
116
0
    gf_add(e->y, n->b, n->a);
117
0
    gf_sub(e->x, n->b, n->a);
118
0
    ossl_gf_mul(e->t, e->y, e->x);
119
0
    gf_copy(e->z, ONE);
120
0
}
121
122
static void add_niels_to_pt(curve448_point_t d, const niels_t e,
123
    int before_double)
124
0
{
125
0
    gf a, b, c;
126
127
0
    gf_sub_nr(b, d->y, d->x); /* 3+e */
128
0
    ossl_gf_mul(a, e->a, b);
129
0
    gf_add_nr(b, d->x, d->y); /* 2+e */
130
0
    ossl_gf_mul(d->y, e->b, b);
131
0
    ossl_gf_mul(d->x, e->c, d->t);
132
0
    gf_add_nr(c, a, d->y); /* 2+e */
133
0
    gf_sub_nr(b, d->y, a); /* 3+e */
134
0
    gf_sub_nr(d->y, d->z, d->x); /* 3+e */
135
0
    gf_add_nr(a, d->x, d->z); /* 2+e */
136
0
    ossl_gf_mul(d->z, a, d->y);
137
0
    ossl_gf_mul(d->x, d->y, b);
138
0
    ossl_gf_mul(d->y, a, c);
139
0
    if (!before_double)
140
0
        ossl_gf_mul(d->t, b, c);
141
0
}
142
143
static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
144
    int before_double)
145
0
{
146
0
    gf a, b, c;
147
148
0
    gf_sub_nr(b, d->y, d->x); /* 3+e */
149
0
    ossl_gf_mul(a, e->b, b);
150
0
    gf_add_nr(b, d->x, d->y); /* 2+e */
151
0
    ossl_gf_mul(d->y, e->a, b);
152
0
    ossl_gf_mul(d->x, e->c, d->t);
153
0
    gf_add_nr(c, a, d->y); /* 2+e */
154
0
    gf_sub_nr(b, d->y, a); /* 3+e */
155
0
    gf_add_nr(d->y, d->z, d->x); /* 2+e */
156
0
    gf_sub_nr(a, d->z, d->x); /* 3+e */
157
0
    ossl_gf_mul(d->z, a, d->y);
158
0
    ossl_gf_mul(d->x, d->y, b);
159
0
    ossl_gf_mul(d->y, a, c);
160
0
    if (!before_double)
161
0
        ossl_gf_mul(d->t, b, c);
162
0
}
163
164
static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
165
    int before_double)
166
0
{
167
0
    gf L0;
168
169
0
    ossl_gf_mul(L0, p->z, pn->z);
170
0
    gf_copy(p->z, L0);
171
0
    add_niels_to_pt(p, pn->n, before_double);
172
0
}
173
174
static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
175
    int before_double)
176
0
{
177
0
    gf L0;
178
179
0
    ossl_gf_mul(L0, p->z, pn->z);
180
0
    gf_copy(p->z, L0);
181
0
    sub_niels_from_pt(p, pn->n, before_double);
182
0
}
183
184
c448_bool_t
185
ossl_curve448_point_eq(const curve448_point_t p,
186
    const curve448_point_t q)
187
0
{
188
0
    mask_t succ;
189
0
    gf a, b;
190
191
    /* equality mod 2-torsion compares x/y */
192
0
    ossl_gf_mul(a, p->y, q->x);
193
0
    ossl_gf_mul(b, q->y, p->x);
194
0
    succ = gf_eq(a, b);
195
196
0
    return mask_to_bool(succ);
197
0
}
198
199
c448_bool_t
200
ossl_curve448_point_valid(const curve448_point_t p)
201
0
{
202
0
    mask_t out;
203
0
    gf a, b, c;
204
205
0
    ossl_gf_mul(a, p->x, p->y);
206
0
    ossl_gf_mul(b, p->z, p->t);
207
0
    out = gf_eq(a, b);
208
0
    ossl_gf_sqr(a, p->x);
209
0
    ossl_gf_sqr(b, p->y);
210
0
    gf_sub(a, b, a);
211
0
    ossl_gf_sqr(b, p->t);
212
0
    gf_mulw(c, b, TWISTED_D);
213
0
    ossl_gf_sqr(b, p->z);
214
0
    gf_add(b, b, c);
215
0
    out &= gf_eq(a, b);
216
0
    out &= ~gf_eq(p->z, ZERO);
217
0
    return mask_to_bool(out);
218
0
}
219
220
static ossl_inline void constant_time_lookup_niels(niels_s *RESTRICT ni,
221
    const niels_t *table,
222
    int nelts, int idx)
223
0
{
224
0
    constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
225
0
}
226
227
void ossl_curve448_precomputed_scalarmul(curve448_point_t out,
228
    const curve448_precomputed_s *table,
229
    const curve448_scalar_t scalar)
230
0
{
231
0
    unsigned int i, j, k;
232
0
    const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
233
0
    niels_t ni;
234
0
    curve448_scalar_t scalar1x;
235
236
0
    ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
237
0
    ossl_curve448_scalar_halve(scalar1x, scalar1x);
238
239
0
    for (i = s; i > 0; i--) {
240
0
        if (i != s)
241
0
            point_double_internal(out, out, 0);
242
243
0
        for (j = 0; j < n; j++) {
244
0
            int tab = 0;
245
0
            mask_t invert;
246
247
0
            for (k = 0; k < t; k++) {
248
0
                unsigned int bit = (i - 1) + s * (k + j * t);
249
250
0
                if (bit < C448_SCALAR_BITS)
251
0
                    tab |= (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
252
0
            }
253
254
0
            invert = (tab >> (t - 1)) - 1;
255
0
            tab ^= invert;
256
0
            tab &= (1 << (t - 1)) - 1;
257
258
0
            constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
259
0
                1 << (t - 1), tab);
260
261
0
            cond_neg_niels(ni, invert);
262
0
            if ((i != s) || j != 0)
263
0
                add_niels_to_pt(out, ni, j == n - 1 && i != 1);
264
0
            else
265
0
                niels_to_pt(out, ni);
266
0
        }
267
0
    }
268
269
0
    OPENSSL_cleanse(ni, sizeof(ni));
270
0
    OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
271
0
}
272
273
void ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(
274
    uint8_t enc[EDDSA_448_PUBLIC_BYTES],
275
    const curve448_point_t p)
276
0
{
277
0
    gf x, y, z, t;
278
0
    curve448_point_t q;
279
280
    /* The point is now on the twisted curve.  Move it to untwisted. */
281
0
    curve448_point_copy(q, p);
282
283
0
    {
284
        /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
285
0
        gf u;
286
287
0
        ossl_gf_sqr(x, q->x);
288
0
        ossl_gf_sqr(t, q->y);
289
0
        gf_add(u, x, t);
290
0
        gf_add(z, q->y, q->x);
291
0
        ossl_gf_sqr(y, z);
292
0
        gf_sub(y, y, u);
293
0
        gf_sub(z, t, x);
294
0
        ossl_gf_sqr(x, q->z);
295
0
        gf_add(t, x, x);
296
0
        gf_sub(t, t, z);
297
0
        ossl_gf_mul(x, t, y);
298
0
        ossl_gf_mul(y, z, u);
299
0
        ossl_gf_mul(z, u, t);
300
0
        OPENSSL_cleanse(u, sizeof(u));
301
0
    }
302
303
    /* Affinize */
304
0
    gf_invert(z, z, 1);
305
0
    ossl_gf_mul(t, x, z);
306
0
    ossl_gf_mul(x, y, z);
307
308
    /* Encode */
309
0
    enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
310
0
    gf_serialize(enc, x, 1);
311
0
    enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
312
313
0
    OPENSSL_cleanse(x, sizeof(x));
314
0
    OPENSSL_cleanse(y, sizeof(y));
315
0
    OPENSSL_cleanse(z, sizeof(z));
316
0
    OPENSSL_cleanse(t, sizeof(t));
317
0
    ossl_curve448_point_destroy(q);
318
0
}
319
320
c448_error_t
321
ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(
322
    curve448_point_t p,
323
    const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
324
0
{
325
0
    uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
326
0
    mask_t low;
327
0
    mask_t succ;
328
329
0
    memcpy(enc2, enc, sizeof(enc2));
330
331
0
    low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
332
0
    enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
333
334
0
    succ = gf_deserialize(p->y, enc2, 1, 0);
335
0
    succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
336
337
0
    ossl_gf_sqr(p->x, p->y);
338
0
    gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */
339
0
    gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
340
0
    gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
341
342
0
    ossl_gf_mul(p->x, p->z, p->t);
343
0
    succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
344
345
0
    ossl_gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */
346
0
    gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
347
0
    gf_copy(p->z, ONE);
348
349
0
    {
350
0
        gf a, b, c, d;
351
352
        /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
353
0
        ossl_gf_sqr(c, p->x);
354
0
        ossl_gf_sqr(a, p->y);
355
0
        gf_add(d, c, a);
356
0
        gf_add(p->t, p->y, p->x);
357
0
        ossl_gf_sqr(b, p->t);
358
0
        gf_sub(b, b, d);
359
0
        gf_sub(p->t, a, c);
360
0
        ossl_gf_sqr(p->x, p->z);
361
0
        gf_add(p->z, p->x, p->x);
362
0
        gf_sub(a, p->z, d);
363
0
        ossl_gf_mul(p->x, a, b);
364
0
        ossl_gf_mul(p->z, p->t, a);
365
0
        ossl_gf_mul(p->y, p->t, d);
366
0
        ossl_gf_mul(p->t, b, d);
367
0
        OPENSSL_cleanse(a, sizeof(a));
368
0
        OPENSSL_cleanse(b, sizeof(b));
369
0
        OPENSSL_cleanse(c, sizeof(c));
370
0
        OPENSSL_cleanse(d, sizeof(d));
371
0
    }
372
373
0
    OPENSSL_cleanse(enc2, sizeof(enc2));
374
0
    assert(ossl_curve448_point_valid(p) || ~succ);
375
376
0
    return c448_succeed_if(mask_to_bool(succ));
377
0
}
378
379
c448_error_t
380
ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],
381
    const uint8_t base[X_PUBLIC_BYTES],
382
    const uint8_t scalar[X_PRIVATE_BYTES])
383
0
{
384
0
    gf x1, x2, z2, x3, z3, t1, t2;
385
0
    int t;
386
0
    mask_t swap = 0;
387
0
    mask_t nz;
388
389
0
    (void)gf_deserialize(x1, base, 1, 0);
390
0
    gf_copy(x2, ONE);
391
0
    gf_copy(z2, ZERO);
392
0
    gf_copy(x3, x1);
393
0
    gf_copy(z3, ONE);
394
395
0
    for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
396
0
        uint8_t sb = scalar[t / 8];
397
0
        mask_t k_t;
398
399
        /* Scalar conditioning */
400
0
        if (t / 8 == 0)
401
0
            sb &= -(uint8_t)COFACTOR;
402
0
        else if (t == X_PRIVATE_BITS - 1)
403
0
            sb = -1;
404
405
0
        k_t = (sb >> (t % 8)) & 1;
406
0
        k_t = 0 - k_t; /* set to all 0s or all 1s */
407
408
0
        swap ^= k_t;
409
0
        gf_cond_swap(x2, x3, swap);
410
0
        gf_cond_swap(z2, z3, swap);
411
0
        swap = k_t;
412
413
        /*
414
         * The "_nr" below skips coefficient reduction. In the following
415
         * comments, "2+e" is saying that the coefficients are at most 2+epsilon
416
         * times the reduction limit.
417
         */
418
0
        gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */
419
0
        gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */
420
0
        gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */
421
0
        ossl_gf_mul(x2, t1, z2); /* DA */
422
0
        gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */
423
0
        ossl_gf_mul(x3, t2, z2); /* CB */
424
0
        gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */
425
0
        ossl_gf_sqr(z2, z3); /* (DA-CB)^2 */
426
0
        ossl_gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */
427
0
        gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */
428
0
        ossl_gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */
429
430
0
        ossl_gf_sqr(z2, t1); /* AA = A^2 */
431
0
        ossl_gf_sqr(t1, t2); /* BB = B^2 */
432
0
        ossl_gf_mul(x2, z2, t1); /* x2 = AA*BB */
433
0
        gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */
434
435
0
        gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
436
0
        gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */
437
0
        ossl_gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */
438
0
    }
439
440
    /* Finish */
441
0
    gf_cond_swap(x2, x3, swap);
442
0
    gf_cond_swap(z2, z3, swap);
443
0
    gf_invert(z2, z2, 0);
444
0
    ossl_gf_mul(x1, x2, z2);
445
0
    gf_serialize(out, x1, 1);
446
0
    nz = ~gf_eq(x1, ZERO);
447
448
0
    OPENSSL_cleanse(x1, sizeof(x1));
449
0
    OPENSSL_cleanse(x2, sizeof(x2));
450
0
    OPENSSL_cleanse(z2, sizeof(z2));
451
0
    OPENSSL_cleanse(x3, sizeof(x3));
452
0
    OPENSSL_cleanse(z3, sizeof(z3));
453
0
    OPENSSL_cleanse(t1, sizeof(t1));
454
0
    OPENSSL_cleanse(t2, sizeof(t2));
455
456
0
    return c448_succeed_if(mask_to_bool(nz));
457
0
}
458
459
void ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
460
                                                               out[X_PUBLIC_BYTES],
461
    const curve448_point_t p)
462
0
{
463
0
    curve448_point_t q;
464
465
0
    curve448_point_copy(q, p);
466
0
    gf_invert(q->t, q->x, 0); /* 1/x */
467
0
    ossl_gf_mul(q->z, q->t, q->y); /* y/x */
468
0
    ossl_gf_sqr(q->y, q->z); /* (y/x)^2 */
469
0
    gf_serialize(out, q->y, 1);
470
0
    ossl_curve448_point_destroy(q);
471
0
}
472
473
void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
474
    const uint8_t scalar[X_PRIVATE_BYTES])
475
0
{
476
    /* Scalar conditioning */
477
0
    uint8_t scalar2[X_PRIVATE_BYTES];
478
0
    curve448_scalar_t the_scalar;
479
0
    curve448_point_t p;
480
0
    unsigned int i;
481
482
0
    memcpy(scalar2, scalar, sizeof(scalar2));
483
0
    scalar2[0] &= -(uint8_t)COFACTOR;
484
485
0
    scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
486
0
    scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
487
488
0
    ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
489
490
    /* Compensate for the encoding ratio */
491
0
    for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
492
0
        ossl_curve448_scalar_halve(the_scalar, the_scalar);
493
494
0
    ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base,
495
0
        the_scalar);
496
0
    ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
497
0
    ossl_curve448_point_destroy(p);
498
0
}
499
500
/* Control for variable-time scalar multiply algorithms. */
501
struct smvt_control {
502
    int power, addend;
503
};
504
505
#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
506
0
#define NUMTRAILINGZEROS __builtin_ctz
507
#else
508
#define NUMTRAILINGZEROS numtrailingzeros
509
static uint32_t numtrailingzeros(uint32_t i)
510
{
511
    uint32_t tmp;
512
    uint32_t num = 31;
513
514
    if (i == 0)
515
        return 32;
516
517
    tmp = i << 16;
518
    if (tmp != 0) {
519
        i = tmp;
520
        num -= 16;
521
    }
522
    tmp = i << 8;
523
    if (tmp != 0) {
524
        i = tmp;
525
        num -= 8;
526
    }
527
    tmp = i << 4;
528
    if (tmp != 0) {
529
        i = tmp;
530
        num -= 4;
531
    }
532
    tmp = i << 2;
533
    if (tmp != 0) {
534
        i = tmp;
535
        num -= 2;
536
    }
537
    tmp = i << 1;
538
    if (tmp != 0)
539
        num--;
540
541
    return num;
542
}
543
#endif
544
545
static int recode_wnaf(struct smvt_control *control,
546
    /* [nbits/(table_bits + 1) + 3] */
547
    const curve448_scalar_t scalar,
548
    unsigned int table_bits)
549
0
{
550
0
    unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
551
0
    int position = table_size - 1; /* at the end */
552
0
    uint64_t current = scalar->limb[0] & 0xFFFF;
553
0
    uint32_t mask = (1 << (table_bits + 1)) - 1;
554
0
    unsigned int w;
555
0
    const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
556
0
    unsigned int n, i;
557
558
    /* place the end marker */
559
0
    control[position].power = -1;
560
0
    control[position].addend = 0;
561
0
    position--;
562
563
    /*
564
     * PERF: Could negate scalar if it's large.  But then would need more cases
565
     * in the actual code that uses it, all for an expected reduction of like
566
     * 1/5 op. Probably not worth it.
567
     */
568
569
0
    for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
570
0
        if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
571
            /* Refill the 16 high bits of current */
572
0
            current += (uint32_t)((scalar->limb[w / B_OVER_16]
573
0
                                      >> (16 * (w % B_OVER_16)))
574
0
                << 16);
575
0
        }
576
577
0
        while (current & 0xFFFF) {
578
0
            uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
579
0
            uint32_t odd = (uint32_t)current >> pos;
580
0
            int32_t delta = odd & mask;
581
582
0
            assert(position >= 0);
583
0
            if (odd & (1 << (table_bits + 1)))
584
0
                delta -= (1 << (table_bits + 1));
585
            /*
586
             * Coverity gets confused by the value of pos, thinking it might be
587
             * 32.  This would require current & 0xFFFF to be zero which isn't
588
             * possible.  Suppress this false positive, since adding a check
589
             * isn't desirable.
590
             */
591
            /* coverity[overflow_before_widen] */
592
0
            current -= delta * (1 << pos);
593
0
            control[position].power = pos + 16 * (w - 1);
594
0
            control[position].addend = delta;
595
0
            position--;
596
0
        }
597
0
        current >>= 16;
598
0
    }
599
0
    assert(current == 0);
600
601
0
    position++;
602
0
    n = table_size - position;
603
0
    for (i = 0; i < n; i++)
604
0
        control[i] = control[i + position];
605
606
0
    return n - 1;
607
0
}
608
609
static void prepare_wnaf_table(pniels_t *output,
610
    const curve448_point_t working,
611
    unsigned int tbits)
612
0
{
613
0
    curve448_point_t tmp;
614
0
    int i;
615
0
    pniels_t twop;
616
617
0
    pt_to_pniels(output[0], working);
618
619
0
    if (tbits == 0)
620
0
        return;
621
622
0
    ossl_curve448_point_double(tmp, working);
623
0
    pt_to_pniels(twop, tmp);
624
625
0
    add_pniels_to_pt(tmp, output[0], 0);
626
0
    pt_to_pniels(output[1], tmp);
627
628
0
    for (i = 2; i < 1 << tbits; i++) {
629
0
        add_pniels_to_pt(tmp, twop, 0);
630
0
        pt_to_pniels(output[i], tmp);
631
0
    }
632
633
0
    ossl_curve448_point_destroy(tmp);
634
0
    OPENSSL_cleanse(twop, sizeof(twop));
635
0
}
636
637
void ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
638
    const curve448_scalar_t scalar1,
639
    const curve448_point_t base2,
640
    const curve448_scalar_t scalar2)
641
0
{
642
0
    const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
643
0
    const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
644
0
    struct smvt_control control_var[C448_SCALAR_BITS / (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
645
0
    struct smvt_control control_pre[C448_SCALAR_BITS / (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
646
0
    int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
647
0
    int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
648
0
    pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
649
0
    int contp = 0, contv = 0, i;
650
651
0
    prepare_wnaf_table(precmp_var, base2, table_bits_var);
652
0
    i = control_var[0].power;
653
654
0
    if (i < 0) {
655
0
        curve448_point_copy(combo, ossl_curve448_point_identity);
656
0
        return;
657
0
    }
658
0
    if (i > control_pre[0].power) {
659
0
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
660
0
        contv++;
661
0
    } else if (i == control_pre[0].power && i >= 0) {
662
0
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
663
0
        add_niels_to_pt(combo,
664
0
            ossl_curve448_wnaf_base[control_pre[0].addend >> 1],
665
0
            i);
666
0
        contv++;
667
0
        contp++;
668
0
    } else {
669
0
        i = control_pre[0].power;
670
0
        niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]);
671
0
        contp++;
672
0
    }
673
674
0
    for (i--; i >= 0; i--) {
675
0
        int cv = (i == control_var[contv].power);
676
0
        int cp = (i == control_pre[contp].power);
677
678
0
        point_double_internal(combo, combo, i && !(cv || cp));
679
680
0
        if (cv) {
681
0
            assert(control_var[contv].addend);
682
683
0
            if (control_var[contv].addend > 0)
684
0
                add_pniels_to_pt(combo,
685
0
                    precmp_var[control_var[contv].addend >> 1],
686
0
                    i && !cp);
687
0
            else
688
0
                sub_pniels_from_pt(combo,
689
0
                    precmp_var[(-control_var[contv].addend)
690
0
                        >> 1],
691
0
                    i && !cp);
692
0
            contv++;
693
0
        }
694
695
0
        if (cp) {
696
0
            assert(control_pre[contp].addend);
697
698
0
            if (control_pre[contp].addend > 0)
699
0
                add_niels_to_pt(combo,
700
0
                    ossl_curve448_wnaf_base[control_pre[contp].addend
701
0
                        >> 1],
702
0
                    i);
703
0
            else
704
0
                sub_niels_from_pt(combo,
705
0
                    ossl_curve448_wnaf_base[(-control_pre
706
0
                                                    [contp]
707
0
                                                        .addend)
708
0
                        >> 1],
709
0
                    i);
710
0
            contp++;
711
0
        }
712
0
    }
713
714
    /* This function is non-secret, but whatever this is cheap. */
715
0
    OPENSSL_cleanse(control_var, sizeof(control_var));
716
0
    OPENSSL_cleanse(control_pre, sizeof(control_pre));
717
0
    OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
718
719
0
    assert(contv == ncb_var);
720
0
    (void)ncb_var;
721
0
    assert(contp == ncb_pre);
722
0
    (void)ncb_pre;
723
0
}
724
725
void ossl_curve448_point_destroy(curve448_point_t point)
726
0
{
727
0
    OPENSSL_cleanse(point, sizeof(curve448_point_t));
728
0
}
729
730
int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56],
731
    const uint8_t peer_public_value[56])
732
0
{
733
0
    return ossl_x448_int(out_shared_key, peer_public_value, private_key)
734
0
        == C448_SUCCESS;
735
0
}
736
737
void ossl_x448_public_from_private(uint8_t out_public_value[56],
738
    const uint8_t private_key[56])
739
0
{
740
0
    ossl_x448_derive_public_key(out_public_value, private_key);
741
0
}