/src/openssl/crypto/evp/e_aes.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2001-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * This file uses the low-level AES functions (which are deprecated for |
12 | | * non-internal use) in order to implement the EVP AES ciphers. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <string.h> |
17 | | #include <assert.h> |
18 | | #include <openssl/opensslconf.h> |
19 | | #include <openssl/crypto.h> |
20 | | #include <openssl/evp.h> |
21 | | #include <openssl/err.h> |
22 | | #include <openssl/aes.h> |
23 | | #include <openssl/rand.h> |
24 | | #include <openssl/cmac.h> |
25 | | #include "crypto/evp.h" |
26 | | #include "internal/cryptlib.h" |
27 | | #include "crypto/modes.h" |
28 | | #include "crypto/siv.h" |
29 | | #include "crypto/aes_platform.h" |
30 | | #include "evp_local.h" |
31 | | |
32 | | typedef struct { |
33 | | union { |
34 | | OSSL_UNION_ALIGN; |
35 | | AES_KEY ks; |
36 | | } ks; |
37 | | block128_f block; |
38 | | union { |
39 | | cbc128_f cbc; |
40 | | ctr128_f ctr; |
41 | | } stream; |
42 | | } EVP_AES_KEY; |
43 | | |
44 | | typedef struct { |
45 | | union { |
46 | | OSSL_UNION_ALIGN; |
47 | | AES_KEY ks; |
48 | | } ks; /* AES key schedule to use */ |
49 | | int key_set; /* Set if key initialised */ |
50 | | int iv_set; /* Set if an iv is set */ |
51 | | GCM128_CONTEXT gcm; |
52 | | unsigned char *iv; /* Temporary IV store */ |
53 | | int ivlen; /* IV length */ |
54 | | int taglen; |
55 | | int iv_gen; /* It is OK to generate IVs */ |
56 | | int iv_gen_rand; /* No IV was specified, so generate a rand IV */ |
57 | | int tls_aad_len; /* TLS AAD length */ |
58 | | uint64_t tls_enc_records; /* Number of TLS records encrypted */ |
59 | | ctr128_f ctr; |
60 | | } EVP_AES_GCM_CTX; |
61 | | |
62 | | typedef struct { |
63 | | union { |
64 | | OSSL_UNION_ALIGN; |
65 | | AES_KEY ks; |
66 | | } ks1, ks2; /* AES key schedules to use */ |
67 | | XTS128_CONTEXT xts; |
68 | | void (*stream)(const unsigned char *in, |
69 | | unsigned char *out, size_t length, |
70 | | const AES_KEY *key1, const AES_KEY *key2, |
71 | | const unsigned char iv[16]); |
72 | | } EVP_AES_XTS_CTX; |
73 | | |
74 | | #ifdef FIPS_MODULE |
75 | | static const int allow_insecure_decrypt = 0; |
76 | | #else |
77 | | static const int allow_insecure_decrypt = 1; |
78 | | #endif |
79 | | |
80 | | typedef struct { |
81 | | union { |
82 | | OSSL_UNION_ALIGN; |
83 | | AES_KEY ks; |
84 | | } ks; /* AES key schedule to use */ |
85 | | int key_set; /* Set if key initialised */ |
86 | | int iv_set; /* Set if an iv is set */ |
87 | | int tag_set; /* Set if tag is valid */ |
88 | | int len_set; /* Set if message length set */ |
89 | | int L, M; /* L and M parameters from RFC3610 */ |
90 | | int tls_aad_len; /* TLS AAD length */ |
91 | | CCM128_CONTEXT ccm; |
92 | | ccm128_f str; |
93 | | } EVP_AES_CCM_CTX; |
94 | | |
95 | | #ifndef OPENSSL_NO_OCB |
96 | | typedef struct { |
97 | | union { |
98 | | OSSL_UNION_ALIGN; |
99 | | AES_KEY ks; |
100 | | } ksenc; /* AES key schedule to use for encryption */ |
101 | | union { |
102 | | OSSL_UNION_ALIGN; |
103 | | AES_KEY ks; |
104 | | } ksdec; /* AES key schedule to use for decryption */ |
105 | | int key_set; /* Set if key initialised */ |
106 | | int iv_set; /* Set if an iv is set */ |
107 | | OCB128_CONTEXT ocb; |
108 | | unsigned char *iv; /* Temporary IV store */ |
109 | | unsigned char tag[16]; |
110 | | unsigned char data_buf[16]; /* Store partial data blocks */ |
111 | | unsigned char aad_buf[16]; /* Store partial AAD blocks */ |
112 | | int data_buf_len; |
113 | | int aad_buf_len; |
114 | | int ivlen; /* IV length */ |
115 | | int taglen; |
116 | | } EVP_AES_OCB_CTX; |
117 | | #endif |
118 | | |
119 | 0 | #define MAXBITCHUNK ((size_t)1 << (sizeof(size_t) * 8 - 4)) |
120 | | |
121 | | /* increment counter (64-bit int) by 1 */ |
122 | | static void ctr64_inc(unsigned char *counter) |
123 | 0 | { |
124 | 0 | int n = 8; |
125 | 0 | unsigned char c; |
126 | |
|
127 | 0 | do { |
128 | 0 | --n; |
129 | 0 | c = counter[n]; |
130 | 0 | ++c; |
131 | 0 | counter[n] = c; |
132 | 0 | if (c) |
133 | 0 | return; |
134 | 0 | } while (n); |
135 | 0 | } |
136 | | |
137 | | #if defined(AESNI_CAPABLE) |
138 | | #if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) |
139 | | #define AES_GCM_ASM2(gctx) (gctx->gcm.block == (block128_f)aesni_encrypt && gctx->gcm.ghash == gcm_ghash_avx) |
140 | | #undef AES_GCM_ASM2 /* minor size optimization */ |
141 | | #endif |
142 | | |
143 | | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
144 | | const unsigned char *iv, int enc) |
145 | | { |
146 | | int ret, mode; |
147 | | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
148 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
149 | | |
150 | | if (keylen <= 0) { |
151 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
152 | | return 0; |
153 | | } |
154 | | mode = EVP_CIPHER_CTX_get_mode(ctx); |
155 | | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
156 | | && !enc) { |
157 | | ret = aesni_set_decrypt_key(key, keylen, &dat->ks.ks); |
158 | | dat->block = (block128_f)aesni_decrypt; |
159 | | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; |
160 | | } else { |
161 | | ret = aesni_set_encrypt_key(key, keylen, &dat->ks.ks); |
162 | | dat->block = (block128_f)aesni_encrypt; |
163 | | if (mode == EVP_CIPH_CBC_MODE) |
164 | | dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; |
165 | | else if (mode == EVP_CIPH_CTR_MODE) |
166 | | dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; |
167 | | else |
168 | | dat->stream.cbc = NULL; |
169 | | } |
170 | | |
171 | | if (ret < 0) { |
172 | | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED); |
173 | | return 0; |
174 | | } |
175 | | |
176 | | return 1; |
177 | | } |
178 | | |
179 | | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
180 | | const unsigned char *in, size_t len) |
181 | | { |
182 | | aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY, ctx)->ks.ks, |
183 | | ctx->iv, EVP_CIPHER_CTX_is_encrypting(ctx)); |
184 | | |
185 | | return 1; |
186 | | } |
187 | | |
188 | | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
189 | | const unsigned char *in, size_t len) |
190 | | { |
191 | | size_t bl = EVP_CIPHER_CTX_get_block_size(ctx); |
192 | | |
193 | | if (len < bl) |
194 | | return 1; |
195 | | |
196 | | aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY, ctx)->ks.ks, |
197 | | EVP_CIPHER_CTX_is_encrypting(ctx)); |
198 | | |
199 | | return 1; |
200 | | } |
201 | | |
202 | | #define aesni_ofb_cipher aes_ofb_cipher |
203 | | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
204 | | const unsigned char *in, size_t len); |
205 | | |
206 | | #define aesni_cfb_cipher aes_cfb_cipher |
207 | | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
208 | | const unsigned char *in, size_t len); |
209 | | |
210 | | #define aesni_cfb8_cipher aes_cfb8_cipher |
211 | | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
212 | | const unsigned char *in, size_t len); |
213 | | |
214 | | #define aesni_cfb1_cipher aes_cfb1_cipher |
215 | | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
216 | | const unsigned char *in, size_t len); |
217 | | |
218 | | #define aesni_ctr_cipher aes_ctr_cipher |
219 | | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
220 | | const unsigned char *in, size_t len); |
221 | | |
222 | | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
223 | | const unsigned char *iv, int enc) |
224 | | { |
225 | | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx); |
226 | | |
227 | | if (iv == NULL && key == NULL) |
228 | | return 1; |
229 | | |
230 | | if (key) { |
231 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
232 | | |
233 | | if (keylen <= 0) { |
234 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
235 | | return 0; |
236 | | } |
237 | | aesni_set_encrypt_key(key, keylen, &gctx->ks.ks); |
238 | | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); |
239 | | gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; |
240 | | /* |
241 | | * If we have an iv can set it directly, otherwise use saved IV. |
242 | | */ |
243 | | if (iv == NULL && gctx->iv_set) |
244 | | iv = gctx->iv; |
245 | | if (iv) { |
246 | | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
247 | | gctx->iv_set = 1; |
248 | | } |
249 | | gctx->key_set = 1; |
250 | | } else { |
251 | | /* If key set use IV, otherwise copy */ |
252 | | if (gctx->key_set) |
253 | | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
254 | | else |
255 | | memcpy(gctx->iv, iv, gctx->ivlen); |
256 | | gctx->iv_set = 1; |
257 | | gctx->iv_gen = 0; |
258 | | } |
259 | | return 1; |
260 | | } |
261 | | |
262 | | #define aesni_gcm_cipher aes_gcm_cipher |
263 | | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
264 | | const unsigned char *in, size_t len); |
265 | | |
266 | | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
267 | | const unsigned char *iv, int enc) |
268 | | { |
269 | | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, ctx); |
270 | | |
271 | | if (iv == NULL && key == NULL) |
272 | | return 1; |
273 | | |
274 | | if (key) { |
275 | | /* The key is two half length keys in reality */ |
276 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
277 | | const int bytes = keylen / 2; |
278 | | const int bits = bytes * 8; |
279 | | |
280 | | if (keylen <= 0) { |
281 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
282 | | return 0; |
283 | | } |
284 | | /* |
285 | | * Verify that the two keys are different. |
286 | | * |
287 | | * This addresses Rogaway's vulnerability. |
288 | | * See comment in aes_xts_init_key() below. |
289 | | */ |
290 | | if ((!allow_insecure_decrypt || enc) |
291 | | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
292 | | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS); |
293 | | return 0; |
294 | | } |
295 | | |
296 | | /* key_len is two AES keys */ |
297 | | if (enc) { |
298 | | aesni_set_encrypt_key(key, bits, &xctx->ks1.ks); |
299 | | xctx->xts.block1 = (block128_f)aesni_encrypt; |
300 | | xctx->stream = aesni_xts_encrypt; |
301 | | } else { |
302 | | aesni_set_decrypt_key(key, bits, &xctx->ks1.ks); |
303 | | xctx->xts.block1 = (block128_f)aesni_decrypt; |
304 | | xctx->stream = aesni_xts_decrypt; |
305 | | } |
306 | | |
307 | | aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
308 | | xctx->xts.block2 = (block128_f)aesni_encrypt; |
309 | | |
310 | | xctx->xts.key1 = &xctx->ks1; |
311 | | } |
312 | | |
313 | | if (iv) { |
314 | | xctx->xts.key2 = &xctx->ks2; |
315 | | memcpy(ctx->iv, iv, 16); |
316 | | } |
317 | | |
318 | | return 1; |
319 | | } |
320 | | |
321 | | #define aesni_xts_cipher aes_xts_cipher |
322 | | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
323 | | const unsigned char *in, size_t len); |
324 | | |
325 | | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
326 | | const unsigned char *iv, int enc) |
327 | | { |
328 | | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX, ctx); |
329 | | |
330 | | if (iv == NULL && key == NULL) |
331 | | return 1; |
332 | | |
333 | | if (key != NULL) { |
334 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
335 | | |
336 | | if (keylen <= 0) { |
337 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
338 | | return 0; |
339 | | } |
340 | | aesni_set_encrypt_key(key, keylen, &cctx->ks.ks); |
341 | | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
342 | | &cctx->ks, (block128_f)aesni_encrypt); |
343 | | cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks : (ccm128_f)aesni_ccm64_decrypt_blocks; |
344 | | cctx->key_set = 1; |
345 | | } |
346 | | if (iv) { |
347 | | memcpy(ctx->iv, iv, 15 - cctx->L); |
348 | | cctx->iv_set = 1; |
349 | | } |
350 | | return 1; |
351 | | } |
352 | | |
353 | | #define aesni_ccm_cipher aes_ccm_cipher |
354 | | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
355 | | const unsigned char *in, size_t len); |
356 | | |
357 | | #ifndef OPENSSL_NO_OCB |
358 | | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
359 | | const unsigned char *iv, int enc) |
360 | | { |
361 | | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX, ctx); |
362 | | |
363 | | if (iv == NULL && key == NULL) |
364 | | return 1; |
365 | | |
366 | | if (key != NULL) { |
367 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
368 | | |
369 | | if (keylen <= 0) { |
370 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
371 | | return 0; |
372 | | } |
373 | | do { |
374 | | /* |
375 | | * We set both the encrypt and decrypt key here because decrypt |
376 | | * needs both. We could possibly optimise to remove setting the |
377 | | * decrypt for an encryption operation. |
378 | | */ |
379 | | aesni_set_encrypt_key(key, keylen, &octx->ksenc.ks); |
380 | | aesni_set_decrypt_key(key, keylen, &octx->ksdec.ks); |
381 | | if (!CRYPTO_ocb128_init(&octx->ocb, |
382 | | &octx->ksenc.ks, &octx->ksdec.ks, |
383 | | (block128_f)aesni_encrypt, |
384 | | (block128_f)aesni_decrypt, |
385 | | enc ? aesni_ocb_encrypt |
386 | | : aesni_ocb_decrypt)) |
387 | | return 0; |
388 | | } while (0); |
389 | | |
390 | | /* |
391 | | * If we have an iv we can set it directly, otherwise use saved IV. |
392 | | */ |
393 | | if (iv == NULL && octx->iv_set) |
394 | | iv = octx->iv; |
395 | | if (iv) { |
396 | | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
397 | | != 1) |
398 | | return 0; |
399 | | octx->iv_set = 1; |
400 | | } |
401 | | octx->key_set = 1; |
402 | | } else { |
403 | | /* If key set use IV, otherwise copy */ |
404 | | if (octx->key_set) |
405 | | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
406 | | else |
407 | | memcpy(octx->iv, iv, octx->ivlen); |
408 | | octx->iv_set = 1; |
409 | | } |
410 | | return 1; |
411 | | } |
412 | | |
413 | | #define aesni_ocb_cipher aes_ocb_cipher |
414 | | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
415 | | const unsigned char *in, size_t len); |
416 | | #endif /* OPENSSL_NO_OCB */ |
417 | | |
418 | | #define BLOCK_CIPHER_generic(nid, keylen, blocksize, ivlen, nmode, mode, MODE, flags) \ |
419 | | static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
420 | | nid##_##keylen##_##nmode, blocksize, keylen / 8, ivlen, \ |
421 | | flags | EVP_CIPH_##MODE##_MODE, \ |
422 | | EVP_ORIG_GLOBAL, \ |
423 | | aesni_init_key, \ |
424 | | aesni_##mode##_cipher, \ |
425 | | NULL, \ |
426 | | sizeof(EVP_AES_KEY), \ |
427 | | NULL, NULL, NULL, NULL \ |
428 | | }; \ |
429 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
430 | | nid##_##keylen##_##nmode, blocksize, \ |
431 | | keylen / 8, ivlen, \ |
432 | | flags | EVP_CIPH_##MODE##_MODE, \ |
433 | | EVP_ORIG_GLOBAL, \ |
434 | | aes_init_key, \ |
435 | | aes_##mode##_cipher, \ |
436 | | NULL, \ |
437 | | sizeof(EVP_AES_KEY), \ |
438 | | NULL, NULL, NULL, NULL \ |
439 | | }; \ |
440 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
441 | | { \ |
442 | | return AESNI_CAPABLE ? &aesni_##keylen##_##mode : &aes_##keylen##_##mode; \ |
443 | | } |
444 | | |
445 | | #define BLOCK_CIPHER_custom(nid, keylen, blocksize, ivlen, mode, MODE, flags) \ |
446 | | static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
447 | | nid##_##keylen##_##mode, blocksize, \ |
448 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
449 | | ivlen, \ |
450 | | flags | EVP_CIPH_##MODE##_MODE, \ |
451 | | EVP_ORIG_GLOBAL, \ |
452 | | aesni_##mode##_init_key, \ |
453 | | aesni_##mode##_cipher, \ |
454 | | aes_##mode##_cleanup, \ |
455 | | sizeof(EVP_AES_##MODE##_CTX), \ |
456 | | NULL, NULL, aes_##mode##_ctrl, NULL \ |
457 | | }; \ |
458 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
459 | | nid##_##keylen##_##mode, blocksize, \ |
460 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
461 | | ivlen, \ |
462 | | flags | EVP_CIPH_##MODE##_MODE, \ |
463 | | EVP_ORIG_GLOBAL, \ |
464 | | aes_##mode##_init_key, \ |
465 | | aes_##mode##_cipher, \ |
466 | | aes_##mode##_cleanup, \ |
467 | | sizeof(EVP_AES_##MODE##_CTX), \ |
468 | | NULL, NULL, aes_##mode##_ctrl, NULL \ |
469 | | }; \ |
470 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
471 | | { \ |
472 | | return AESNI_CAPABLE ? &aesni_##keylen##_##mode : &aes_##keylen##_##mode; \ |
473 | | } |
474 | | |
475 | | #elif defined(SPARC_AES_CAPABLE) |
476 | | |
477 | | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
478 | | const unsigned char *iv, int enc) |
479 | | { |
480 | | int ret, mode, bits; |
481 | | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
482 | | |
483 | | mode = EVP_CIPHER_CTX_get_mode(ctx); |
484 | | bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
485 | | if (bits <= 0) { |
486 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
487 | | return 0; |
488 | | } |
489 | | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
490 | | && !enc) { |
491 | | ret = 0; |
492 | | aes_t4_set_decrypt_key(key, bits, &dat->ks.ks); |
493 | | dat->block = (block128_f)aes_t4_decrypt; |
494 | | switch (bits) { |
495 | | case 128: |
496 | | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aes128_t4_cbc_decrypt : NULL; |
497 | | break; |
498 | | case 192: |
499 | | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aes192_t4_cbc_decrypt : NULL; |
500 | | break; |
501 | | case 256: |
502 | | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aes256_t4_cbc_decrypt : NULL; |
503 | | break; |
504 | | default: |
505 | | ret = -1; |
506 | | } |
507 | | } else { |
508 | | ret = 0; |
509 | | aes_t4_set_encrypt_key(key, bits, &dat->ks.ks); |
510 | | dat->block = (block128_f)aes_t4_encrypt; |
511 | | switch (bits) { |
512 | | case 128: |
513 | | if (mode == EVP_CIPH_CBC_MODE) |
514 | | dat->stream.cbc = (cbc128_f)aes128_t4_cbc_encrypt; |
515 | | else if (mode == EVP_CIPH_CTR_MODE) |
516 | | dat->stream.ctr = (ctr128_f)aes128_t4_ctr32_encrypt; |
517 | | else |
518 | | dat->stream.cbc = NULL; |
519 | | break; |
520 | | case 192: |
521 | | if (mode == EVP_CIPH_CBC_MODE) |
522 | | dat->stream.cbc = (cbc128_f)aes192_t4_cbc_encrypt; |
523 | | else if (mode == EVP_CIPH_CTR_MODE) |
524 | | dat->stream.ctr = (ctr128_f)aes192_t4_ctr32_encrypt; |
525 | | else |
526 | | dat->stream.cbc = NULL; |
527 | | break; |
528 | | case 256: |
529 | | if (mode == EVP_CIPH_CBC_MODE) |
530 | | dat->stream.cbc = (cbc128_f)aes256_t4_cbc_encrypt; |
531 | | else if (mode == EVP_CIPH_CTR_MODE) |
532 | | dat->stream.ctr = (ctr128_f)aes256_t4_ctr32_encrypt; |
533 | | else |
534 | | dat->stream.cbc = NULL; |
535 | | break; |
536 | | default: |
537 | | ret = -1; |
538 | | } |
539 | | } |
540 | | |
541 | | if (ret < 0) { |
542 | | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED); |
543 | | return 0; |
544 | | } |
545 | | |
546 | | return 1; |
547 | | } |
548 | | |
549 | | #define aes_t4_cbc_cipher aes_cbc_cipher |
550 | | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
551 | | const unsigned char *in, size_t len); |
552 | | |
553 | | #define aes_t4_ecb_cipher aes_ecb_cipher |
554 | | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
555 | | const unsigned char *in, size_t len); |
556 | | |
557 | | #define aes_t4_ofb_cipher aes_ofb_cipher |
558 | | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
559 | | const unsigned char *in, size_t len); |
560 | | |
561 | | #define aes_t4_cfb_cipher aes_cfb_cipher |
562 | | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
563 | | const unsigned char *in, size_t len); |
564 | | |
565 | | #define aes_t4_cfb8_cipher aes_cfb8_cipher |
566 | | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
567 | | const unsigned char *in, size_t len); |
568 | | |
569 | | #define aes_t4_cfb1_cipher aes_cfb1_cipher |
570 | | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
571 | | const unsigned char *in, size_t len); |
572 | | |
573 | | #define aes_t4_ctr_cipher aes_ctr_cipher |
574 | | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
575 | | const unsigned char *in, size_t len); |
576 | | |
577 | | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
578 | | const unsigned char *iv, int enc) |
579 | | { |
580 | | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx); |
581 | | |
582 | | if (iv == NULL && key == NULL) |
583 | | return 1; |
584 | | if (key) { |
585 | | const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
586 | | |
587 | | if (bits <= 0) { |
588 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
589 | | return 0; |
590 | | } |
591 | | aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); |
592 | | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
593 | | (block128_f)aes_t4_encrypt); |
594 | | switch (bits) { |
595 | | case 128: |
596 | | gctx->ctr = (ctr128_f)aes128_t4_ctr32_encrypt; |
597 | | break; |
598 | | case 192: |
599 | | gctx->ctr = (ctr128_f)aes192_t4_ctr32_encrypt; |
600 | | break; |
601 | | case 256: |
602 | | gctx->ctr = (ctr128_f)aes256_t4_ctr32_encrypt; |
603 | | break; |
604 | | default: |
605 | | return 0; |
606 | | } |
607 | | /* |
608 | | * If we have an iv can set it directly, otherwise use saved IV. |
609 | | */ |
610 | | if (iv == NULL && gctx->iv_set) |
611 | | iv = gctx->iv; |
612 | | if (iv) { |
613 | | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
614 | | gctx->iv_set = 1; |
615 | | } |
616 | | gctx->key_set = 1; |
617 | | } else { |
618 | | /* If key set use IV, otherwise copy */ |
619 | | if (gctx->key_set) |
620 | | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
621 | | else |
622 | | memcpy(gctx->iv, iv, gctx->ivlen); |
623 | | gctx->iv_set = 1; |
624 | | gctx->iv_gen = 0; |
625 | | } |
626 | | return 1; |
627 | | } |
628 | | |
629 | | #define aes_t4_gcm_cipher aes_gcm_cipher |
630 | | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
631 | | const unsigned char *in, size_t len); |
632 | | |
633 | | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
634 | | const unsigned char *iv, int enc) |
635 | | { |
636 | | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, ctx); |
637 | | |
638 | | if (!iv && !key) |
639 | | return 1; |
640 | | |
641 | | if (key) { |
642 | | /* The key is two half length keys in reality */ |
643 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
644 | | const int bytes = keylen / 2; |
645 | | const int bits = bytes * 8; |
646 | | |
647 | | if (keylen <= 0) { |
648 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
649 | | return 0; |
650 | | } |
651 | | /* |
652 | | * Verify that the two keys are different. |
653 | | * |
654 | | * This addresses Rogaway's vulnerability. |
655 | | * See comment in aes_xts_init_key() below. |
656 | | */ |
657 | | if ((!allow_insecure_decrypt || enc) |
658 | | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
659 | | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS); |
660 | | return 0; |
661 | | } |
662 | | |
663 | | xctx->stream = NULL; |
664 | | /* key_len is two AES keys */ |
665 | | if (enc) { |
666 | | aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); |
667 | | xctx->xts.block1 = (block128_f)aes_t4_encrypt; |
668 | | switch (bits) { |
669 | | case 128: |
670 | | xctx->stream = aes128_t4_xts_encrypt; |
671 | | break; |
672 | | case 256: |
673 | | xctx->stream = aes256_t4_xts_encrypt; |
674 | | break; |
675 | | default: |
676 | | return 0; |
677 | | } |
678 | | } else { |
679 | | aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks); |
680 | | xctx->xts.block1 = (block128_f)aes_t4_decrypt; |
681 | | switch (bits) { |
682 | | case 128: |
683 | | xctx->stream = aes128_t4_xts_decrypt; |
684 | | break; |
685 | | case 256: |
686 | | xctx->stream = aes256_t4_xts_decrypt; |
687 | | break; |
688 | | default: |
689 | | return 0; |
690 | | } |
691 | | } |
692 | | |
693 | | aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
694 | | xctx->xts.block2 = (block128_f)aes_t4_encrypt; |
695 | | |
696 | | xctx->xts.key1 = &xctx->ks1; |
697 | | } |
698 | | |
699 | | if (iv) { |
700 | | xctx->xts.key2 = &xctx->ks2; |
701 | | memcpy(ctx->iv, iv, 16); |
702 | | } |
703 | | |
704 | | return 1; |
705 | | } |
706 | | |
707 | | #define aes_t4_xts_cipher aes_xts_cipher |
708 | | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
709 | | const unsigned char *in, size_t len); |
710 | | |
711 | | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
712 | | const unsigned char *iv, int enc) |
713 | | { |
714 | | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX, ctx); |
715 | | |
716 | | if (iv == NULL && key == NULL) |
717 | | return 1; |
718 | | |
719 | | if (key != NULL) { |
720 | | const int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
721 | | |
722 | | if (bits <= 0) { |
723 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
724 | | return 0; |
725 | | } |
726 | | aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); |
727 | | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
728 | | &cctx->ks, (block128_f)aes_t4_encrypt); |
729 | | cctx->str = NULL; |
730 | | cctx->key_set = 1; |
731 | | } |
732 | | if (iv) { |
733 | | memcpy(ctx->iv, iv, 15 - cctx->L); |
734 | | cctx->iv_set = 1; |
735 | | } |
736 | | return 1; |
737 | | } |
738 | | |
739 | | #define aes_t4_ccm_cipher aes_ccm_cipher |
740 | | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
741 | | const unsigned char *in, size_t len); |
742 | | |
743 | | #ifndef OPENSSL_NO_OCB |
744 | | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
745 | | const unsigned char *iv, int enc) |
746 | | { |
747 | | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX, ctx); |
748 | | |
749 | | if (iv == NULL && key == NULL) |
750 | | return 1; |
751 | | |
752 | | if (key != NULL) { |
753 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
754 | | |
755 | | if (keylen <= 0) { |
756 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
757 | | return 0; |
758 | | } |
759 | | do { |
760 | | /* |
761 | | * We set both the encrypt and decrypt key here because decrypt |
762 | | * needs both. We could possibly optimise to remove setting the |
763 | | * decrypt for an encryption operation. |
764 | | */ |
765 | | aes_t4_set_encrypt_key(key, keylen, &octx->ksenc.ks); |
766 | | aes_t4_set_decrypt_key(key, keylen, &octx->ksdec.ks); |
767 | | if (!CRYPTO_ocb128_init(&octx->ocb, |
768 | | &octx->ksenc.ks, &octx->ksdec.ks, |
769 | | (block128_f)aes_t4_encrypt, |
770 | | (block128_f)aes_t4_decrypt, |
771 | | NULL)) |
772 | | return 0; |
773 | | } while (0); |
774 | | |
775 | | /* |
776 | | * If we have an iv we can set it directly, otherwise use saved IV. |
777 | | */ |
778 | | if (iv == NULL && octx->iv_set) |
779 | | iv = octx->iv; |
780 | | if (iv) { |
781 | | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
782 | | != 1) |
783 | | return 0; |
784 | | octx->iv_set = 1; |
785 | | } |
786 | | octx->key_set = 1; |
787 | | } else { |
788 | | /* If key set use IV, otherwise copy */ |
789 | | if (octx->key_set) |
790 | | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
791 | | else |
792 | | memcpy(octx->iv, iv, octx->ivlen); |
793 | | octx->iv_set = 1; |
794 | | } |
795 | | return 1; |
796 | | } |
797 | | |
798 | | #define aes_t4_ocb_cipher aes_ocb_cipher |
799 | | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
800 | | const unsigned char *in, size_t len); |
801 | | #endif /* OPENSSL_NO_OCB */ |
802 | | |
803 | | #ifndef OPENSSL_NO_SIV |
804 | | #define aes_t4_siv_init_key aes_siv_init_key |
805 | | #define aes_t4_siv_cipher aes_siv_cipher |
806 | | #endif /* OPENSSL_NO_SIV */ |
807 | | |
808 | | #define BLOCK_CIPHER_generic(nid, keylen, blocksize, ivlen, nmode, mode, MODE, flags) \ |
809 | | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
810 | | nid##_##keylen##_##nmode, blocksize, keylen / 8, ivlen, \ |
811 | | flags | EVP_CIPH_##MODE##_MODE, \ |
812 | | EVP_ORIG_GLOBAL, \ |
813 | | aes_t4_init_key, \ |
814 | | aes_t4_##mode##_cipher, \ |
815 | | NULL, \ |
816 | | sizeof(EVP_AES_KEY), \ |
817 | | NULL, NULL, NULL, NULL \ |
818 | | }; \ |
819 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
820 | | nid##_##keylen##_##nmode, blocksize, \ |
821 | | keylen / 8, ivlen, \ |
822 | | flags | EVP_CIPH_##MODE##_MODE, \ |
823 | | EVP_ORIG_GLOBAL, \ |
824 | | aes_init_key, \ |
825 | | aes_##mode##_cipher, \ |
826 | | NULL, \ |
827 | | sizeof(EVP_AES_KEY), \ |
828 | | NULL, NULL, NULL, NULL \ |
829 | | }; \ |
830 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
831 | | { \ |
832 | | return SPARC_AES_CAPABLE ? &aes_t4_##keylen##_##mode : &aes_##keylen##_##mode; \ |
833 | | } |
834 | | |
835 | | #define BLOCK_CIPHER_custom(nid, keylen, blocksize, ivlen, mode, MODE, flags) \ |
836 | | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
837 | | nid##_##keylen##_##mode, blocksize, \ |
838 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
839 | | ivlen, \ |
840 | | flags | EVP_CIPH_##MODE##_MODE, \ |
841 | | EVP_ORIG_GLOBAL, \ |
842 | | aes_t4_##mode##_init_key, \ |
843 | | aes_t4_##mode##_cipher, \ |
844 | | aes_##mode##_cleanup, \ |
845 | | sizeof(EVP_AES_##MODE##_CTX), \ |
846 | | NULL, NULL, aes_##mode##_ctrl, NULL \ |
847 | | }; \ |
848 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
849 | | nid##_##keylen##_##mode, blocksize, \ |
850 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
851 | | ivlen, \ |
852 | | flags | EVP_CIPH_##MODE##_MODE, \ |
853 | | EVP_ORIG_GLOBAL, \ |
854 | | aes_##mode##_init_key, \ |
855 | | aes_##mode##_cipher, \ |
856 | | aes_##mode##_cleanup, \ |
857 | | sizeof(EVP_AES_##MODE##_CTX), \ |
858 | | NULL, NULL, aes_##mode##_ctrl, NULL \ |
859 | | }; \ |
860 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
861 | | { \ |
862 | | return SPARC_AES_CAPABLE ? &aes_t4_##keylen##_##mode : &aes_##keylen##_##mode; \ |
863 | | } |
864 | | |
865 | | #elif defined(S390X_aes_128_CAPABLE) |
866 | | /* IBM S390X support */ |
867 | | typedef struct { |
868 | | union { |
869 | | OSSL_UNION_ALIGN; |
870 | | /*- |
871 | | * KM-AES parameter block - begin |
872 | | * (see z/Architecture Principles of Operation >= SA22-7832-06) |
873 | | */ |
874 | | struct { |
875 | | unsigned char k[32]; |
876 | | } param; |
877 | | /* KM-AES parameter block - end */ |
878 | | } km; |
879 | | unsigned int fc; |
880 | | } S390X_AES_ECB_CTX; |
881 | | |
882 | | typedef struct { |
883 | | union { |
884 | | OSSL_UNION_ALIGN; |
885 | | /*- |
886 | | * KMO-AES parameter block - begin |
887 | | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
888 | | */ |
889 | | struct { |
890 | | unsigned char cv[16]; |
891 | | unsigned char k[32]; |
892 | | } param; |
893 | | /* KMO-AES parameter block - end */ |
894 | | } kmo; |
895 | | unsigned int fc; |
896 | | } S390X_AES_OFB_CTX; |
897 | | |
898 | | typedef struct { |
899 | | union { |
900 | | OSSL_UNION_ALIGN; |
901 | | /*- |
902 | | * KMF-AES parameter block - begin |
903 | | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
904 | | */ |
905 | | struct { |
906 | | unsigned char cv[16]; |
907 | | unsigned char k[32]; |
908 | | } param; |
909 | | /* KMF-AES parameter block - end */ |
910 | | } kmf; |
911 | | unsigned int fc; |
912 | | } S390X_AES_CFB_CTX; |
913 | | |
914 | | typedef struct { |
915 | | union { |
916 | | OSSL_UNION_ALIGN; |
917 | | /*- |
918 | | * KMA-GCM-AES parameter block - begin |
919 | | * (see z/Architecture Principles of Operation >= SA22-7832-11) |
920 | | */ |
921 | | struct { |
922 | | unsigned char reserved[12]; |
923 | | union { |
924 | | unsigned int w; |
925 | | unsigned char b[4]; |
926 | | } cv; |
927 | | union { |
928 | | unsigned long long g[2]; |
929 | | unsigned char b[16]; |
930 | | } t; |
931 | | unsigned char h[16]; |
932 | | unsigned long long taadl; |
933 | | unsigned long long tpcl; |
934 | | union { |
935 | | unsigned long long g[2]; |
936 | | unsigned int w[4]; |
937 | | } j0; |
938 | | unsigned char k[32]; |
939 | | } param; |
940 | | /* KMA-GCM-AES parameter block - end */ |
941 | | } kma; |
942 | | unsigned int fc; |
943 | | int key_set; |
944 | | |
945 | | unsigned char *iv; |
946 | | int ivlen; |
947 | | int iv_set; |
948 | | int iv_gen; |
949 | | |
950 | | int taglen; |
951 | | |
952 | | unsigned char ares[16]; |
953 | | unsigned char mres[16]; |
954 | | unsigned char kres[16]; |
955 | | int areslen; |
956 | | int mreslen; |
957 | | int kreslen; |
958 | | |
959 | | int tls_aad_len; |
960 | | uint64_t tls_enc_records; /* Number of TLS records encrypted */ |
961 | | } S390X_AES_GCM_CTX; |
962 | | |
963 | | typedef struct { |
964 | | union { |
965 | | OSSL_UNION_ALIGN; |
966 | | /*- |
967 | | * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and |
968 | | * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's |
969 | | * rounds field is used to store the function code and that the key |
970 | | * schedule is not stored (if aes hardware support is detected). |
971 | | */ |
972 | | struct { |
973 | | unsigned char pad[16]; |
974 | | AES_KEY k; |
975 | | } key; |
976 | | |
977 | | struct { |
978 | | /*- |
979 | | * KMAC-AES parameter block - begin |
980 | | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
981 | | */ |
982 | | struct { |
983 | | union { |
984 | | unsigned long long g[2]; |
985 | | unsigned char b[16]; |
986 | | } icv; |
987 | | unsigned char k[32]; |
988 | | } kmac_param; |
989 | | /* KMAC-AES parameter block - end */ |
990 | | |
991 | | union { |
992 | | unsigned long long g[2]; |
993 | | unsigned char b[16]; |
994 | | } nonce; |
995 | | union { |
996 | | unsigned long long g[2]; |
997 | | unsigned char b[16]; |
998 | | } buf; |
999 | | |
1000 | | unsigned long long blocks; |
1001 | | int l; |
1002 | | int m; |
1003 | | int tls_aad_len; |
1004 | | int iv_set; |
1005 | | int tag_set; |
1006 | | int len_set; |
1007 | | int key_set; |
1008 | | |
1009 | | unsigned char pad[140]; |
1010 | | unsigned int fc; |
1011 | | } ccm; |
1012 | | } aes; |
1013 | | } S390X_AES_CCM_CTX; |
1014 | | |
1015 | | #define s390x_aes_init_key aes_init_key |
1016 | | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
1017 | | const unsigned char *iv, int enc); |
1018 | | |
1019 | | #define S390X_AES_CBC_CTX EVP_AES_KEY |
1020 | | |
1021 | | #define s390x_aes_cbc_init_key aes_init_key |
1022 | | |
1023 | | #define s390x_aes_cbc_cipher aes_cbc_cipher |
1024 | | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1025 | | const unsigned char *in, size_t len); |
1026 | | |
1027 | | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx, |
1028 | | const unsigned char *key, |
1029 | | const unsigned char *iv, int enc) |
1030 | | { |
1031 | | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); |
1032 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
1033 | | |
1034 | | if (keylen <= 0) { |
1035 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
1036 | | return 0; |
1037 | | } |
1038 | | cctx->fc = S390X_AES_FC(keylen); |
1039 | | if (!enc) |
1040 | | cctx->fc |= S390X_DECRYPT; |
1041 | | |
1042 | | memcpy(cctx->km.param.k, key, keylen); |
1043 | | return 1; |
1044 | | } |
1045 | | |
1046 | | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1047 | | const unsigned char *in, size_t len) |
1048 | | { |
1049 | | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); |
1050 | | |
1051 | | s390x_km(in, len, out, cctx->fc, &cctx->km.param); |
1052 | | return 1; |
1053 | | } |
1054 | | |
1055 | | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx, |
1056 | | const unsigned char *key, |
1057 | | const unsigned char *ivec, int enc) |
1058 | | { |
1059 | | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); |
1060 | | const unsigned char *iv = ctx->oiv; |
1061 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
1062 | | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); |
1063 | | |
1064 | | if (keylen <= 0) { |
1065 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
1066 | | return 0; |
1067 | | } |
1068 | | if (ivlen <= 0) { |
1069 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH); |
1070 | | return 0; |
1071 | | } |
1072 | | memcpy(cctx->kmo.param.cv, iv, ivlen); |
1073 | | memcpy(cctx->kmo.param.k, key, keylen); |
1074 | | cctx->fc = S390X_AES_FC(keylen); |
1075 | | return 1; |
1076 | | } |
1077 | | |
1078 | | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1079 | | const unsigned char *in, size_t len) |
1080 | | { |
1081 | | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); |
1082 | | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); |
1083 | | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
1084 | | int n = ctx->num; |
1085 | | int rem; |
1086 | | |
1087 | | memcpy(cctx->kmo.param.cv, iv, ivlen); |
1088 | | while (n && len) { |
1089 | | *out = *in ^ cctx->kmo.param.cv[n]; |
1090 | | n = (n + 1) & 0xf; |
1091 | | --len; |
1092 | | ++in; |
1093 | | ++out; |
1094 | | } |
1095 | | |
1096 | | rem = len & 0xf; |
1097 | | |
1098 | | len &= ~(size_t)0xf; |
1099 | | if (len) { |
1100 | | s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param); |
1101 | | |
1102 | | out += len; |
1103 | | in += len; |
1104 | | } |
1105 | | |
1106 | | if (rem) { |
1107 | | s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc, |
1108 | | cctx->kmo.param.k); |
1109 | | |
1110 | | while (rem--) { |
1111 | | out[n] = in[n] ^ cctx->kmo.param.cv[n]; |
1112 | | ++n; |
1113 | | } |
1114 | | } |
1115 | | |
1116 | | memcpy(iv, cctx->kmo.param.cv, ivlen); |
1117 | | ctx->num = n; |
1118 | | return 1; |
1119 | | } |
1120 | | |
1121 | | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx, |
1122 | | const unsigned char *key, |
1123 | | const unsigned char *ivec, int enc) |
1124 | | { |
1125 | | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
1126 | | const unsigned char *iv = ctx->oiv; |
1127 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
1128 | | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); |
1129 | | |
1130 | | if (keylen <= 0) { |
1131 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
1132 | | return 0; |
1133 | | } |
1134 | | if (ivlen <= 0) { |
1135 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH); |
1136 | | return 0; |
1137 | | } |
1138 | | cctx->fc = S390X_AES_FC(keylen); |
1139 | | cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */ |
1140 | | if (!enc) |
1141 | | cctx->fc |= S390X_DECRYPT; |
1142 | | |
1143 | | memcpy(cctx->kmf.param.cv, iv, ivlen); |
1144 | | memcpy(cctx->kmf.param.k, key, keylen); |
1145 | | return 1; |
1146 | | } |
1147 | | |
1148 | | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1149 | | const unsigned char *in, size_t len) |
1150 | | { |
1151 | | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
1152 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
1153 | | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); |
1154 | | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); |
1155 | | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
1156 | | int n = ctx->num; |
1157 | | int rem; |
1158 | | unsigned char tmp; |
1159 | | |
1160 | | if (keylen <= 0) { |
1161 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
1162 | | return 0; |
1163 | | } |
1164 | | if (ivlen <= 0) { |
1165 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH); |
1166 | | return 0; |
1167 | | } |
1168 | | memcpy(cctx->kmf.param.cv, iv, ivlen); |
1169 | | while (n && len) { |
1170 | | tmp = *in; |
1171 | | *out = cctx->kmf.param.cv[n] ^ tmp; |
1172 | | cctx->kmf.param.cv[n] = enc ? *out : tmp; |
1173 | | n = (n + 1) & 0xf; |
1174 | | --len; |
1175 | | ++in; |
1176 | | ++out; |
1177 | | } |
1178 | | |
1179 | | rem = len & 0xf; |
1180 | | |
1181 | | len &= ~(size_t)0xf; |
1182 | | if (len) { |
1183 | | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); |
1184 | | |
1185 | | out += len; |
1186 | | in += len; |
1187 | | } |
1188 | | |
1189 | | if (rem) { |
1190 | | s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv, |
1191 | | S390X_AES_FC(keylen), cctx->kmf.param.k); |
1192 | | |
1193 | | while (rem--) { |
1194 | | tmp = in[n]; |
1195 | | out[n] = cctx->kmf.param.cv[n] ^ tmp; |
1196 | | cctx->kmf.param.cv[n] = enc ? out[n] : tmp; |
1197 | | ++n; |
1198 | | } |
1199 | | } |
1200 | | |
1201 | | memcpy(iv, cctx->kmf.param.cv, ivlen); |
1202 | | ctx->num = n; |
1203 | | return 1; |
1204 | | } |
1205 | | |
1206 | | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx, |
1207 | | const unsigned char *key, |
1208 | | const unsigned char *ivec, int enc) |
1209 | | { |
1210 | | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
1211 | | const unsigned char *iv = ctx->oiv; |
1212 | | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
1213 | | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); |
1214 | | |
1215 | | if (keylen <= 0) { |
1216 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
1217 | | return 0; |
1218 | | } |
1219 | | if (ivlen <= 0) { |
1220 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_IV_LENGTH); |
1221 | | return 0; |
1222 | | } |
1223 | | cctx->fc = S390X_AES_FC(keylen); |
1224 | | cctx->fc |= 1 << 24; /* 1 byte cipher feedback */ |
1225 | | if (!enc) |
1226 | | cctx->fc |= S390X_DECRYPT; |
1227 | | |
1228 | | memcpy(cctx->kmf.param.cv, iv, ivlen); |
1229 | | memcpy(cctx->kmf.param.k, key, keylen); |
1230 | | return 1; |
1231 | | } |
1232 | | |
1233 | | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1234 | | const unsigned char *in, size_t len) |
1235 | | { |
1236 | | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
1237 | | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); |
1238 | | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
1239 | | |
1240 | | memcpy(cctx->kmf.param.cv, iv, ivlen); |
1241 | | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); |
1242 | | memcpy(iv, cctx->kmf.param.cv, ivlen); |
1243 | | return 1; |
1244 | | } |
1245 | | |
1246 | | #define s390x_aes_cfb1_init_key aes_init_key |
1247 | | |
1248 | | #define s390x_aes_cfb1_cipher aes_cfb1_cipher |
1249 | | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1250 | | const unsigned char *in, size_t len); |
1251 | | |
1252 | | #define S390X_AES_CTR_CTX EVP_AES_KEY |
1253 | | |
1254 | | #define s390x_aes_ctr_init_key aes_init_key |
1255 | | |
1256 | | #define s390x_aes_ctr_cipher aes_ctr_cipher |
1257 | | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1258 | | const unsigned char *in, size_t len); |
1259 | | |
1260 | | /* iv + padding length for iv lengths != 12 */ |
1261 | | #define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16) |
1262 | | |
1263 | | /*- |
1264 | | * Process additional authenticated data. Returns 0 on success. Code is |
1265 | | * big-endian. |
1266 | | */ |
1267 | | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad, |
1268 | | size_t len) |
1269 | | { |
1270 | | unsigned long long alen; |
1271 | | int n, rem; |
1272 | | |
1273 | | if (ctx->kma.param.tpcl) |
1274 | | return -2; |
1275 | | |
1276 | | alen = ctx->kma.param.taadl + len; |
1277 | | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
1278 | | return -1; |
1279 | | ctx->kma.param.taadl = alen; |
1280 | | |
1281 | | n = ctx->areslen; |
1282 | | if (n) { |
1283 | | while (n && len) { |
1284 | | ctx->ares[n] = *aad; |
1285 | | n = (n + 1) & 0xf; |
1286 | | ++aad; |
1287 | | --len; |
1288 | | } |
1289 | | /* ctx->ares contains a complete block if offset has wrapped around */ |
1290 | | if (!n) { |
1291 | | s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param); |
1292 | | ctx->fc |= S390X_KMA_HS; |
1293 | | } |
1294 | | ctx->areslen = n; |
1295 | | } |
1296 | | |
1297 | | rem = len & 0xf; |
1298 | | |
1299 | | len &= ~(size_t)0xf; |
1300 | | if (len) { |
1301 | | s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param); |
1302 | | aad += len; |
1303 | | ctx->fc |= S390X_KMA_HS; |
1304 | | } |
1305 | | |
1306 | | if (rem) { |
1307 | | ctx->areslen = rem; |
1308 | | |
1309 | | do { |
1310 | | --rem; |
1311 | | ctx->ares[rem] = aad[rem]; |
1312 | | } while (rem); |
1313 | | } |
1314 | | return 0; |
1315 | | } |
1316 | | |
1317 | | /*- |
1318 | | * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for |
1319 | | * success. Code is big-endian. |
1320 | | */ |
1321 | | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in, |
1322 | | unsigned char *out, size_t len) |
1323 | | { |
1324 | | const unsigned char *inptr; |
1325 | | unsigned long long mlen; |
1326 | | union { |
1327 | | unsigned int w[4]; |
1328 | | unsigned char b[16]; |
1329 | | } buf; |
1330 | | size_t inlen; |
1331 | | int n, rem, i; |
1332 | | |
1333 | | mlen = ctx->kma.param.tpcl + len; |
1334 | | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
1335 | | return -1; |
1336 | | ctx->kma.param.tpcl = mlen; |
1337 | | |
1338 | | n = ctx->mreslen; |
1339 | | if (n) { |
1340 | | inptr = in; |
1341 | | inlen = len; |
1342 | | while (n && inlen) { |
1343 | | ctx->mres[n] = *inptr; |
1344 | | n = (n + 1) & 0xf; |
1345 | | ++inptr; |
1346 | | --inlen; |
1347 | | } |
1348 | | /* ctx->mres contains a complete block if offset has wrapped around */ |
1349 | | if (!n) { |
1350 | | s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b, |
1351 | | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); |
1352 | | ctx->fc |= S390X_KMA_HS; |
1353 | | ctx->areslen = 0; |
1354 | | |
1355 | | /* previous call already encrypted/decrypted its remainder, |
1356 | | * see comment below */ |
1357 | | n = ctx->mreslen; |
1358 | | while (n) { |
1359 | | *out = buf.b[n]; |
1360 | | n = (n + 1) & 0xf; |
1361 | | ++out; |
1362 | | ++in; |
1363 | | --len; |
1364 | | } |
1365 | | ctx->mreslen = 0; |
1366 | | } |
1367 | | } |
1368 | | |
1369 | | rem = len & 0xf; |
1370 | | |
1371 | | len &= ~(size_t)0xf; |
1372 | | if (len) { |
1373 | | s390x_kma(ctx->ares, ctx->areslen, in, len, out, |
1374 | | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); |
1375 | | in += len; |
1376 | | out += len; |
1377 | | ctx->fc |= S390X_KMA_HS; |
1378 | | ctx->areslen = 0; |
1379 | | } |
1380 | | |
1381 | | /*- |
1382 | | * If there is a remainder, it has to be saved such that it can be |
1383 | | * processed by kma later. However, we also have to do the for-now |
1384 | | * unauthenticated encryption/decryption part here and now... |
1385 | | */ |
1386 | | if (rem) { |
1387 | | if (!ctx->mreslen) { |
1388 | | buf.w[0] = ctx->kma.param.j0.w[0]; |
1389 | | buf.w[1] = ctx->kma.param.j0.w[1]; |
1390 | | buf.w[2] = ctx->kma.param.j0.w[2]; |
1391 | | buf.w[3] = ctx->kma.param.cv.w + 1; |
1392 | | s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k); |
1393 | | } |
1394 | | |
1395 | | n = ctx->mreslen; |
1396 | | for (i = 0; i < rem; i++) { |
1397 | | ctx->mres[n + i] = in[i]; |
1398 | | out[i] = in[i] ^ ctx->kres[n + i]; |
1399 | | } |
1400 | | |
1401 | | ctx->mreslen += rem; |
1402 | | } |
1403 | | return 0; |
1404 | | } |
1405 | | |
1406 | | /*- |
1407 | | * Initialize context structure. Code is big-endian. |
1408 | | */ |
1409 | | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx, |
1410 | | const unsigned char *iv) |
1411 | | { |
1412 | | ctx->kma.param.t.g[0] = 0; |
1413 | | ctx->kma.param.t.g[1] = 0; |
1414 | | ctx->kma.param.tpcl = 0; |
1415 | | ctx->kma.param.taadl = 0; |
1416 | | ctx->mreslen = 0; |
1417 | | ctx->areslen = 0; |
1418 | | ctx->kreslen = 0; |
1419 | | |
1420 | | if (ctx->ivlen == 12) { |
1421 | | memcpy(&ctx->kma.param.j0, iv, ctx->ivlen); |
1422 | | ctx->kma.param.j0.w[3] = 1; |
1423 | | ctx->kma.param.cv.w = 1; |
1424 | | } else { |
1425 | | /* ctx->iv has the right size and is already padded. */ |
1426 | | memcpy(ctx->iv, iv, ctx->ivlen); |
1427 | | s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL, |
1428 | | ctx->fc, &ctx->kma.param); |
1429 | | ctx->fc |= S390X_KMA_HS; |
1430 | | |
1431 | | ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0]; |
1432 | | ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1]; |
1433 | | ctx->kma.param.cv.w = ctx->kma.param.j0.w[3]; |
1434 | | ctx->kma.param.t.g[0] = 0; |
1435 | | ctx->kma.param.t.g[1] = 0; |
1436 | | } |
1437 | | } |
1438 | | |
1439 | | /*- |
1440 | | * Performs various operations on the context structure depending on control |
1441 | | * type. Returns 1 for success, 0 for failure and -1 for unknown control type. |
1442 | | * Code is big-endian. |
1443 | | */ |
1444 | | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
1445 | | { |
1446 | | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); |
1447 | | S390X_AES_GCM_CTX *gctx_out; |
1448 | | EVP_CIPHER_CTX *out; |
1449 | | unsigned char *buf; |
1450 | | int ivlen, enc, len; |
1451 | | |
1452 | | switch (type) { |
1453 | | case EVP_CTRL_INIT: |
1454 | | ivlen = EVP_CIPHER_get_iv_length(c->cipher); |
1455 | | gctx->key_set = 0; |
1456 | | gctx->iv_set = 0; |
1457 | | gctx->ivlen = ivlen; |
1458 | | gctx->iv = c->iv; |
1459 | | gctx->taglen = -1; |
1460 | | gctx->iv_gen = 0; |
1461 | | gctx->tls_aad_len = -1; |
1462 | | return 1; |
1463 | | |
1464 | | case EVP_CTRL_GET_IVLEN: |
1465 | | *(int *)ptr = gctx->ivlen; |
1466 | | return 1; |
1467 | | |
1468 | | case EVP_CTRL_AEAD_SET_IVLEN: |
1469 | | if (arg <= 0) |
1470 | | return 0; |
1471 | | |
1472 | | if (arg != 12) { |
1473 | | len = S390X_gcm_ivpadlen(arg); |
1474 | | |
1475 | | /* Allocate memory for iv if needed. */ |
1476 | | if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { |
1477 | | if (gctx->iv != c->iv) |
1478 | | OPENSSL_free(gctx->iv); |
1479 | | |
1480 | | if ((gctx->iv = OPENSSL_malloc(len)) == NULL) |
1481 | | return 0; |
1482 | | } |
1483 | | /* Add padding. */ |
1484 | | memset(gctx->iv + arg, 0, len - arg - 8); |
1485 | | *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3; |
1486 | | } |
1487 | | gctx->ivlen = arg; |
1488 | | return 1; |
1489 | | |
1490 | | case EVP_CTRL_AEAD_SET_TAG: |
1491 | | buf = EVP_CIPHER_CTX_buf_noconst(c); |
1492 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
1493 | | if (arg <= 0 || arg > 16 || enc) |
1494 | | return 0; |
1495 | | |
1496 | | memcpy(buf, ptr, arg); |
1497 | | gctx->taglen = arg; |
1498 | | return 1; |
1499 | | |
1500 | | case EVP_CTRL_AEAD_GET_TAG: |
1501 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
1502 | | if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0) |
1503 | | return 0; |
1504 | | |
1505 | | memcpy(ptr, gctx->kma.param.t.b, arg); |
1506 | | return 1; |
1507 | | |
1508 | | case EVP_CTRL_GCM_SET_IV_FIXED: |
1509 | | /* Special case: -1 length restores whole iv */ |
1510 | | if (arg == -1) { |
1511 | | memcpy(gctx->iv, ptr, gctx->ivlen); |
1512 | | gctx->iv_gen = 1; |
1513 | | return 1; |
1514 | | } |
1515 | | /* |
1516 | | * Fixed field must be at least 4 bytes and invocation field at least |
1517 | | * 8. |
1518 | | */ |
1519 | | if ((arg < 4) || (gctx->ivlen - arg) < 8) |
1520 | | return 0; |
1521 | | |
1522 | | if (arg) |
1523 | | memcpy(gctx->iv, ptr, arg); |
1524 | | |
1525 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
1526 | | if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
1527 | | return 0; |
1528 | | |
1529 | | gctx->iv_gen = 1; |
1530 | | return 1; |
1531 | | |
1532 | | case EVP_CTRL_GCM_IV_GEN: |
1533 | | if (gctx->iv_gen == 0 || gctx->key_set == 0) |
1534 | | return 0; |
1535 | | |
1536 | | s390x_aes_gcm_setiv(gctx, gctx->iv); |
1537 | | |
1538 | | if (arg <= 0 || arg > gctx->ivlen) |
1539 | | arg = gctx->ivlen; |
1540 | | |
1541 | | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
1542 | | /* |
1543 | | * Invocation field will be at least 8 bytes in size and so no need |
1544 | | * to check wrap around or increment more than last 8 bytes. |
1545 | | */ |
1546 | | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
1547 | | gctx->iv_set = 1; |
1548 | | return 1; |
1549 | | |
1550 | | case EVP_CTRL_GCM_SET_IV_INV: |
1551 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
1552 | | if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc) |
1553 | | return 0; |
1554 | | |
1555 | | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
1556 | | s390x_aes_gcm_setiv(gctx, gctx->iv); |
1557 | | gctx->iv_set = 1; |
1558 | | return 1; |
1559 | | |
1560 | | case EVP_CTRL_AEAD_TLS1_AAD: |
1561 | | /* Save the aad for later use. */ |
1562 | | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
1563 | | return 0; |
1564 | | |
1565 | | buf = EVP_CIPHER_CTX_buf_noconst(c); |
1566 | | memcpy(buf, ptr, arg); |
1567 | | gctx->tls_aad_len = arg; |
1568 | | gctx->tls_enc_records = 0; |
1569 | | |
1570 | | len = buf[arg - 2] << 8 | buf[arg - 1]; |
1571 | | /* Correct length for explicit iv. */ |
1572 | | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
1573 | | return 0; |
1574 | | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
1575 | | |
1576 | | /* If decrypting correct for tag too. */ |
1577 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
1578 | | if (!enc) { |
1579 | | if (len < EVP_GCM_TLS_TAG_LEN) |
1580 | | return 0; |
1581 | | len -= EVP_GCM_TLS_TAG_LEN; |
1582 | | } |
1583 | | buf[arg - 2] = len >> 8; |
1584 | | buf[arg - 1] = len & 0xff; |
1585 | | /* Extra padding: tag appended to record. */ |
1586 | | return EVP_GCM_TLS_TAG_LEN; |
1587 | | |
1588 | | case EVP_CTRL_COPY: |
1589 | | out = ptr; |
1590 | | gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out); |
1591 | | |
1592 | | if (gctx->iv == c->iv) { |
1593 | | gctx_out->iv = out->iv; |
1594 | | } else { |
1595 | | len = S390X_gcm_ivpadlen(gctx->ivlen); |
1596 | | |
1597 | | if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) |
1598 | | return 0; |
1599 | | |
1600 | | memcpy(gctx_out->iv, gctx->iv, len); |
1601 | | } |
1602 | | return 1; |
1603 | | |
1604 | | default: |
1605 | | return -1; |
1606 | | } |
1607 | | } |
1608 | | |
1609 | | /*- |
1610 | | * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned. |
1611 | | */ |
1612 | | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx, |
1613 | | const unsigned char *key, |
1614 | | const unsigned char *iv, int enc) |
1615 | | { |
1616 | | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
1617 | | int keylen; |
1618 | | |
1619 | | if (iv == NULL && key == NULL) |
1620 | | return 1; |
1621 | | |
1622 | | if (key != NULL) { |
1623 | | keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
1624 | | if (keylen <= 0) { |
1625 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
1626 | | return 0; |
1627 | | } |
1628 | | |
1629 | | memcpy(&gctx->kma.param.k, key, keylen); |
1630 | | |
1631 | | gctx->fc = S390X_AES_FC(keylen); |
1632 | | if (!enc) |
1633 | | gctx->fc |= S390X_DECRYPT; |
1634 | | |
1635 | | if (iv == NULL && gctx->iv_set) |
1636 | | iv = gctx->iv; |
1637 | | |
1638 | | if (iv != NULL) { |
1639 | | s390x_aes_gcm_setiv(gctx, iv); |
1640 | | gctx->iv_set = 1; |
1641 | | } |
1642 | | gctx->key_set = 1; |
1643 | | } else { |
1644 | | if (gctx->key_set) |
1645 | | s390x_aes_gcm_setiv(gctx, iv); |
1646 | | else |
1647 | | memcpy(gctx->iv, iv, gctx->ivlen); |
1648 | | |
1649 | | gctx->iv_set = 1; |
1650 | | gctx->iv_gen = 0; |
1651 | | } |
1652 | | return 1; |
1653 | | } |
1654 | | |
1655 | | /*- |
1656 | | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written |
1657 | | * if successful. Otherwise -1 is returned. Code is big-endian. |
1658 | | */ |
1659 | | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1660 | | const unsigned char *in, size_t len) |
1661 | | { |
1662 | | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
1663 | | const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
1664 | | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); |
1665 | | int rv = -1; |
1666 | | |
1667 | | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
1668 | | return -1; |
1669 | | |
1670 | | /* |
1671 | | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness |
1672 | | * Requirements from SP 800-38D". The requirements is for one party to the |
1673 | | * communication to fail after 2^64 - 1 keys. We do this on the encrypting |
1674 | | * side only. |
1675 | | */ |
1676 | | if (enc && ++gctx->tls_enc_records == 0) { |
1677 | | ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS); |
1678 | | goto err; |
1679 | | } |
1680 | | |
1681 | | if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, |
1682 | | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) |
1683 | | <= 0) |
1684 | | goto err; |
1685 | | |
1686 | | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
1687 | | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
1688 | | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
1689 | | |
1690 | | gctx->kma.param.taadl = gctx->tls_aad_len << 3; |
1691 | | gctx->kma.param.tpcl = len << 3; |
1692 | | s390x_kma(buf, gctx->tls_aad_len, in, len, out, |
1693 | | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); |
1694 | | |
1695 | | if (enc) { |
1696 | | memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN); |
1697 | | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
1698 | | } else { |
1699 | | if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len, |
1700 | | EVP_GCM_TLS_TAG_LEN)) { |
1701 | | OPENSSL_cleanse(out, len); |
1702 | | goto err; |
1703 | | } |
1704 | | rv = len; |
1705 | | } |
1706 | | err: |
1707 | | gctx->iv_set = 0; |
1708 | | gctx->tls_aad_len = -1; |
1709 | | return rv; |
1710 | | } |
1711 | | |
1712 | | /*- |
1713 | | * Called from EVP layer to initialize context, process additional |
1714 | | * authenticated data, en/de-crypt plain/cipher-text and authenticate |
1715 | | * ciphertext or process a TLS packet, depending on context. Returns bytes |
1716 | | * written on success. Otherwise -1 is returned. Code is big-endian. |
1717 | | */ |
1718 | | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1719 | | const unsigned char *in, size_t len) |
1720 | | { |
1721 | | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
1722 | | unsigned char *buf, tmp[16]; |
1723 | | int enc; |
1724 | | |
1725 | | if (!gctx->key_set) |
1726 | | return -1; |
1727 | | |
1728 | | if (gctx->tls_aad_len >= 0) |
1729 | | return s390x_aes_gcm_tls_cipher(ctx, out, in, len); |
1730 | | |
1731 | | if (!gctx->iv_set) |
1732 | | return -1; |
1733 | | |
1734 | | if (in != NULL) { |
1735 | | if (out == NULL) { |
1736 | | if (s390x_aes_gcm_aad(gctx, in, len)) |
1737 | | return -1; |
1738 | | } else { |
1739 | | if (s390x_aes_gcm(gctx, in, out, len)) |
1740 | | return -1; |
1741 | | } |
1742 | | return len; |
1743 | | } else { |
1744 | | gctx->kma.param.taadl <<= 3; |
1745 | | gctx->kma.param.tpcl <<= 3; |
1746 | | s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp, |
1747 | | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); |
1748 | | /* recall that we already did en-/decrypt gctx->mres |
1749 | | * and returned it to caller... */ |
1750 | | OPENSSL_cleanse(tmp, gctx->mreslen); |
1751 | | gctx->iv_set = 0; |
1752 | | |
1753 | | enc = EVP_CIPHER_CTX_is_encrypting(ctx); |
1754 | | if (enc) { |
1755 | | gctx->taglen = 16; |
1756 | | } else { |
1757 | | if (gctx->taglen < 0) |
1758 | | return -1; |
1759 | | |
1760 | | buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
1761 | | if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen)) |
1762 | | return -1; |
1763 | | } |
1764 | | return 0; |
1765 | | } |
1766 | | } |
1767 | | |
1768 | | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
1769 | | { |
1770 | | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); |
1771 | | |
1772 | | if (gctx == NULL) |
1773 | | return 0; |
1774 | | |
1775 | | if (gctx->iv != c->iv) |
1776 | | OPENSSL_free(gctx->iv); |
1777 | | |
1778 | | OPENSSL_cleanse(gctx, sizeof(*gctx)); |
1779 | | return 1; |
1780 | | } |
1781 | | |
1782 | | #define S390X_AES_XTS_CTX EVP_AES_XTS_CTX |
1783 | | |
1784 | | #define s390x_aes_xts_init_key aes_xts_init_key |
1785 | | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx, |
1786 | | const unsigned char *key, |
1787 | | const unsigned char *iv, int enc); |
1788 | | #define s390x_aes_xts_cipher aes_xts_cipher |
1789 | | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1790 | | const unsigned char *in, size_t len); |
1791 | | #define s390x_aes_xts_ctrl aes_xts_ctrl |
1792 | | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); |
1793 | | #define s390x_aes_xts_cleanup aes_xts_cleanup |
1794 | | |
1795 | | /*- |
1796 | | * Set nonce and length fields. Code is big-endian. |
1797 | | */ |
1798 | | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx, |
1799 | | const unsigned char *nonce, |
1800 | | size_t mlen) |
1801 | | { |
1802 | | ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG; |
1803 | | ctx->aes.ccm.nonce.g[1] = mlen; |
1804 | | memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l); |
1805 | | } |
1806 | | |
1807 | | /*- |
1808 | | * Process additional authenticated data. Code is big-endian. |
1809 | | */ |
1810 | | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad, |
1811 | | size_t alen) |
1812 | | { |
1813 | | unsigned char *ptr; |
1814 | | int i, rem; |
1815 | | |
1816 | | if (!alen) |
1817 | | return; |
1818 | | |
1819 | | ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG; |
1820 | | |
1821 | | /* Suppress 'type-punned pointer dereference' warning. */ |
1822 | | ptr = ctx->aes.ccm.buf.b; |
1823 | | |
1824 | | if (alen < ((1 << 16) - (1 << 8))) { |
1825 | | *(uint16_t *)ptr = alen; |
1826 | | i = 2; |
1827 | | } else if (sizeof(alen) == 8 |
1828 | | && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { |
1829 | | *(uint16_t *)ptr = 0xffff; |
1830 | | *(uint64_t *)(ptr + 2) = alen; |
1831 | | i = 10; |
1832 | | } else { |
1833 | | *(uint16_t *)ptr = 0xfffe; |
1834 | | *(uint32_t *)(ptr + 2) = alen; |
1835 | | i = 6; |
1836 | | } |
1837 | | |
1838 | | while (i < 16 && alen) { |
1839 | | ctx->aes.ccm.buf.b[i] = *aad; |
1840 | | ++aad; |
1841 | | --alen; |
1842 | | ++i; |
1843 | | } |
1844 | | while (i < 16) { |
1845 | | ctx->aes.ccm.buf.b[i] = 0; |
1846 | | ++i; |
1847 | | } |
1848 | | |
1849 | | ctx->aes.ccm.kmac_param.icv.g[0] = 0; |
1850 | | ctx->aes.ccm.kmac_param.icv.g[1] = 0; |
1851 | | s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc, |
1852 | | &ctx->aes.ccm.kmac_param); |
1853 | | ctx->aes.ccm.blocks += 2; |
1854 | | |
1855 | | rem = alen & 0xf; |
1856 | | alen &= ~(size_t)0xf; |
1857 | | if (alen) { |
1858 | | s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
1859 | | ctx->aes.ccm.blocks += alen >> 4; |
1860 | | aad += alen; |
1861 | | } |
1862 | | if (rem) { |
1863 | | for (i = 0; i < rem; i++) |
1864 | | ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i]; |
1865 | | |
1866 | | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
1867 | | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
1868 | | ctx->aes.ccm.kmac_param.k); |
1869 | | ctx->aes.ccm.blocks++; |
1870 | | } |
1871 | | } |
1872 | | |
1873 | | /*- |
1874 | | * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for |
1875 | | * success. |
1876 | | */ |
1877 | | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in, |
1878 | | unsigned char *out, size_t len, int enc) |
1879 | | { |
1880 | | size_t n, rem; |
1881 | | unsigned int i, l, num; |
1882 | | unsigned char flags; |
1883 | | |
1884 | | flags = ctx->aes.ccm.nonce.b[0]; |
1885 | | if (!(flags & S390X_CCM_AAD_FLAG)) { |
1886 | | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b, |
1887 | | ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); |
1888 | | ctx->aes.ccm.blocks++; |
1889 | | } |
1890 | | l = flags & 0x7; |
1891 | | ctx->aes.ccm.nonce.b[0] = l; |
1892 | | |
1893 | | /*- |
1894 | | * Reconstruct length from encoded length field |
1895 | | * and initialize it with counter value. |
1896 | | */ |
1897 | | n = 0; |
1898 | | for (i = 15 - l; i < 15; i++) { |
1899 | | n |= ctx->aes.ccm.nonce.b[i]; |
1900 | | ctx->aes.ccm.nonce.b[i] = 0; |
1901 | | n <<= 8; |
1902 | | } |
1903 | | n |= ctx->aes.ccm.nonce.b[15]; |
1904 | | ctx->aes.ccm.nonce.b[15] = 1; |
1905 | | |
1906 | | if (n != len) |
1907 | | return -1; /* length mismatch */ |
1908 | | |
1909 | | if (enc) { |
1910 | | /* Two operations per block plus one for tag encryption */ |
1911 | | ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1; |
1912 | | if (ctx->aes.ccm.blocks > (1ULL << 61)) |
1913 | | return -2; /* too much data */ |
1914 | | } |
1915 | | |
1916 | | num = 0; |
1917 | | rem = len & 0xf; |
1918 | | len &= ~(size_t)0xf; |
1919 | | |
1920 | | if (enc) { |
1921 | | /* mac-then-encrypt */ |
1922 | | if (len) |
1923 | | s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
1924 | | if (rem) { |
1925 | | for (i = 0; i < rem; i++) |
1926 | | ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i]; |
1927 | | |
1928 | | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
1929 | | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
1930 | | ctx->aes.ccm.kmac_param.k); |
1931 | | } |
1932 | | |
1933 | | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, |
1934 | | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, |
1935 | | &num, (ctr128_f)AES_ctr32_encrypt); |
1936 | | } else { |
1937 | | /* decrypt-then-mac */ |
1938 | | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, |
1939 | | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, |
1940 | | &num, (ctr128_f)AES_ctr32_encrypt); |
1941 | | |
1942 | | if (len) |
1943 | | s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
1944 | | if (rem) { |
1945 | | for (i = 0; i < rem; i++) |
1946 | | ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i]; |
1947 | | |
1948 | | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
1949 | | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
1950 | | ctx->aes.ccm.kmac_param.k); |
1951 | | } |
1952 | | } |
1953 | | /* encrypt tag */ |
1954 | | for (i = 15 - l; i < 16; i++) |
1955 | | ctx->aes.ccm.nonce.b[i] = 0; |
1956 | | |
1957 | | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc, |
1958 | | ctx->aes.ccm.kmac_param.k); |
1959 | | ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0]; |
1960 | | ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1]; |
1961 | | |
1962 | | ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */ |
1963 | | return 0; |
1964 | | } |
1965 | | |
1966 | | /*- |
1967 | | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written |
1968 | | * if successful. Otherwise -1 is returned. |
1969 | | */ |
1970 | | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
1971 | | const unsigned char *in, size_t len) |
1972 | | { |
1973 | | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
1974 | | unsigned char *ivec = ctx->iv; |
1975 | | unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
1976 | | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); |
1977 | | |
1978 | | if (out != in |
1979 | | || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m)) |
1980 | | return -1; |
1981 | | |
1982 | | if (enc) { |
1983 | | /* Set explicit iv (sequence number). */ |
1984 | | memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); |
1985 | | } |
1986 | | |
1987 | | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; |
1988 | | /*- |
1989 | | * Get explicit iv (sequence number). We already have fixed iv |
1990 | | * (server/client_write_iv) here. |
1991 | | */ |
1992 | | memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); |
1993 | | s390x_aes_ccm_setiv(cctx, ivec, len); |
1994 | | |
1995 | | /* Process aad (sequence number|type|version|length) */ |
1996 | | s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len); |
1997 | | |
1998 | | in += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
1999 | | out += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
2000 | | |
2001 | | if (enc) { |
2002 | | if (s390x_aes_ccm(cctx, in, out, len, enc)) |
2003 | | return -1; |
2004 | | |
2005 | | memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); |
2006 | | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; |
2007 | | } else { |
2008 | | if (!s390x_aes_ccm(cctx, in, out, len, enc)) { |
2009 | | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len, |
2010 | | cctx->aes.ccm.m)) |
2011 | | return len; |
2012 | | } |
2013 | | |
2014 | | OPENSSL_cleanse(out, len); |
2015 | | return -1; |
2016 | | } |
2017 | | } |
2018 | | |
2019 | | /*- |
2020 | | * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is |
2021 | | * returned. |
2022 | | */ |
2023 | | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx, |
2024 | | const unsigned char *key, |
2025 | | const unsigned char *iv, int enc) |
2026 | | { |
2027 | | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
2028 | | int keylen; |
2029 | | |
2030 | | if (iv == NULL && key == NULL) |
2031 | | return 1; |
2032 | | |
2033 | | if (key != NULL) { |
2034 | | keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
2035 | | if (keylen <= 0) { |
2036 | | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
2037 | | return 0; |
2038 | | } |
2039 | | |
2040 | | cctx->aes.ccm.fc = S390X_AES_FC(keylen); |
2041 | | memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); |
2042 | | |
2043 | | /* Store encoded m and l. */ |
2044 | | cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7) |
2045 | | | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3; |
2046 | | memset(cctx->aes.ccm.nonce.b + 1, 0, |
2047 | | sizeof(cctx->aes.ccm.nonce.b)); |
2048 | | cctx->aes.ccm.blocks = 0; |
2049 | | |
2050 | | cctx->aes.ccm.key_set = 1; |
2051 | | } |
2052 | | |
2053 | | if (iv != NULL) { |
2054 | | memcpy(ctx->iv, iv, 15 - cctx->aes.ccm.l); |
2055 | | |
2056 | | cctx->aes.ccm.iv_set = 1; |
2057 | | } |
2058 | | |
2059 | | return 1; |
2060 | | } |
2061 | | |
2062 | | /*- |
2063 | | * Called from EVP layer to initialize context, process additional |
2064 | | * authenticated data, en/de-crypt plain/cipher-text and authenticate |
2065 | | * plaintext or process a TLS packet, depending on context. Returns bytes |
2066 | | * written on success. Otherwise -1 is returned. |
2067 | | */ |
2068 | | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2069 | | const unsigned char *in, size_t len) |
2070 | | { |
2071 | | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
2072 | | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx); |
2073 | | int rv; |
2074 | | unsigned char *buf; |
2075 | | |
2076 | | if (!cctx->aes.ccm.key_set) |
2077 | | return -1; |
2078 | | |
2079 | | if (cctx->aes.ccm.tls_aad_len >= 0) |
2080 | | return s390x_aes_ccm_tls_cipher(ctx, out, in, len); |
2081 | | |
2082 | | /*- |
2083 | | * Final(): Does not return any data. Recall that ccm is mac-then-encrypt |
2084 | | * so integrity must be checked already at Update() i.e., before |
2085 | | * potentially corrupted data is output. |
2086 | | */ |
2087 | | if (in == NULL && out != NULL) |
2088 | | return 0; |
2089 | | |
2090 | | if (!cctx->aes.ccm.iv_set) |
2091 | | return -1; |
2092 | | |
2093 | | if (out == NULL) { |
2094 | | /* Update(): Pass message length. */ |
2095 | | if (in == NULL) { |
2096 | | s390x_aes_ccm_setiv(cctx, ctx->iv, len); |
2097 | | |
2098 | | cctx->aes.ccm.len_set = 1; |
2099 | | return len; |
2100 | | } |
2101 | | |
2102 | | /* Update(): Process aad. */ |
2103 | | if (!cctx->aes.ccm.len_set && len) |
2104 | | return -1; |
2105 | | |
2106 | | s390x_aes_ccm_aad(cctx, in, len); |
2107 | | return len; |
2108 | | } |
2109 | | |
2110 | | /* The tag must be set before actually decrypting data */ |
2111 | | if (!enc && !cctx->aes.ccm.tag_set) |
2112 | | return -1; |
2113 | | |
2114 | | /* Update(): Process message. */ |
2115 | | |
2116 | | if (!cctx->aes.ccm.len_set) { |
2117 | | /*- |
2118 | | * In case message length was not previously set explicitly via |
2119 | | * Update(), set it now. |
2120 | | */ |
2121 | | s390x_aes_ccm_setiv(cctx, ctx->iv, len); |
2122 | | |
2123 | | cctx->aes.ccm.len_set = 1; |
2124 | | } |
2125 | | |
2126 | | if (enc) { |
2127 | | if (s390x_aes_ccm(cctx, in, out, len, enc)) |
2128 | | return -1; |
2129 | | |
2130 | | cctx->aes.ccm.tag_set = 1; |
2131 | | return len; |
2132 | | } else { |
2133 | | rv = -1; |
2134 | | |
2135 | | if (!s390x_aes_ccm(cctx, in, out, len, enc)) { |
2136 | | buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
2137 | | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf, |
2138 | | cctx->aes.ccm.m)) |
2139 | | rv = len; |
2140 | | } |
2141 | | |
2142 | | if (rv == -1) |
2143 | | OPENSSL_cleanse(out, len); |
2144 | | |
2145 | | cctx->aes.ccm.iv_set = 0; |
2146 | | cctx->aes.ccm.tag_set = 0; |
2147 | | cctx->aes.ccm.len_set = 0; |
2148 | | return rv; |
2149 | | } |
2150 | | } |
2151 | | |
2152 | | /*- |
2153 | | * Performs various operations on the context structure depending on control |
2154 | | * type. Returns 1 for success, 0 for failure and -1 for unknown control type. |
2155 | | * Code is big-endian. |
2156 | | */ |
2157 | | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
2158 | | { |
2159 | | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c); |
2160 | | unsigned char *buf; |
2161 | | int enc, len; |
2162 | | |
2163 | | switch (type) { |
2164 | | case EVP_CTRL_INIT: |
2165 | | cctx->aes.ccm.key_set = 0; |
2166 | | cctx->aes.ccm.iv_set = 0; |
2167 | | cctx->aes.ccm.l = 8; |
2168 | | cctx->aes.ccm.m = 12; |
2169 | | cctx->aes.ccm.tag_set = 0; |
2170 | | cctx->aes.ccm.len_set = 0; |
2171 | | cctx->aes.ccm.tls_aad_len = -1; |
2172 | | return 1; |
2173 | | |
2174 | | case EVP_CTRL_GET_IVLEN: |
2175 | | *(int *)ptr = 15 - cctx->aes.ccm.l; |
2176 | | return 1; |
2177 | | |
2178 | | case EVP_CTRL_AEAD_TLS1_AAD: |
2179 | | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
2180 | | return 0; |
2181 | | |
2182 | | /* Save the aad for later use. */ |
2183 | | buf = EVP_CIPHER_CTX_buf_noconst(c); |
2184 | | memcpy(buf, ptr, arg); |
2185 | | cctx->aes.ccm.tls_aad_len = arg; |
2186 | | |
2187 | | len = buf[arg - 2] << 8 | buf[arg - 1]; |
2188 | | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) |
2189 | | return 0; |
2190 | | |
2191 | | /* Correct length for explicit iv. */ |
2192 | | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
2193 | | |
2194 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
2195 | | if (!enc) { |
2196 | | if (len < cctx->aes.ccm.m) |
2197 | | return 0; |
2198 | | |
2199 | | /* Correct length for tag. */ |
2200 | | len -= cctx->aes.ccm.m; |
2201 | | } |
2202 | | |
2203 | | buf[arg - 2] = len >> 8; |
2204 | | buf[arg - 1] = len & 0xff; |
2205 | | |
2206 | | /* Extra padding: tag appended to record. */ |
2207 | | return cctx->aes.ccm.m; |
2208 | | |
2209 | | case EVP_CTRL_CCM_SET_IV_FIXED: |
2210 | | if (arg != EVP_CCM_TLS_FIXED_IV_LEN) |
2211 | | return 0; |
2212 | | |
2213 | | /* Copy to first part of the iv. */ |
2214 | | memcpy(c->iv, ptr, arg); |
2215 | | return 1; |
2216 | | |
2217 | | case EVP_CTRL_AEAD_SET_IVLEN: |
2218 | | arg = 15 - arg; |
2219 | | /* fall-through */ |
2220 | | |
2221 | | case EVP_CTRL_CCM_SET_L: |
2222 | | if (arg < 2 || arg > 8) |
2223 | | return 0; |
2224 | | |
2225 | | cctx->aes.ccm.l = arg; |
2226 | | return 1; |
2227 | | |
2228 | | case EVP_CTRL_AEAD_SET_TAG: |
2229 | | if ((arg & 1) || arg < 4 || arg > 16) |
2230 | | return 0; |
2231 | | |
2232 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
2233 | | if (enc && ptr) |
2234 | | return 0; |
2235 | | |
2236 | | if (ptr) { |
2237 | | cctx->aes.ccm.tag_set = 1; |
2238 | | buf = EVP_CIPHER_CTX_buf_noconst(c); |
2239 | | memcpy(buf, ptr, arg); |
2240 | | } |
2241 | | |
2242 | | cctx->aes.ccm.m = arg; |
2243 | | return 1; |
2244 | | |
2245 | | case EVP_CTRL_AEAD_GET_TAG: |
2246 | | enc = EVP_CIPHER_CTX_is_encrypting(c); |
2247 | | if (!enc || !cctx->aes.ccm.tag_set) |
2248 | | return 0; |
2249 | | |
2250 | | if (arg < cctx->aes.ccm.m) |
2251 | | return 0; |
2252 | | |
2253 | | memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); |
2254 | | cctx->aes.ccm.tag_set = 0; |
2255 | | cctx->aes.ccm.iv_set = 0; |
2256 | | cctx->aes.ccm.len_set = 0; |
2257 | | return 1; |
2258 | | |
2259 | | case EVP_CTRL_COPY: |
2260 | | return 1; |
2261 | | |
2262 | | default: |
2263 | | return -1; |
2264 | | } |
2265 | | } |
2266 | | |
2267 | | #define s390x_aes_ccm_cleanup aes_ccm_cleanup |
2268 | | |
2269 | | #ifndef OPENSSL_NO_OCB |
2270 | | #define S390X_AES_OCB_CTX EVP_AES_OCB_CTX |
2271 | | |
2272 | | #define s390x_aes_ocb_init_key aes_ocb_init_key |
2273 | | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
2274 | | const unsigned char *iv, int enc); |
2275 | | #define s390x_aes_ocb_cipher aes_ocb_cipher |
2276 | | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2277 | | const unsigned char *in, size_t len); |
2278 | | #define s390x_aes_ocb_cleanup aes_ocb_cleanup |
2279 | | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *); |
2280 | | #define s390x_aes_ocb_ctrl aes_ocb_ctrl |
2281 | | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); |
2282 | | #endif |
2283 | | |
2284 | | #ifndef OPENSSL_NO_SIV |
2285 | | #define S390X_AES_SIV_CTX EVP_AES_SIV_CTX |
2286 | | |
2287 | | #define s390x_aes_siv_init_key aes_siv_init_key |
2288 | | #define s390x_aes_siv_cipher aes_siv_cipher |
2289 | | #define s390x_aes_siv_cleanup aes_siv_cleanup |
2290 | | #define s390x_aes_siv_ctrl aes_siv_ctrl |
2291 | | #endif |
2292 | | |
2293 | | #define BLOCK_CIPHER_generic(nid, keylen, blocksize, ivlen, nmode, mode, \ |
2294 | | MODE, flags) \ |
2295 | | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ |
2296 | | nid##_##keylen##_##nmode, blocksize, \ |
2297 | | keylen / 8, \ |
2298 | | ivlen, \ |
2299 | | flags | EVP_CIPH_##MODE##_MODE, \ |
2300 | | EVP_ORIG_GLOBAL, \ |
2301 | | s390x_aes_##mode##_init_key, \ |
2302 | | s390x_aes_##mode##_cipher, \ |
2303 | | NULL, \ |
2304 | | sizeof(S390X_AES_##MODE##_CTX), \ |
2305 | | NULL, \ |
2306 | | NULL, \ |
2307 | | NULL, \ |
2308 | | NULL \ |
2309 | | }; \ |
2310 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
2311 | | nid##_##keylen##_##nmode, \ |
2312 | | blocksize, \ |
2313 | | keylen / 8, \ |
2314 | | ivlen, \ |
2315 | | flags | EVP_CIPH_##MODE##_MODE, \ |
2316 | | EVP_ORIG_GLOBAL, \ |
2317 | | aes_init_key, \ |
2318 | | aes_##mode##_cipher, \ |
2319 | | NULL, \ |
2320 | | sizeof(EVP_AES_KEY), \ |
2321 | | NULL, \ |
2322 | | NULL, \ |
2323 | | NULL, \ |
2324 | | NULL \ |
2325 | | }; \ |
2326 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
2327 | | { \ |
2328 | | return S390X_aes_##keylen##_##mode##_CAPABLE ? &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ |
2329 | | } |
2330 | | |
2331 | | #define BLOCK_CIPHER_custom(nid, keylen, blocksize, ivlen, mode, MODE, flags) \ |
2332 | | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ |
2333 | | nid##_##keylen##_##mode, \ |
2334 | | blocksize, \ |
2335 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
2336 | | ivlen, \ |
2337 | | flags | EVP_CIPH_##MODE##_MODE, \ |
2338 | | EVP_ORIG_GLOBAL, \ |
2339 | | s390x_aes_##mode##_init_key, \ |
2340 | | s390x_aes_##mode##_cipher, \ |
2341 | | s390x_aes_##mode##_cleanup, \ |
2342 | | sizeof(S390X_AES_##MODE##_CTX), \ |
2343 | | NULL, \ |
2344 | | NULL, \ |
2345 | | s390x_aes_##mode##_ctrl, \ |
2346 | | NULL \ |
2347 | | }; \ |
2348 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
2349 | | nid##_##keylen##_##mode, blocksize, \ |
2350 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
2351 | | ivlen, \ |
2352 | | flags | EVP_CIPH_##MODE##_MODE, \ |
2353 | | EVP_ORIG_GLOBAL, \ |
2354 | | aes_##mode##_init_key, \ |
2355 | | aes_##mode##_cipher, \ |
2356 | | aes_##mode##_cleanup, \ |
2357 | | sizeof(EVP_AES_##MODE##_CTX), \ |
2358 | | NULL, \ |
2359 | | NULL, \ |
2360 | | aes_##mode##_ctrl, \ |
2361 | | NULL \ |
2362 | | }; \ |
2363 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
2364 | | { \ |
2365 | | return S390X_aes_##keylen##_##mode##_CAPABLE ? &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ |
2366 | | } |
2367 | | |
2368 | | #else |
2369 | | |
2370 | | #define BLOCK_CIPHER_generic(nid, keylen, blocksize, ivlen, nmode, mode, MODE, flags) \ |
2371 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
2372 | | nid##_##keylen##_##nmode, blocksize, keylen / 8, ivlen, \ |
2373 | | flags | EVP_CIPH_##MODE##_MODE, \ |
2374 | | EVP_ORIG_GLOBAL, \ |
2375 | | aes_init_key, \ |
2376 | | aes_##mode##_cipher, \ |
2377 | | NULL, \ |
2378 | | sizeof(EVP_AES_KEY), \ |
2379 | | NULL, NULL, NULL, NULL \ |
2380 | | }; \ |
2381 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
2382 | 63 | { \ |
2383 | 63 | return &aes_##keylen##_##mode; \ |
2384 | 63 | } Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
Line | Count | Source | 2382 | 3 | { \ | 2383 | 3 | return &aes_##keylen##_##mode; \ | 2384 | 3 | } |
|
2385 | | |
2386 | | #define BLOCK_CIPHER_custom(nid, keylen, blocksize, ivlen, mode, MODE, flags) \ |
2387 | | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
2388 | | nid##_##keylen##_##mode, blocksize, \ |
2389 | | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE || EVP_CIPH_##MODE##_MODE == EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ |
2390 | | ivlen, \ |
2391 | | flags | EVP_CIPH_##MODE##_MODE, \ |
2392 | | EVP_ORIG_GLOBAL, \ |
2393 | | aes_##mode##_init_key, \ |
2394 | | aes_##mode##_cipher, \ |
2395 | | aes_##mode##_cleanup, \ |
2396 | | sizeof(EVP_AES_##MODE##_CTX), \ |
2397 | | NULL, NULL, aes_##mode##_ctrl, NULL \ |
2398 | | }; \ |
2399 | | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
2400 | 33 | { \ |
2401 | 33 | return &aes_##keylen##_##mode; \ |
2402 | 33 | } Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
Line | Count | Source | 2400 | 3 | { \ | 2401 | 3 | return &aes_##keylen##_##mode; \ | 2402 | 3 | } |
|
2403 | | |
2404 | | #endif |
2405 | | |
2406 | | #define BLOCK_CIPHER_generic_pack(nid, keylen, flags) \ |
2407 | | BLOCK_CIPHER_generic(nid, keylen, 16, 16, cbc, cbc, CBC, flags | EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
2408 | | BLOCK_CIPHER_generic(nid, keylen, 16, 0, ecb, ecb, ECB, flags | EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
2409 | | BLOCK_CIPHER_generic(nid, keylen, 1, 16, ofb128, ofb, OFB, flags | EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
2410 | | BLOCK_CIPHER_generic(nid, keylen, 1, 16, cfb128, cfb, CFB, flags | EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
2411 | | BLOCK_CIPHER_generic(nid, keylen, 1, 16, cfb1, cfb1, CFB, flags) \ |
2412 | | BLOCK_CIPHER_generic(nid, keylen, 1, 16, cfb8, cfb8, CFB, flags) \ |
2413 | | BLOCK_CIPHER_generic(nid, keylen, 1, 16, ctr, ctr, CTR, flags) |
2414 | | |
2415 | | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
2416 | | const unsigned char *iv, int enc) |
2417 | 0 | { |
2418 | 0 | int ret, mode; |
2419 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2420 | 0 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
2421 | |
|
2422 | 0 | if (keylen <= 0) { |
2423 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
2424 | 0 | return 0; |
2425 | 0 | } |
2426 | | |
2427 | 0 | mode = EVP_CIPHER_CTX_get_mode(ctx); |
2428 | 0 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
2429 | 0 | && !enc) { |
2430 | | #ifdef HWAES_CAPABLE |
2431 | | if (HWAES_CAPABLE) { |
2432 | | ret = HWAES_set_decrypt_key(key, keylen, &dat->ks.ks); |
2433 | | dat->block = (block128_f)HWAES_decrypt; |
2434 | | dat->stream.cbc = NULL; |
2435 | | #ifdef HWAES_cbc_encrypt |
2436 | | if (mode == EVP_CIPH_CBC_MODE) |
2437 | | dat->stream.cbc = (cbc128_f)HWAES_cbc_encrypt; |
2438 | | #endif |
2439 | | } else |
2440 | | #endif |
2441 | | #ifdef BSAES_CAPABLE |
2442 | | if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { |
2443 | | ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks); |
2444 | | dat->block = (block128_f)AES_decrypt; |
2445 | | dat->stream.cbc = (cbc128_f)ossl_bsaes_cbc_encrypt; |
2446 | | } else |
2447 | | #endif |
2448 | | #ifdef VPAES_CAPABLE |
2449 | | if (VPAES_CAPABLE) { |
2450 | | ret = vpaes_set_decrypt_key(key, keylen, &dat->ks.ks); |
2451 | | dat->block = (block128_f)vpaes_decrypt; |
2452 | | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; |
2453 | | } else |
2454 | | #endif |
2455 | 0 | { |
2456 | 0 | ret = AES_set_decrypt_key(key, keylen, &dat->ks.ks); |
2457 | 0 | dat->block = (block128_f)AES_decrypt; |
2458 | 0 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; |
2459 | 0 | } |
2460 | 0 | } else |
2461 | | #ifdef HWAES_CAPABLE |
2462 | | if (HWAES_CAPABLE) { |
2463 | | ret = HWAES_set_encrypt_key(key, keylen, &dat->ks.ks); |
2464 | | dat->block = (block128_f)HWAES_encrypt; |
2465 | | dat->stream.cbc = NULL; |
2466 | | #ifdef HWAES_cbc_encrypt |
2467 | | if (mode == EVP_CIPH_CBC_MODE) |
2468 | | dat->stream.cbc = (cbc128_f)HWAES_cbc_encrypt; |
2469 | | else |
2470 | | #endif |
2471 | | #ifdef HWAES_ctr32_encrypt_blocks |
2472 | | if (mode == EVP_CIPH_CTR_MODE) |
2473 | | dat->stream.ctr = (ctr128_f)HWAES_ctr32_encrypt_blocks; |
2474 | | else |
2475 | | #endif |
2476 | | (void)0; /* terminate potentially open 'else' */ |
2477 | | } else |
2478 | | #endif |
2479 | | #ifdef BSAES_CAPABLE |
2480 | | if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { |
2481 | | ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks); |
2482 | | dat->block = (block128_f)AES_encrypt; |
2483 | | dat->stream.ctr = (ctr128_f)ossl_bsaes_ctr32_encrypt_blocks; |
2484 | | } else |
2485 | | #endif |
2486 | | #ifdef VPAES_CAPABLE |
2487 | | if (VPAES_CAPABLE) { |
2488 | | ret = vpaes_set_encrypt_key(key, keylen, &dat->ks.ks); |
2489 | | dat->block = (block128_f)vpaes_encrypt; |
2490 | | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; |
2491 | | } else |
2492 | | #endif |
2493 | 0 | { |
2494 | 0 | ret = AES_set_encrypt_key(key, keylen, &dat->ks.ks); |
2495 | 0 | dat->block = (block128_f)AES_encrypt; |
2496 | 0 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; |
2497 | | #ifdef AES_CTR_ASM |
2498 | | if (mode == EVP_CIPH_CTR_MODE) |
2499 | | dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt; |
2500 | | #endif |
2501 | 0 | } |
2502 | |
|
2503 | 0 | if (ret < 0) { |
2504 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED); |
2505 | 0 | return 0; |
2506 | 0 | } |
2507 | | |
2508 | 0 | return 1; |
2509 | 0 | } |
2510 | | |
2511 | | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2512 | | const unsigned char *in, size_t len) |
2513 | 0 | { |
2514 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2515 | |
|
2516 | 0 | if (dat->stream.cbc) |
2517 | 0 | (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, |
2518 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx)); |
2519 | 0 | else if (EVP_CIPHER_CTX_is_encrypting(ctx)) |
2520 | 0 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, |
2521 | 0 | dat->block); |
2522 | 0 | else |
2523 | 0 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, |
2524 | 0 | ctx->iv, dat->block); |
2525 | |
|
2526 | 0 | return 1; |
2527 | 0 | } |
2528 | | |
2529 | | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2530 | | const unsigned char *in, size_t len) |
2531 | 0 | { |
2532 | 0 | size_t bl = EVP_CIPHER_CTX_get_block_size(ctx); |
2533 | 0 | size_t i; |
2534 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2535 | |
|
2536 | 0 | if (len < bl) |
2537 | 0 | return 1; |
2538 | | |
2539 | 0 | for (i = 0, len -= bl; i <= len; i += bl) |
2540 | 0 | (*dat->block)(in + i, out + i, &dat->ks); |
2541 | |
|
2542 | 0 | return 1; |
2543 | 0 | } |
2544 | | |
2545 | | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2546 | | const unsigned char *in, size_t len) |
2547 | 0 | { |
2548 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2549 | |
|
2550 | 0 | int num = EVP_CIPHER_CTX_get_num(ctx); |
2551 | 0 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, |
2552 | 0 | ctx->iv, &num, dat->block); |
2553 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2554 | 0 | return 1; |
2555 | 0 | } |
2556 | | |
2557 | | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2558 | | const unsigned char *in, size_t len) |
2559 | 0 | { |
2560 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2561 | |
|
2562 | 0 | int num = EVP_CIPHER_CTX_get_num(ctx); |
2563 | 0 | CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, |
2564 | 0 | ctx->iv, &num, |
2565 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); |
2566 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2567 | 0 | return 1; |
2568 | 0 | } |
2569 | | |
2570 | | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2571 | | const unsigned char *in, size_t len) |
2572 | 0 | { |
2573 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2574 | |
|
2575 | 0 | int num = EVP_CIPHER_CTX_get_num(ctx); |
2576 | 0 | CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, |
2577 | 0 | ctx->iv, &num, |
2578 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); |
2579 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2580 | 0 | return 1; |
2581 | 0 | } |
2582 | | |
2583 | | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2584 | | const unsigned char *in, size_t len) |
2585 | 0 | { |
2586 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2587 | |
|
2588 | 0 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { |
2589 | 0 | int num = EVP_CIPHER_CTX_get_num(ctx); |
2590 | 0 | CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, |
2591 | 0 | ctx->iv, &num, |
2592 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); |
2593 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2594 | 0 | return 1; |
2595 | 0 | } |
2596 | | |
2597 | 0 | while (len >= MAXBITCHUNK) { |
2598 | 0 | int num = EVP_CIPHER_CTX_get_num(ctx); |
2599 | 0 | CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, |
2600 | 0 | ctx->iv, &num, |
2601 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); |
2602 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2603 | 0 | len -= MAXBITCHUNK; |
2604 | 0 | out += MAXBITCHUNK; |
2605 | 0 | in += MAXBITCHUNK; |
2606 | 0 | } |
2607 | 0 | if (len) { |
2608 | 0 | int num = EVP_CIPHER_CTX_get_num(ctx); |
2609 | 0 | CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, |
2610 | 0 | ctx->iv, &num, |
2611 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block); |
2612 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2613 | 0 | } |
2614 | |
|
2615 | 0 | return 1; |
2616 | 0 | } |
2617 | | |
2618 | | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2619 | | const unsigned char *in, size_t len) |
2620 | 0 | { |
2621 | 0 | int n = EVP_CIPHER_CTX_get_num(ctx); |
2622 | 0 | unsigned int num; |
2623 | 0 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY, ctx); |
2624 | |
|
2625 | 0 | if (n < 0) |
2626 | 0 | return 0; |
2627 | 0 | num = (unsigned int)n; |
2628 | |
|
2629 | 0 | if (dat->stream.ctr) |
2630 | 0 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, |
2631 | 0 | ctx->iv, |
2632 | 0 | EVP_CIPHER_CTX_buf_noconst(ctx), |
2633 | 0 | &num, dat->stream.ctr); |
2634 | 0 | else |
2635 | 0 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, |
2636 | 0 | ctx->iv, |
2637 | 0 | EVP_CIPHER_CTX_buf_noconst(ctx), &num, |
2638 | 0 | dat->block); |
2639 | 0 | EVP_CIPHER_CTX_set_num(ctx, num); |
2640 | 0 | return 1; |
2641 | 0 | } |
2642 | | |
2643 | | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) |
2644 | | BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) |
2645 | | BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) |
2646 | | |
2647 | | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
2648 | 0 | { |
2649 | 0 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, c); |
2650 | 0 | if (gctx == NULL) |
2651 | 0 | return 0; |
2652 | 0 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
2653 | 0 | if (gctx->iv != c->iv) |
2654 | 0 | OPENSSL_free(gctx->iv); |
2655 | 0 | return 1; |
2656 | 0 | } |
2657 | | |
2658 | | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
2659 | 0 | { |
2660 | 0 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, c); |
2661 | 0 | switch (type) { |
2662 | 0 | case EVP_CTRL_INIT: |
2663 | 0 | gctx->key_set = 0; |
2664 | 0 | gctx->iv_set = 0; |
2665 | 0 | gctx->ivlen = EVP_CIPHER_get_iv_length(c->cipher); |
2666 | 0 | gctx->iv = c->iv; |
2667 | 0 | gctx->taglen = -1; |
2668 | 0 | gctx->iv_gen = 0; |
2669 | 0 | gctx->tls_aad_len = -1; |
2670 | 0 | return 1; |
2671 | | |
2672 | 0 | case EVP_CTRL_GET_IVLEN: |
2673 | 0 | *(int *)ptr = gctx->ivlen; |
2674 | 0 | return 1; |
2675 | | |
2676 | 0 | case EVP_CTRL_AEAD_SET_IVLEN: |
2677 | 0 | if (arg <= 0) |
2678 | 0 | return 0; |
2679 | | /* Allocate memory for IV if needed */ |
2680 | 0 | if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { |
2681 | 0 | if (gctx->iv != c->iv) |
2682 | 0 | OPENSSL_free(gctx->iv); |
2683 | 0 | if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) |
2684 | 0 | return 0; |
2685 | 0 | } |
2686 | 0 | gctx->ivlen = arg; |
2687 | 0 | return 1; |
2688 | | |
2689 | 0 | case EVP_CTRL_AEAD_SET_TAG: |
2690 | 0 | if (arg <= 0 || arg > 16 || c->encrypt) |
2691 | 0 | return 0; |
2692 | 0 | memcpy(c->buf, ptr, arg); |
2693 | 0 | gctx->taglen = arg; |
2694 | 0 | return 1; |
2695 | | |
2696 | 0 | case EVP_CTRL_AEAD_GET_TAG: |
2697 | 0 | if (arg <= 0 || arg > 16 || !c->encrypt |
2698 | 0 | || gctx->taglen < 0) |
2699 | 0 | return 0; |
2700 | 0 | memcpy(ptr, c->buf, arg); |
2701 | 0 | return 1; |
2702 | | |
2703 | 0 | case EVP_CTRL_GCM_SET_IV_FIXED: |
2704 | | /* Special case: -1 length restores whole IV */ |
2705 | 0 | if (arg == -1) { |
2706 | 0 | memcpy(gctx->iv, ptr, gctx->ivlen); |
2707 | 0 | gctx->iv_gen = 1; |
2708 | 0 | return 1; |
2709 | 0 | } |
2710 | | /* |
2711 | | * Fixed field must be at least 4 bytes and invocation field at least |
2712 | | * 8. |
2713 | | */ |
2714 | 0 | if ((arg < 4) || (gctx->ivlen - arg) < 8) |
2715 | 0 | return 0; |
2716 | 0 | if (arg) |
2717 | 0 | memcpy(gctx->iv, ptr, arg); |
2718 | 0 | if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
2719 | 0 | return 0; |
2720 | 0 | gctx->iv_gen = 1; |
2721 | 0 | return 1; |
2722 | | |
2723 | 0 | case EVP_CTRL_GCM_IV_GEN: |
2724 | 0 | if (gctx->iv_gen == 0 || gctx->key_set == 0) |
2725 | 0 | return 0; |
2726 | 0 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
2727 | 0 | if (arg <= 0 || arg > gctx->ivlen) |
2728 | 0 | arg = gctx->ivlen; |
2729 | 0 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
2730 | | /* |
2731 | | * Invocation field will be at least 8 bytes in size and so no need |
2732 | | * to check wrap around or increment more than last 8 bytes. |
2733 | | */ |
2734 | 0 | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
2735 | 0 | gctx->iv_set = 1; |
2736 | 0 | return 1; |
2737 | | |
2738 | 0 | case EVP_CTRL_GCM_SET_IV_INV: |
2739 | 0 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) |
2740 | 0 | return 0; |
2741 | 0 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
2742 | 0 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
2743 | 0 | gctx->iv_set = 1; |
2744 | 0 | return 1; |
2745 | | |
2746 | 0 | case EVP_CTRL_AEAD_TLS1_AAD: |
2747 | | /* Save the AAD for later use */ |
2748 | 0 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
2749 | 0 | return 0; |
2750 | 0 | memcpy(c->buf, ptr, arg); |
2751 | 0 | gctx->tls_aad_len = arg; |
2752 | 0 | gctx->tls_enc_records = 0; |
2753 | 0 | { |
2754 | 0 | unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; |
2755 | | /* Correct length for explicit IV */ |
2756 | 0 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
2757 | 0 | return 0; |
2758 | 0 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
2759 | | /* If decrypting correct for tag too */ |
2760 | 0 | if (!c->encrypt) { |
2761 | 0 | if (len < EVP_GCM_TLS_TAG_LEN) |
2762 | 0 | return 0; |
2763 | 0 | len -= EVP_GCM_TLS_TAG_LEN; |
2764 | 0 | } |
2765 | 0 | c->buf[arg - 2] = len >> 8; |
2766 | 0 | c->buf[arg - 1] = len & 0xff; |
2767 | 0 | } |
2768 | | /* Extra padding: tag appended to record */ |
2769 | 0 | return EVP_GCM_TLS_TAG_LEN; |
2770 | | |
2771 | 0 | case EVP_CTRL_COPY: { |
2772 | 0 | EVP_CIPHER_CTX *out = ptr; |
2773 | 0 | EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX, out); |
2774 | 0 | if (gctx->gcm.key) { |
2775 | 0 | if (gctx->gcm.key != &gctx->ks) |
2776 | 0 | return 0; |
2777 | 0 | gctx_out->gcm.key = &gctx_out->ks; |
2778 | 0 | } |
2779 | 0 | if (gctx->iv == c->iv) |
2780 | 0 | gctx_out->iv = out->iv; |
2781 | 0 | else { |
2782 | 0 | if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) |
2783 | 0 | return 0; |
2784 | 0 | memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
2785 | 0 | } |
2786 | 0 | return 1; |
2787 | 0 | } |
2788 | | |
2789 | 0 | default: |
2790 | 0 | return -1; |
2791 | 0 | } |
2792 | 0 | } |
2793 | | |
2794 | | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
2795 | | const unsigned char *iv, int enc) |
2796 | 0 | { |
2797 | 0 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx); |
2798 | |
|
2799 | 0 | if (iv == NULL && key == NULL) |
2800 | 0 | return 1; |
2801 | | |
2802 | 0 | if (key != NULL) { |
2803 | 0 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
2804 | |
|
2805 | 0 | if (keylen <= 0) { |
2806 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
2807 | 0 | return 0; |
2808 | 0 | } |
2809 | 0 | do { |
2810 | | #ifdef HWAES_CAPABLE |
2811 | | if (HWAES_CAPABLE) { |
2812 | | HWAES_set_encrypt_key(key, keylen, &gctx->ks.ks); |
2813 | | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
2814 | | (block128_f)HWAES_encrypt); |
2815 | | #ifdef HWAES_ctr32_encrypt_blocks |
2816 | | gctx->ctr = (ctr128_f)HWAES_ctr32_encrypt_blocks; |
2817 | | #else |
2818 | | gctx->ctr = NULL; |
2819 | | #endif |
2820 | | break; |
2821 | | } else |
2822 | | #endif |
2823 | | #ifdef BSAES_CAPABLE |
2824 | | if (BSAES_CAPABLE) { |
2825 | | AES_set_encrypt_key(key, keylen, &gctx->ks.ks); |
2826 | | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
2827 | | (block128_f)AES_encrypt); |
2828 | | gctx->ctr = (ctr128_f)ossl_bsaes_ctr32_encrypt_blocks; |
2829 | | break; |
2830 | | } else |
2831 | | #endif |
2832 | | #ifdef VPAES_CAPABLE |
2833 | | if (VPAES_CAPABLE) { |
2834 | | vpaes_set_encrypt_key(key, keylen, &gctx->ks.ks); |
2835 | | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
2836 | | (block128_f)vpaes_encrypt); |
2837 | | gctx->ctr = NULL; |
2838 | | break; |
2839 | | } else |
2840 | | #endif |
2841 | 0 | (void)0; /* terminate potentially open 'else' */ |
2842 | |
|
2843 | 0 | AES_set_encrypt_key(key, keylen, &gctx->ks.ks); |
2844 | 0 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
2845 | 0 | (block128_f)AES_encrypt); |
2846 | | #ifdef AES_CTR_ASM |
2847 | | gctx->ctr = (ctr128_f)AES_ctr32_encrypt; |
2848 | | #else |
2849 | 0 | gctx->ctr = NULL; |
2850 | 0 | #endif |
2851 | 0 | } while (0); |
2852 | | |
2853 | | /* |
2854 | | * If we have an iv can set it directly, otherwise use saved IV. |
2855 | | */ |
2856 | 0 | if (iv == NULL && gctx->iv_set) |
2857 | 0 | iv = gctx->iv; |
2858 | 0 | if (iv) { |
2859 | 0 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
2860 | 0 | gctx->iv_set = 1; |
2861 | 0 | } |
2862 | 0 | gctx->key_set = 1; |
2863 | 0 | } else { |
2864 | | /* If key set use IV, otherwise copy */ |
2865 | 0 | if (gctx->key_set) |
2866 | 0 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
2867 | 0 | else |
2868 | 0 | memcpy(gctx->iv, iv, gctx->ivlen); |
2869 | 0 | gctx->iv_set = 1; |
2870 | 0 | gctx->iv_gen = 0; |
2871 | 0 | } |
2872 | 0 | return 1; |
2873 | 0 | } |
2874 | | |
2875 | | /* |
2876 | | * Handle TLS GCM packet format. This consists of the last portion of the IV |
2877 | | * followed by the payload and finally the tag. On encrypt generate IV, |
2878 | | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload |
2879 | | * and verify tag. |
2880 | | */ |
2881 | | |
2882 | | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
2883 | | const unsigned char *in, size_t len) |
2884 | 0 | { |
2885 | 0 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx); |
2886 | 0 | int rv = -1; |
2887 | | /* Encrypt/decrypt must be performed in place */ |
2888 | 0 | if (out != in |
2889 | 0 | || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
2890 | 0 | return -1; |
2891 | | |
2892 | | /* |
2893 | | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness |
2894 | | * Requirements from SP 800-38D". The requirements is for one party to the |
2895 | | * communication to fail after 2^64 - 1 keys. We do this on the encrypting |
2896 | | * side only. |
2897 | | */ |
2898 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx) && ++gctx->tls_enc_records == 0) { |
2899 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS); |
2900 | 0 | goto err; |
2901 | 0 | } |
2902 | | |
2903 | | /* |
2904 | | * Set IV from start of buffer or generate IV and write to start of |
2905 | | * buffer. |
2906 | | */ |
2907 | 0 | if (EVP_CIPHER_CTX_ctrl(ctx, |
2908 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx) ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, |
2909 | 0 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) |
2910 | 0 | <= 0) |
2911 | 0 | goto err; |
2912 | | /* Use saved AAD */ |
2913 | 0 | if (CRYPTO_gcm128_aad(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), |
2914 | 0 | gctx->tls_aad_len)) |
2915 | 0 | goto err; |
2916 | | /* Fix buffer and length to point to payload */ |
2917 | 0 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
2918 | 0 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
2919 | 0 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
2920 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
2921 | | /* Encrypt payload */ |
2922 | 0 | if (gctx->ctr) { |
2923 | 0 | size_t bulk = 0; |
2924 | | #if defined(AES_GCM_ASM) |
2925 | | if (len >= 32 && AES_GCM_ASM(gctx)) { |
2926 | | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
2927 | | return -1; |
2928 | | |
2929 | | bulk = AES_gcm_encrypt(in, out, len, |
2930 | | gctx->gcm.key, |
2931 | | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
2932 | | gctx->gcm.len.u[1] += bulk; |
2933 | | } |
2934 | | #endif |
2935 | 0 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
2936 | 0 | in + bulk, |
2937 | 0 | out + bulk, |
2938 | 0 | len - bulk, gctx->ctr)) |
2939 | 0 | goto err; |
2940 | 0 | } else { |
2941 | 0 | size_t bulk = 0; |
2942 | | #if defined(AES_GCM_ASM2) |
2943 | | if (len >= 32 && AES_GCM_ASM2(gctx)) { |
2944 | | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
2945 | | return -1; |
2946 | | |
2947 | | bulk = AES_gcm_encrypt(in, out, len, |
2948 | | gctx->gcm.key, |
2949 | | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
2950 | | gctx->gcm.len.u[1] += bulk; |
2951 | | } |
2952 | | #endif |
2953 | 0 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
2954 | 0 | in + bulk, out + bulk, len - bulk)) |
2955 | 0 | goto err; |
2956 | 0 | } |
2957 | 0 | out += len; |
2958 | | /* Finally write tag */ |
2959 | 0 | CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); |
2960 | 0 | rv = (int)(len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN); |
2961 | 0 | } else { |
2962 | | /* Decrypt */ |
2963 | 0 | if (gctx->ctr) { |
2964 | 0 | size_t bulk = 0; |
2965 | | #if defined(AES_GCM_ASM) |
2966 | | if (len >= 16 && AES_GCM_ASM(gctx)) { |
2967 | | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
2968 | | return -1; |
2969 | | |
2970 | | bulk = AES_gcm_decrypt(in, out, len, |
2971 | | gctx->gcm.key, |
2972 | | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
2973 | | gctx->gcm.len.u[1] += bulk; |
2974 | | } |
2975 | | #endif |
2976 | 0 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
2977 | 0 | in + bulk, |
2978 | 0 | out + bulk, |
2979 | 0 | len - bulk, gctx->ctr)) |
2980 | 0 | goto err; |
2981 | 0 | } else { |
2982 | 0 | size_t bulk = 0; |
2983 | | #if defined(AES_GCM_ASM2) |
2984 | | if (len >= 16 && AES_GCM_ASM2(gctx)) { |
2985 | | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
2986 | | return -1; |
2987 | | |
2988 | | bulk = AES_gcm_decrypt(in, out, len, |
2989 | | gctx->gcm.key, |
2990 | | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
2991 | | gctx->gcm.len.u[1] += bulk; |
2992 | | } |
2993 | | #endif |
2994 | 0 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
2995 | 0 | in + bulk, out + bulk, len - bulk)) |
2996 | 0 | goto err; |
2997 | 0 | } |
2998 | | /* Retrieve tag */ |
2999 | 0 | CRYPTO_gcm128_tag(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), |
3000 | 0 | EVP_GCM_TLS_TAG_LEN); |
3001 | | /* If tag mismatch wipe buffer */ |
3002 | 0 | if (CRYPTO_memcmp(EVP_CIPHER_CTX_buf_noconst(ctx), in + len, |
3003 | 0 | EVP_GCM_TLS_TAG_LEN)) { |
3004 | 0 | OPENSSL_cleanse(out, len); |
3005 | 0 | goto err; |
3006 | 0 | } |
3007 | 0 | rv = (int)len; |
3008 | 0 | } |
3009 | | |
3010 | 0 | err: |
3011 | 0 | gctx->iv_set = 0; |
3012 | 0 | gctx->tls_aad_len = -1; |
3013 | 0 | return rv; |
3014 | 0 | } |
3015 | | |
3016 | | #ifdef FIPS_MODULE |
3017 | | /* |
3018 | | * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys" |
3019 | | * |
3020 | | * See also 8.2.2 RBG-based construction. |
3021 | | * Random construction consists of a free field (which can be NULL) and a |
3022 | | * random field which will use a DRBG that can return at least 96 bits of |
3023 | | * entropy strength. (The DRBG must be seeded by the FIPS module). |
3024 | | */ |
3025 | | static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset) |
3026 | | { |
3027 | | int sz = gctx->ivlen - offset; |
3028 | | |
3029 | | /* Must be at least 96 bits */ |
3030 | | if (sz <= 0 || gctx->ivlen < 12) |
3031 | | return 0; |
3032 | | |
3033 | | /* Use DRBG to generate random iv */ |
3034 | | if (RAND_bytes(gctx->iv + offset, sz) <= 0) |
3035 | | return 0; |
3036 | | return 1; |
3037 | | } |
3038 | | #endif /* FIPS_MODULE */ |
3039 | | |
3040 | | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
3041 | | const unsigned char *in, size_t len) |
3042 | 0 | { |
3043 | 0 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX, ctx); |
3044 | | |
3045 | | /* If not set up, return error */ |
3046 | 0 | if (!gctx->key_set) |
3047 | 0 | return -1; |
3048 | | |
3049 | 0 | if (gctx->tls_aad_len >= 0) |
3050 | 0 | return aes_gcm_tls_cipher(ctx, out, in, len); |
3051 | | |
3052 | | #ifdef FIPS_MODULE |
3053 | | /* |
3054 | | * FIPS requires generation of AES-GCM IV's inside the FIPS module. |
3055 | | * The IV can still be set externally (the security policy will state that |
3056 | | * this is not FIPS compliant). There are some applications |
3057 | | * where setting the IV externally is the only option available. |
3058 | | */ |
3059 | | if (!gctx->iv_set) { |
3060 | | if (!EVP_CIPHER_CTX_is_encrypting(ctx) || !aes_gcm_iv_generate(gctx, 0)) |
3061 | | return -1; |
3062 | | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
3063 | | gctx->iv_set = 1; |
3064 | | gctx->iv_gen_rand = 1; |
3065 | | } |
3066 | | #else |
3067 | 0 | if (!gctx->iv_set) |
3068 | 0 | return -1; |
3069 | 0 | #endif /* FIPS_MODULE */ |
3070 | | |
3071 | 0 | if (in) { |
3072 | 0 | if (out == NULL) { |
3073 | 0 | if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) |
3074 | 0 | return -1; |
3075 | 0 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
3076 | 0 | if (gctx->ctr) { |
3077 | 0 | size_t bulk = 0; |
3078 | | #if defined(AES_GCM_ASM) |
3079 | | if (len >= 32 && AES_GCM_ASM(gctx)) { |
3080 | | size_t res = (16 - gctx->gcm.mres) % 16; |
3081 | | |
3082 | | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
3083 | | return -1; |
3084 | | |
3085 | | bulk = AES_gcm_encrypt(in + res, |
3086 | | out + res, len - res, |
3087 | | gctx->gcm.key, gctx->gcm.Yi.c, |
3088 | | gctx->gcm.Xi.u); |
3089 | | gctx->gcm.len.u[1] += bulk; |
3090 | | bulk += res; |
3091 | | } |
3092 | | #endif |
3093 | 0 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
3094 | 0 | in + bulk, |
3095 | 0 | out + bulk, |
3096 | 0 | len - bulk, gctx->ctr)) |
3097 | 0 | return -1; |
3098 | 0 | } else { |
3099 | 0 | size_t bulk = 0; |
3100 | | #if defined(AES_GCM_ASM2) |
3101 | | if (len >= 32 && AES_GCM_ASM2(gctx)) { |
3102 | | size_t res = (16 - gctx->gcm.mres) % 16; |
3103 | | |
3104 | | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
3105 | | return -1; |
3106 | | |
3107 | | bulk = AES_gcm_encrypt(in + res, |
3108 | | out + res, len - res, |
3109 | | gctx->gcm.key, gctx->gcm.Yi.c, |
3110 | | gctx->gcm.Xi.u); |
3111 | | gctx->gcm.len.u[1] += bulk; |
3112 | | bulk += res; |
3113 | | } |
3114 | | #endif |
3115 | 0 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
3116 | 0 | in + bulk, out + bulk, len - bulk)) |
3117 | 0 | return -1; |
3118 | 0 | } |
3119 | 0 | } else { |
3120 | 0 | if (gctx->ctr) { |
3121 | 0 | size_t bulk = 0; |
3122 | | #if defined(AES_GCM_ASM) |
3123 | | if (len >= 16 && AES_GCM_ASM(gctx)) { |
3124 | | size_t res = (16 - gctx->gcm.mres) % 16; |
3125 | | |
3126 | | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
3127 | | return -1; |
3128 | | |
3129 | | bulk = AES_gcm_decrypt(in + res, |
3130 | | out + res, len - res, |
3131 | | gctx->gcm.key, |
3132 | | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
3133 | | gctx->gcm.len.u[1] += bulk; |
3134 | | bulk += res; |
3135 | | } |
3136 | | #endif |
3137 | 0 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
3138 | 0 | in + bulk, |
3139 | 0 | out + bulk, |
3140 | 0 | len - bulk, gctx->ctr)) |
3141 | 0 | return -1; |
3142 | 0 | } else { |
3143 | 0 | size_t bulk = 0; |
3144 | | #if defined(AES_GCM_ASM2) |
3145 | | if (len >= 16 && AES_GCM_ASM2(gctx)) { |
3146 | | size_t res = (16 - gctx->gcm.mres) % 16; |
3147 | | |
3148 | | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
3149 | | return -1; |
3150 | | |
3151 | | bulk = AES_gcm_decrypt(in + res, |
3152 | | out + res, len - res, |
3153 | | gctx->gcm.key, |
3154 | | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
3155 | | gctx->gcm.len.u[1] += bulk; |
3156 | | bulk += res; |
3157 | | } |
3158 | | #endif |
3159 | 0 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
3160 | 0 | in + bulk, out + bulk, len - bulk)) |
3161 | 0 | return -1; |
3162 | 0 | } |
3163 | 0 | } |
3164 | 0 | return (int)len; |
3165 | 0 | } else { |
3166 | 0 | if (!EVP_CIPHER_CTX_is_encrypting(ctx)) { |
3167 | 0 | if (gctx->taglen < 0) |
3168 | 0 | return -1; |
3169 | 0 | if (CRYPTO_gcm128_finish(&gctx->gcm, |
3170 | 0 | EVP_CIPHER_CTX_buf_noconst(ctx), |
3171 | 0 | gctx->taglen) |
3172 | 0 | != 0) |
3173 | 0 | return -1; |
3174 | 0 | gctx->iv_set = 0; |
3175 | 0 | return 0; |
3176 | 0 | } |
3177 | 0 | CRYPTO_gcm128_tag(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), 16); |
3178 | 0 | gctx->taglen = 16; |
3179 | | /* Don't reuse the IV */ |
3180 | 0 | gctx->iv_set = 0; |
3181 | 0 | return 0; |
3182 | 0 | } |
3183 | 0 | } |
3184 | | |
3185 | | #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ |
3186 | | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
3187 | | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
3188 | | | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH) |
3189 | | |
3190 | | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, |
3191 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
3192 | | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, |
3193 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
3194 | | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, |
3195 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
3196 | | |
3197 | | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
3198 | 0 | { |
3199 | 0 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c); |
3200 | |
|
3201 | 0 | if (type == EVP_CTRL_COPY) { |
3202 | 0 | EVP_CIPHER_CTX *out = ptr; |
3203 | 0 | EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX, out); |
3204 | |
|
3205 | 0 | if (xctx->xts.key1) { |
3206 | 0 | if (xctx->xts.key1 != &xctx->ks1) |
3207 | 0 | return 0; |
3208 | 0 | xctx_out->xts.key1 = &xctx_out->ks1; |
3209 | 0 | } |
3210 | 0 | if (xctx->xts.key2) { |
3211 | 0 | if (xctx->xts.key2 != &xctx->ks2) |
3212 | 0 | return 0; |
3213 | 0 | xctx_out->xts.key2 = &xctx_out->ks2; |
3214 | 0 | } |
3215 | 0 | return 1; |
3216 | 0 | } else if (type != EVP_CTRL_INIT) |
3217 | 0 | return -1; |
3218 | | /* key1 and key2 are used as an indicator both key and IV are set */ |
3219 | 0 | xctx->xts.key1 = NULL; |
3220 | 0 | xctx->xts.key2 = NULL; |
3221 | 0 | return 1; |
3222 | 0 | } |
3223 | | |
3224 | | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
3225 | | const unsigned char *iv, int enc) |
3226 | 0 | { |
3227 | 0 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, ctx); |
3228 | |
|
3229 | 0 | if (iv == NULL && key == NULL) |
3230 | 0 | return 1; |
3231 | | |
3232 | 0 | if (key != NULL) { |
3233 | 0 | do { |
3234 | | /* The key is two half length keys in reality */ |
3235 | 0 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); |
3236 | 0 | const int bytes = keylen / 2; |
3237 | 0 | const int bits = bytes * 8; |
3238 | |
|
3239 | 0 | if (keylen <= 0) { |
3240 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
3241 | 0 | return 0; |
3242 | 0 | } |
3243 | | /* |
3244 | | * Verify that the two keys are different. |
3245 | | * |
3246 | | * This addresses the vulnerability described in Rogaway's |
3247 | | * September 2004 paper: |
3248 | | * |
3249 | | * "Efficient Instantiations of Tweakable Blockciphers and |
3250 | | * Refinements to Modes OCB and PMAC". |
3251 | | * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) |
3252 | | * |
3253 | | * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states |
3254 | | * that: |
3255 | | * "The check for Key_1 != Key_2 shall be done at any place |
3256 | | * BEFORE using the keys in the XTS-AES algorithm to process |
3257 | | * data with them." |
3258 | | */ |
3259 | 0 | if ((!allow_insecure_decrypt || enc) |
3260 | 0 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
3261 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS); |
3262 | 0 | return 0; |
3263 | 0 | } |
3264 | | |
3265 | | #ifdef AES_XTS_ASM |
3266 | | xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; |
3267 | | #else |
3268 | 0 | xctx->stream = NULL; |
3269 | 0 | #endif |
3270 | | /* key_len is two AES keys */ |
3271 | | #ifdef HWAES_CAPABLE |
3272 | | if (HWAES_CAPABLE) { |
3273 | | if (enc) { |
3274 | | HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks); |
3275 | | xctx->xts.block1 = (block128_f)HWAES_encrypt; |
3276 | | #ifdef HWAES_xts_encrypt |
3277 | | xctx->stream = HWAES_xts_encrypt; |
3278 | | #endif |
3279 | | } else { |
3280 | | HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks); |
3281 | | xctx->xts.block1 = (block128_f)HWAES_decrypt; |
3282 | | #ifdef HWAES_xts_decrypt |
3283 | | xctx->stream = HWAES_xts_decrypt; |
3284 | | #endif |
3285 | | } |
3286 | | |
3287 | | HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
3288 | | xctx->xts.block2 = (block128_f)HWAES_encrypt; |
3289 | | |
3290 | | xctx->xts.key1 = &xctx->ks1; |
3291 | | break; |
3292 | | } else |
3293 | | #endif |
3294 | | #ifdef BSAES_CAPABLE |
3295 | | if (BSAES_CAPABLE) |
3296 | | xctx->stream = enc ? ossl_bsaes_xts_encrypt : ossl_bsaes_xts_decrypt; |
3297 | | else |
3298 | | #endif |
3299 | | #ifdef VPAES_CAPABLE |
3300 | | if (VPAES_CAPABLE) { |
3301 | | if (enc) { |
3302 | | vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks); |
3303 | | xctx->xts.block1 = (block128_f)vpaes_encrypt; |
3304 | | } else { |
3305 | | vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks); |
3306 | | xctx->xts.block1 = (block128_f)vpaes_decrypt; |
3307 | | } |
3308 | | |
3309 | | vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
3310 | | xctx->xts.block2 = (block128_f)vpaes_encrypt; |
3311 | | |
3312 | | xctx->xts.key1 = &xctx->ks1; |
3313 | | break; |
3314 | | } else |
3315 | | #endif |
3316 | 0 | (void)0; /* terminate potentially open 'else' */ |
3317 | |
|
3318 | 0 | if (enc) { |
3319 | 0 | AES_set_encrypt_key(key, bits, &xctx->ks1.ks); |
3320 | 0 | xctx->xts.block1 = (block128_f)AES_encrypt; |
3321 | 0 | } else { |
3322 | 0 | AES_set_decrypt_key(key, bits, &xctx->ks1.ks); |
3323 | 0 | xctx->xts.block1 = (block128_f)AES_decrypt; |
3324 | 0 | } |
3325 | |
|
3326 | 0 | AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); |
3327 | 0 | xctx->xts.block2 = (block128_f)AES_encrypt; |
3328 | |
|
3329 | 0 | xctx->xts.key1 = &xctx->ks1; |
3330 | 0 | } while (0); |
3331 | 0 | } |
3332 | | |
3333 | 0 | if (iv) { |
3334 | 0 | xctx->xts.key2 = &xctx->ks2; |
3335 | 0 | memcpy(ctx->iv, iv, 16); |
3336 | 0 | } |
3337 | |
|
3338 | 0 | return 1; |
3339 | 0 | } |
3340 | | |
3341 | | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
3342 | | const unsigned char *in, size_t len) |
3343 | 0 | { |
3344 | 0 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, ctx); |
3345 | |
|
3346 | 0 | if (xctx->xts.key1 == NULL |
3347 | 0 | || xctx->xts.key2 == NULL |
3348 | 0 | || out == NULL |
3349 | 0 | || in == NULL |
3350 | 0 | || len < AES_BLOCK_SIZE) |
3351 | 0 | return 0; |
3352 | | |
3353 | | /* |
3354 | | * Impose a limit of 2^20 blocks per data unit as specified by |
3355 | | * IEEE Std 1619-2018. The earlier and obsolete IEEE Std 1619-2007 |
3356 | | * indicated that this was a SHOULD NOT rather than a MUST NOT. |
3357 | | * NIST SP 800-38E mandates the same limit. |
3358 | | */ |
3359 | 0 | if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) { |
3360 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE); |
3361 | 0 | return 0; |
3362 | 0 | } |
3363 | | |
3364 | 0 | if (xctx->stream) |
3365 | 0 | (*xctx->stream)(in, out, len, |
3366 | 0 | xctx->xts.key1, xctx->xts.key2, |
3367 | 0 | ctx->iv); |
3368 | 0 | else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, |
3369 | 0 | EVP_CIPHER_CTX_is_encrypting(ctx))) |
3370 | 0 | return 0; |
3371 | 0 | return 1; |
3372 | 0 | } |
3373 | | |
3374 | | #define aes_xts_cleanup NULL |
3375 | | |
3376 | | #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ |
3377 | | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
3378 | | | EVP_CIPH_CUSTOM_COPY) |
3379 | | |
3380 | | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) |
3381 | | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) |
3382 | | |
3383 | | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
3384 | 0 | { |
3385 | 0 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX, c); |
3386 | 0 | switch (type) { |
3387 | 0 | case EVP_CTRL_INIT: |
3388 | 0 | cctx->key_set = 0; |
3389 | 0 | cctx->iv_set = 0; |
3390 | 0 | cctx->L = 8; |
3391 | 0 | cctx->M = 12; |
3392 | 0 | cctx->tag_set = 0; |
3393 | 0 | cctx->len_set = 0; |
3394 | 0 | cctx->tls_aad_len = -1; |
3395 | 0 | return 1; |
3396 | | |
3397 | 0 | case EVP_CTRL_GET_IVLEN: |
3398 | 0 | *(int *)ptr = 15 - cctx->L; |
3399 | 0 | return 1; |
3400 | | |
3401 | 0 | case EVP_CTRL_AEAD_TLS1_AAD: |
3402 | | /* Save the AAD for later use */ |
3403 | 0 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
3404 | 0 | return 0; |
3405 | 0 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); |
3406 | 0 | cctx->tls_aad_len = arg; |
3407 | 0 | { |
3408 | 0 | uint16_t len = EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 |
3409 | 0 | | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; |
3410 | | /* Correct length for explicit IV */ |
3411 | 0 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) |
3412 | 0 | return 0; |
3413 | 0 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
3414 | | /* If decrypting correct for tag too */ |
3415 | 0 | if (!EVP_CIPHER_CTX_is_encrypting(c)) { |
3416 | 0 | if (len < cctx->M) |
3417 | 0 | return 0; |
3418 | 0 | len -= cctx->M; |
3419 | 0 | } |
3420 | 0 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; |
3421 | 0 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; |
3422 | 0 | } |
3423 | | /* Extra padding: tag appended to record */ |
3424 | 0 | return cctx->M; |
3425 | | |
3426 | 0 | case EVP_CTRL_CCM_SET_IV_FIXED: |
3427 | | /* Sanity check length */ |
3428 | 0 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN) |
3429 | 0 | return 0; |
3430 | | /* Just copy to first part of IV */ |
3431 | 0 | memcpy(c->iv, ptr, arg); |
3432 | 0 | return 1; |
3433 | | |
3434 | 0 | case EVP_CTRL_AEAD_SET_IVLEN: |
3435 | 0 | arg = 15 - arg; |
3436 | | /* fall through */ |
3437 | 0 | case EVP_CTRL_CCM_SET_L: |
3438 | 0 | if (arg < 2 || arg > 8) |
3439 | 0 | return 0; |
3440 | 0 | cctx->L = arg; |
3441 | 0 | return 1; |
3442 | | |
3443 | 0 | case EVP_CTRL_AEAD_SET_TAG: |
3444 | 0 | if ((arg & 1) || arg < 4 || arg > 16) |
3445 | 0 | return 0; |
3446 | 0 | if (EVP_CIPHER_CTX_is_encrypting(c) && ptr) |
3447 | 0 | return 0; |
3448 | 0 | if (ptr) { |
3449 | 0 | cctx->tag_set = 1; |
3450 | 0 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); |
3451 | 0 | } |
3452 | 0 | cctx->M = arg; |
3453 | 0 | return 1; |
3454 | | |
3455 | 0 | case EVP_CTRL_AEAD_GET_TAG: |
3456 | 0 | if (!EVP_CIPHER_CTX_is_encrypting(c) || !cctx->tag_set) |
3457 | 0 | return 0; |
3458 | 0 | if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) |
3459 | 0 | return 0; |
3460 | 0 | cctx->tag_set = 0; |
3461 | 0 | cctx->iv_set = 0; |
3462 | 0 | cctx->len_set = 0; |
3463 | 0 | return 1; |
3464 | | |
3465 | 0 | case EVP_CTRL_COPY: { |
3466 | 0 | EVP_CIPHER_CTX *out = ptr; |
3467 | 0 | EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX, out); |
3468 | 0 | if (cctx->ccm.key) { |
3469 | 0 | if (cctx->ccm.key != &cctx->ks) |
3470 | 0 | return 0; |
3471 | 0 | cctx_out->ccm.key = &cctx_out->ks; |
3472 | 0 | } |
3473 | 0 | return 1; |
3474 | 0 | } |
3475 | | |
3476 | 0 | default: |
3477 | 0 | return -1; |
3478 | 0 | } |
3479 | 0 | } |
3480 | | |
3481 | | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
3482 | | const unsigned char *iv, int enc) |
3483 | 0 | { |
3484 | 0 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX, ctx); |
3485 | |
|
3486 | 0 | if (iv == NULL && key == NULL) |
3487 | 0 | return 1; |
3488 | | |
3489 | 0 | if (key != NULL) { |
3490 | 0 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
3491 | |
|
3492 | 0 | if (keylen <= 0) { |
3493 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
3494 | 0 | return 0; |
3495 | 0 | } |
3496 | 0 | do { |
3497 | | #ifdef HWAES_CAPABLE |
3498 | | if (HWAES_CAPABLE) { |
3499 | | HWAES_set_encrypt_key(key, keylen, &cctx->ks.ks); |
3500 | | |
3501 | | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
3502 | | &cctx->ks, (block128_f)HWAES_encrypt); |
3503 | | cctx->str = NULL; |
3504 | | cctx->key_set = 1; |
3505 | | break; |
3506 | | } else |
3507 | | #endif |
3508 | | #ifdef VPAES_CAPABLE |
3509 | | if (VPAES_CAPABLE) { |
3510 | | vpaes_set_encrypt_key(key, keylen, &cctx->ks.ks); |
3511 | | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
3512 | | &cctx->ks, (block128_f)vpaes_encrypt); |
3513 | | cctx->str = NULL; |
3514 | | cctx->key_set = 1; |
3515 | | break; |
3516 | | } |
3517 | | #endif |
3518 | 0 | AES_set_encrypt_key(key, keylen, &cctx->ks.ks); |
3519 | 0 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
3520 | 0 | &cctx->ks, (block128_f)AES_encrypt); |
3521 | 0 | cctx->str = NULL; |
3522 | 0 | cctx->key_set = 1; |
3523 | 0 | } while (0); |
3524 | 0 | } |
3525 | 0 | if (iv != NULL) { |
3526 | 0 | memcpy(ctx->iv, iv, 15 - cctx->L); |
3527 | 0 | cctx->iv_set = 1; |
3528 | 0 | } |
3529 | 0 | return 1; |
3530 | 0 | } |
3531 | | |
3532 | | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
3533 | | const unsigned char *in, size_t len) |
3534 | 0 | { |
3535 | 0 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX, ctx); |
3536 | 0 | CCM128_CONTEXT *ccm = &cctx->ccm; |
3537 | | /* Encrypt/decrypt must be performed in place */ |
3538 | 0 | if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) |
3539 | 0 | return -1; |
3540 | | /* If encrypting set explicit IV from sequence number (start of AAD) */ |
3541 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) |
3542 | 0 | memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), |
3543 | 0 | EVP_CCM_TLS_EXPLICIT_IV_LEN); |
3544 | | /* Get rest of IV from explicit IV */ |
3545 | 0 | memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in, |
3546 | 0 | EVP_CCM_TLS_EXPLICIT_IV_LEN); |
3547 | | /* Correct length value */ |
3548 | 0 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; |
3549 | 0 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, |
3550 | 0 | len)) |
3551 | 0 | return -1; |
3552 | | /* Use saved AAD */ |
3553 | 0 | CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), |
3554 | 0 | cctx->tls_aad_len); |
3555 | | /* Fix buffer to point to payload */ |
3556 | 0 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
3557 | 0 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
3558 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
3559 | 0 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
3560 | 0 | cctx->str) |
3561 | 0 | : CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
3562 | 0 | return -1; |
3563 | 0 | if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) |
3564 | 0 | return -1; |
3565 | 0 | return (int)(len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M); |
3566 | 0 | } else { |
3567 | 0 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
3568 | 0 | cctx->str) |
3569 | 0 | : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
3570 | 0 | unsigned char tag[16]; |
3571 | 0 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
3572 | 0 | if (!CRYPTO_memcmp(tag, in + len, cctx->M)) |
3573 | 0 | return (int)len; |
3574 | 0 | } |
3575 | 0 | } |
3576 | 0 | OPENSSL_cleanse(out, len); |
3577 | 0 | return -1; |
3578 | 0 | } |
3579 | 0 | } |
3580 | | |
3581 | | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
3582 | | const unsigned char *in, size_t len) |
3583 | 0 | { |
3584 | 0 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX, ctx); |
3585 | 0 | CCM128_CONTEXT *ccm = &cctx->ccm; |
3586 | | /* If not set up, return error */ |
3587 | 0 | if (!cctx->key_set) |
3588 | 0 | return -1; |
3589 | | |
3590 | 0 | if (cctx->tls_aad_len >= 0) |
3591 | 0 | return aes_ccm_tls_cipher(ctx, out, in, len); |
3592 | | |
3593 | | /* EVP_*Final() doesn't return any data */ |
3594 | 0 | if (in == NULL && out != NULL) |
3595 | 0 | return 0; |
3596 | | |
3597 | 0 | if (!cctx->iv_set) |
3598 | 0 | return -1; |
3599 | | |
3600 | 0 | if (!out) { |
3601 | 0 | if (!in) { |
3602 | 0 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, |
3603 | 0 | 15 - cctx->L, len)) |
3604 | 0 | return -1; |
3605 | 0 | cctx->len_set = 1; |
3606 | 0 | return (int)len; |
3607 | 0 | } |
3608 | | /* If have AAD need message length */ |
3609 | 0 | if (!cctx->len_set && len) |
3610 | 0 | return -1; |
3611 | 0 | CRYPTO_ccm128_aad(ccm, in, len); |
3612 | 0 | return (int)len; |
3613 | 0 | } |
3614 | | |
3615 | | /* The tag must be set before actually decrypting data */ |
3616 | 0 | if (!EVP_CIPHER_CTX_is_encrypting(ctx) && !cctx->tag_set) |
3617 | 0 | return -1; |
3618 | | |
3619 | | /* If not set length yet do it */ |
3620 | 0 | if (!cctx->len_set) { |
3621 | 0 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) |
3622 | 0 | return -1; |
3623 | 0 | cctx->len_set = 1; |
3624 | 0 | } |
3625 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
3626 | 0 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
3627 | 0 | cctx->str) |
3628 | 0 | : CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
3629 | 0 | return -1; |
3630 | 0 | cctx->tag_set = 1; |
3631 | 0 | return (int)len; |
3632 | 0 | } else { |
3633 | 0 | int rv = -1; |
3634 | 0 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
3635 | 0 | cctx->str) |
3636 | 0 | : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
3637 | 0 | unsigned char tag[16]; |
3638 | 0 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
3639 | 0 | if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), |
3640 | 0 | cctx->M)) |
3641 | 0 | rv = (int)len; |
3642 | 0 | } |
3643 | 0 | } |
3644 | 0 | if (rv == -1) |
3645 | 0 | OPENSSL_cleanse(out, len); |
3646 | 0 | cctx->iv_set = 0; |
3647 | 0 | cctx->tag_set = 0; |
3648 | 0 | cctx->len_set = 0; |
3649 | 0 | return rv; |
3650 | 0 | } |
3651 | 0 | } |
3652 | | |
3653 | | #define aes_ccm_cleanup NULL |
3654 | | |
3655 | | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, |
3656 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
3657 | | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, |
3658 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
3659 | | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, |
3660 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
3661 | | |
3662 | | typedef struct { |
3663 | | union { |
3664 | | OSSL_UNION_ALIGN; |
3665 | | AES_KEY ks; |
3666 | | } ks; |
3667 | | /* Indicates if IV has been set */ |
3668 | | unsigned char *iv; |
3669 | | } EVP_AES_WRAP_CTX; |
3670 | | |
3671 | | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
3672 | | const unsigned char *iv, int enc) |
3673 | 0 | { |
3674 | 0 | int len; |
3675 | 0 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX, ctx); |
3676 | |
|
3677 | 0 | if (iv == NULL && key == NULL) |
3678 | 0 | return 1; |
3679 | 0 | if (key != NULL) { |
3680 | 0 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
3681 | |
|
3682 | 0 | if (keylen <= 0) { |
3683 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
3684 | 0 | return 0; |
3685 | 0 | } |
3686 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) |
3687 | 0 | AES_set_encrypt_key(key, keylen, &wctx->ks.ks); |
3688 | 0 | else |
3689 | 0 | AES_set_decrypt_key(key, keylen, &wctx->ks.ks); |
3690 | 0 | if (iv == NULL) |
3691 | 0 | wctx->iv = NULL; |
3692 | 0 | } |
3693 | 0 | if (iv != NULL) { |
3694 | 0 | if ((len = EVP_CIPHER_CTX_get_iv_length(ctx)) < 0) |
3695 | 0 | return 0; |
3696 | 0 | memcpy(ctx->iv, iv, len); |
3697 | 0 | wctx->iv = ctx->iv; |
3698 | 0 | } |
3699 | 0 | return 1; |
3700 | 0 | } |
3701 | | |
3702 | | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
3703 | | const unsigned char *in, size_t inlen) |
3704 | 0 | { |
3705 | 0 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX, ctx); |
3706 | 0 | size_t rv; |
3707 | | /* AES wrap with padding has IV length of 4, without padding 8 */ |
3708 | 0 | int pad = EVP_CIPHER_CTX_get_iv_length(ctx) == 4; |
3709 | | /* No final operation so always return zero length */ |
3710 | 0 | if (!in) |
3711 | 0 | return 0; |
3712 | | /* Input length must always be non-zero */ |
3713 | 0 | if (!inlen) |
3714 | 0 | return -1; |
3715 | | /* If decrypting need at least 16 bytes and multiple of 8 */ |
3716 | 0 | if (!EVP_CIPHER_CTX_is_encrypting(ctx) && (inlen < 16 || inlen & 0x7)) |
3717 | 0 | return -1; |
3718 | | /* If not padding input must be multiple of 8 */ |
3719 | 0 | if (!pad && inlen & 0x7) |
3720 | 0 | return -1; |
3721 | 0 | if (ossl_is_partially_overlapping(out, in, (int)inlen)) { |
3722 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING); |
3723 | 0 | return 0; |
3724 | 0 | } |
3725 | 0 | if (!out) { |
3726 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
3727 | | /* If padding round up to multiple of 8 */ |
3728 | 0 | if (pad) |
3729 | 0 | inlen = (inlen + 7) / 8 * 8; |
3730 | | /* 8 byte prefix */ |
3731 | 0 | return (int)(inlen + 8); |
3732 | 0 | } else { |
3733 | | /* |
3734 | | * If not padding output will be exactly 8 bytes smaller than |
3735 | | * input. If padding it will be at least 8 bytes smaller but we |
3736 | | * don't know how much. |
3737 | | */ |
3738 | 0 | return (int)(inlen - 8); |
3739 | 0 | } |
3740 | 0 | } |
3741 | 0 | if (pad) { |
3742 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) |
3743 | 0 | rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, |
3744 | 0 | out, in, inlen, |
3745 | 0 | (block128_f)AES_encrypt); |
3746 | 0 | else |
3747 | 0 | rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, |
3748 | 0 | out, in, inlen, |
3749 | 0 | (block128_f)AES_decrypt); |
3750 | 0 | } else { |
3751 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) |
3752 | 0 | rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, |
3753 | 0 | out, in, inlen, (block128_f)AES_encrypt); |
3754 | 0 | else |
3755 | 0 | rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, |
3756 | 0 | out, in, inlen, (block128_f)AES_decrypt); |
3757 | 0 | } |
3758 | 0 | return rv ? (int)rv : -1; |
3759 | 0 | } |
3760 | | |
3761 | | #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ |
3762 | | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
3763 | | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) |
3764 | | |
3765 | | static const EVP_CIPHER aes_128_wrap = { |
3766 | | NID_id_aes128_wrap, |
3767 | | 8, 16, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL, |
3768 | | aes_wrap_init_key, aes_wrap_cipher, |
3769 | | NULL, |
3770 | | sizeof(EVP_AES_WRAP_CTX), |
3771 | | NULL, NULL, NULL, NULL |
3772 | | }; |
3773 | | |
3774 | | const EVP_CIPHER *EVP_aes_128_wrap(void) |
3775 | 3 | { |
3776 | 3 | return &aes_128_wrap; |
3777 | 3 | } |
3778 | | |
3779 | | static const EVP_CIPHER aes_192_wrap = { |
3780 | | NID_id_aes192_wrap, |
3781 | | 8, 24, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL, |
3782 | | aes_wrap_init_key, aes_wrap_cipher, |
3783 | | NULL, |
3784 | | sizeof(EVP_AES_WRAP_CTX), |
3785 | | NULL, NULL, NULL, NULL |
3786 | | }; |
3787 | | |
3788 | | const EVP_CIPHER *EVP_aes_192_wrap(void) |
3789 | 3 | { |
3790 | 3 | return &aes_192_wrap; |
3791 | 3 | } |
3792 | | |
3793 | | static const EVP_CIPHER aes_256_wrap = { |
3794 | | NID_id_aes256_wrap, |
3795 | | 8, 32, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL, |
3796 | | aes_wrap_init_key, aes_wrap_cipher, |
3797 | | NULL, |
3798 | | sizeof(EVP_AES_WRAP_CTX), |
3799 | | NULL, NULL, NULL, NULL |
3800 | | }; |
3801 | | |
3802 | | const EVP_CIPHER *EVP_aes_256_wrap(void) |
3803 | 3 | { |
3804 | 3 | return &aes_256_wrap; |
3805 | 3 | } |
3806 | | |
3807 | | static const EVP_CIPHER aes_128_wrap_pad = { |
3808 | | NID_id_aes128_wrap_pad, |
3809 | | 8, 16, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL, |
3810 | | aes_wrap_init_key, aes_wrap_cipher, |
3811 | | NULL, |
3812 | | sizeof(EVP_AES_WRAP_CTX), |
3813 | | NULL, NULL, NULL, NULL |
3814 | | }; |
3815 | | |
3816 | | const EVP_CIPHER *EVP_aes_128_wrap_pad(void) |
3817 | 3 | { |
3818 | 3 | return &aes_128_wrap_pad; |
3819 | 3 | } |
3820 | | |
3821 | | static const EVP_CIPHER aes_192_wrap_pad = { |
3822 | | NID_id_aes192_wrap_pad, |
3823 | | 8, 24, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL, |
3824 | | aes_wrap_init_key, aes_wrap_cipher, |
3825 | | NULL, |
3826 | | sizeof(EVP_AES_WRAP_CTX), |
3827 | | NULL, NULL, NULL, NULL |
3828 | | }; |
3829 | | |
3830 | | const EVP_CIPHER *EVP_aes_192_wrap_pad(void) |
3831 | 3 | { |
3832 | 3 | return &aes_192_wrap_pad; |
3833 | 3 | } |
3834 | | |
3835 | | static const EVP_CIPHER aes_256_wrap_pad = { |
3836 | | NID_id_aes256_wrap_pad, |
3837 | | 8, 32, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL, |
3838 | | aes_wrap_init_key, aes_wrap_cipher, |
3839 | | NULL, |
3840 | | sizeof(EVP_AES_WRAP_CTX), |
3841 | | NULL, NULL, NULL, NULL |
3842 | | }; |
3843 | | |
3844 | | const EVP_CIPHER *EVP_aes_256_wrap_pad(void) |
3845 | 3 | { |
3846 | 3 | return &aes_256_wrap_pad; |
3847 | 3 | } |
3848 | | |
3849 | | #ifndef OPENSSL_NO_OCB |
3850 | | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
3851 | 0 | { |
3852 | 0 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX, c); |
3853 | 0 | EVP_CIPHER_CTX *newc; |
3854 | 0 | EVP_AES_OCB_CTX *new_octx; |
3855 | |
|
3856 | 0 | switch (type) { |
3857 | 0 | case EVP_CTRL_INIT: |
3858 | 0 | octx->key_set = 0; |
3859 | 0 | octx->iv_set = 0; |
3860 | 0 | octx->ivlen = EVP_CIPHER_get_iv_length(c->cipher); |
3861 | 0 | octx->iv = c->iv; |
3862 | 0 | octx->taglen = 16; |
3863 | 0 | octx->data_buf_len = 0; |
3864 | 0 | octx->aad_buf_len = 0; |
3865 | 0 | return 1; |
3866 | | |
3867 | 0 | case EVP_CTRL_GET_IVLEN: |
3868 | 0 | *(int *)ptr = octx->ivlen; |
3869 | 0 | return 1; |
3870 | | |
3871 | 0 | case EVP_CTRL_AEAD_SET_IVLEN: |
3872 | | /* IV len must be 1 to 15 */ |
3873 | 0 | if (arg <= 0 || arg > 15) |
3874 | 0 | return 0; |
3875 | | |
3876 | 0 | octx->ivlen = arg; |
3877 | 0 | return 1; |
3878 | | |
3879 | 0 | case EVP_CTRL_AEAD_SET_TAG: |
3880 | 0 | if (ptr == NULL) { |
3881 | | /* Tag len must be 0 to 16 */ |
3882 | 0 | if (arg < 0 || arg > 16) |
3883 | 0 | return 0; |
3884 | | |
3885 | 0 | octx->taglen = arg; |
3886 | 0 | return 1; |
3887 | 0 | } |
3888 | 0 | if (arg != octx->taglen || EVP_CIPHER_CTX_is_encrypting(c)) |
3889 | 0 | return 0; |
3890 | 0 | memcpy(octx->tag, ptr, arg); |
3891 | 0 | return 1; |
3892 | | |
3893 | 0 | case EVP_CTRL_AEAD_GET_TAG: |
3894 | 0 | if (arg != octx->taglen || !EVP_CIPHER_CTX_is_encrypting(c)) |
3895 | 0 | return 0; |
3896 | | |
3897 | 0 | memcpy(ptr, octx->tag, arg); |
3898 | 0 | return 1; |
3899 | | |
3900 | 0 | case EVP_CTRL_COPY: |
3901 | 0 | newc = (EVP_CIPHER_CTX *)ptr; |
3902 | 0 | new_octx = EVP_C_DATA(EVP_AES_OCB_CTX, newc); |
3903 | 0 | return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, |
3904 | 0 | &new_octx->ksenc.ks, |
3905 | 0 | &new_octx->ksdec.ks); |
3906 | | |
3907 | 0 | default: |
3908 | 0 | return -1; |
3909 | 0 | } |
3910 | 0 | } |
3911 | | |
3912 | | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
3913 | | const unsigned char *iv, int enc) |
3914 | 0 | { |
3915 | 0 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX, ctx); |
3916 | |
|
3917 | 0 | if (iv == NULL && key == NULL) |
3918 | 0 | return 1; |
3919 | | |
3920 | 0 | if (key != NULL) { |
3921 | 0 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; |
3922 | |
|
3923 | 0 | if (keylen <= 0) { |
3924 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); |
3925 | 0 | return 0; |
3926 | 0 | } |
3927 | 0 | do { |
3928 | | /* |
3929 | | * We set both the encrypt and decrypt key here because decrypt |
3930 | | * needs both. We could possibly optimise to remove setting the |
3931 | | * decrypt for an encryption operation. |
3932 | | */ |
3933 | | #ifdef HWAES_CAPABLE |
3934 | | if (HWAES_CAPABLE) { |
3935 | | HWAES_set_encrypt_key(key, keylen, &octx->ksenc.ks); |
3936 | | HWAES_set_decrypt_key(key, keylen, &octx->ksdec.ks); |
3937 | | if (!CRYPTO_ocb128_init(&octx->ocb, |
3938 | | &octx->ksenc.ks, &octx->ksdec.ks, |
3939 | | (block128_f)HWAES_encrypt, |
3940 | | (block128_f)HWAES_decrypt, |
3941 | | enc ? HWAES_ocb_encrypt |
3942 | | : HWAES_ocb_decrypt)) |
3943 | | return 0; |
3944 | | break; |
3945 | | } |
3946 | | #endif |
3947 | | #ifdef VPAES_CAPABLE |
3948 | | if (VPAES_CAPABLE) { |
3949 | | vpaes_set_encrypt_key(key, keylen, &octx->ksenc.ks); |
3950 | | vpaes_set_decrypt_key(key, keylen, &octx->ksdec.ks); |
3951 | | if (!CRYPTO_ocb128_init(&octx->ocb, |
3952 | | &octx->ksenc.ks, &octx->ksdec.ks, |
3953 | | (block128_f)vpaes_encrypt, |
3954 | | (block128_f)vpaes_decrypt, |
3955 | | NULL)) |
3956 | | return 0; |
3957 | | break; |
3958 | | } |
3959 | | #endif |
3960 | 0 | AES_set_encrypt_key(key, keylen, &octx->ksenc.ks); |
3961 | 0 | AES_set_decrypt_key(key, keylen, &octx->ksdec.ks); |
3962 | 0 | if (!CRYPTO_ocb128_init(&octx->ocb, |
3963 | 0 | &octx->ksenc.ks, &octx->ksdec.ks, |
3964 | 0 | (block128_f)AES_encrypt, |
3965 | 0 | (block128_f)AES_decrypt, |
3966 | 0 | NULL)) |
3967 | 0 | return 0; |
3968 | 0 | } while (0); |
3969 | | |
3970 | | /* |
3971 | | * If we have an iv we can set it directly, otherwise use saved IV. |
3972 | | */ |
3973 | 0 | if (iv == NULL && octx->iv_set) |
3974 | 0 | iv = octx->iv; |
3975 | 0 | if (iv) { |
3976 | 0 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
3977 | 0 | != 1) |
3978 | 0 | return 0; |
3979 | 0 | octx->iv_set = 1; |
3980 | 0 | } |
3981 | 0 | octx->key_set = 1; |
3982 | 0 | } else { |
3983 | | /* If key set use IV, otherwise copy */ |
3984 | 0 | if (octx->key_set) |
3985 | 0 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
3986 | 0 | else |
3987 | 0 | memcpy(octx->iv, iv, octx->ivlen); |
3988 | 0 | octx->iv_set = 1; |
3989 | 0 | } |
3990 | 0 | return 1; |
3991 | 0 | } |
3992 | | |
3993 | | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
3994 | | const unsigned char *in, size_t len) |
3995 | 0 | { |
3996 | 0 | unsigned char *buf; |
3997 | 0 | int *buf_len; |
3998 | 0 | int written_len = 0; |
3999 | 0 | size_t trailing_len; |
4000 | 0 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX, ctx); |
4001 | | |
4002 | | /* If IV or Key not set then return error */ |
4003 | 0 | if (!octx->iv_set) |
4004 | 0 | return -1; |
4005 | | |
4006 | 0 | if (!octx->key_set) |
4007 | 0 | return -1; |
4008 | | |
4009 | 0 | if (in != NULL) { |
4010 | | /* |
4011 | | * Need to ensure we are only passing full blocks to low-level OCB |
4012 | | * routines. We do it here rather than in EVP_EncryptUpdate/ |
4013 | | * EVP_DecryptUpdate because we need to pass full blocks of AAD too |
4014 | | * and those routines don't support that |
4015 | | */ |
4016 | | |
4017 | | /* Are we dealing with AAD or normal data here? */ |
4018 | 0 | if (out == NULL) { |
4019 | 0 | buf = octx->aad_buf; |
4020 | 0 | buf_len = &(octx->aad_buf_len); |
4021 | 0 | } else { |
4022 | 0 | buf = octx->data_buf; |
4023 | 0 | buf_len = &(octx->data_buf_len); |
4024 | |
|
4025 | 0 | if (ossl_is_partially_overlapping(out + *buf_len, in, (int)len)) { |
4026 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING); |
4027 | 0 | return 0; |
4028 | 0 | } |
4029 | 0 | } |
4030 | | |
4031 | | /* |
4032 | | * If we've got a partially filled buffer from a previous call then |
4033 | | * use that data first |
4034 | | */ |
4035 | 0 | if (*buf_len > 0) { |
4036 | 0 | unsigned int remaining; |
4037 | |
|
4038 | 0 | remaining = AES_BLOCK_SIZE - (*buf_len); |
4039 | 0 | if (remaining > len) { |
4040 | 0 | memcpy(buf + (*buf_len), in, len); |
4041 | 0 | *(buf_len) += (int)len; |
4042 | 0 | return 0; |
4043 | 0 | } |
4044 | 0 | memcpy(buf + (*buf_len), in, remaining); |
4045 | | |
4046 | | /* |
4047 | | * If we get here we've filled the buffer, so process it |
4048 | | */ |
4049 | 0 | len -= remaining; |
4050 | 0 | in += remaining; |
4051 | 0 | if (out == NULL) { |
4052 | 0 | if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE)) |
4053 | 0 | return -1; |
4054 | 0 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
4055 | 0 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, |
4056 | 0 | AES_BLOCK_SIZE)) |
4057 | 0 | return -1; |
4058 | 0 | } else { |
4059 | 0 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, |
4060 | 0 | AES_BLOCK_SIZE)) |
4061 | 0 | return -1; |
4062 | 0 | } |
4063 | 0 | written_len = AES_BLOCK_SIZE; |
4064 | 0 | *buf_len = 0; |
4065 | 0 | if (out != NULL) |
4066 | 0 | out += AES_BLOCK_SIZE; |
4067 | 0 | } |
4068 | | |
4069 | | /* Do we have a partial block to handle at the end? */ |
4070 | 0 | trailing_len = len % AES_BLOCK_SIZE; |
4071 | | |
4072 | | /* |
4073 | | * If we've got some full blocks to handle, then process these first |
4074 | | */ |
4075 | 0 | if (len != trailing_len) { |
4076 | 0 | if (out == NULL) { |
4077 | 0 | if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) |
4078 | 0 | return -1; |
4079 | 0 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
4080 | 0 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, in, out, len - trailing_len)) |
4081 | 0 | return -1; |
4082 | 0 | } else { |
4083 | 0 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, in, out, len - trailing_len)) |
4084 | 0 | return -1; |
4085 | 0 | } |
4086 | 0 | written_len += (int)(len - trailing_len); |
4087 | 0 | in += len - trailing_len; |
4088 | 0 | } |
4089 | | |
4090 | | /* Handle any trailing partial block */ |
4091 | 0 | if (trailing_len > 0) { |
4092 | 0 | memcpy(buf, in, trailing_len); |
4093 | 0 | *buf_len = (int)trailing_len; |
4094 | 0 | } |
4095 | |
|
4096 | 0 | return written_len; |
4097 | 0 | } else { |
4098 | | /* |
4099 | | * First of all empty the buffer of any partial block that we might |
4100 | | * have been provided - both for data and AAD |
4101 | | */ |
4102 | 0 | if (octx->data_buf_len > 0) { |
4103 | 0 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) { |
4104 | 0 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, |
4105 | 0 | octx->data_buf_len)) |
4106 | 0 | return -1; |
4107 | 0 | } else { |
4108 | 0 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, |
4109 | 0 | octx->data_buf_len)) |
4110 | 0 | return -1; |
4111 | 0 | } |
4112 | 0 | written_len = octx->data_buf_len; |
4113 | 0 | octx->data_buf_len = 0; |
4114 | 0 | } |
4115 | 0 | if (octx->aad_buf_len > 0) { |
4116 | 0 | if (!CRYPTO_ocb128_aad(&octx->ocb, octx->aad_buf, octx->aad_buf_len)) |
4117 | 0 | return -1; |
4118 | 0 | octx->aad_buf_len = 0; |
4119 | 0 | } |
4120 | | /* If decrypting then verify */ |
4121 | 0 | if (!EVP_CIPHER_CTX_is_encrypting(ctx)) { |
4122 | 0 | if (octx->taglen < 0) |
4123 | 0 | return -1; |
4124 | 0 | if (CRYPTO_ocb128_finish(&octx->ocb, |
4125 | 0 | octx->tag, octx->taglen) |
4126 | 0 | != 0) |
4127 | 0 | return -1; |
4128 | 0 | octx->iv_set = 0; |
4129 | 0 | return written_len; |
4130 | 0 | } |
4131 | | /* If encrypting then just get the tag */ |
4132 | 0 | if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) |
4133 | 0 | return -1; |
4134 | | /* Don't reuse the IV */ |
4135 | 0 | octx->iv_set = 0; |
4136 | 0 | return written_len; |
4137 | 0 | } |
4138 | 0 | } |
4139 | | |
4140 | | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) |
4141 | 0 | { |
4142 | 0 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX, c); |
4143 | 0 | CRYPTO_ocb128_cleanup(&octx->ocb); |
4144 | 0 | return 1; |
4145 | 0 | } |
4146 | | |
4147 | | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, |
4148 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
4149 | | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, |
4150 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
4151 | | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, |
4152 | | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
4153 | | #endif /* OPENSSL_NO_OCB */ |