Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/modes/cfb128.c
Line
Count
Source
1
/*
2
 * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <string.h>
11
#include <openssl/crypto.h>
12
#include "crypto/modes.h"
13
14
#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
15
typedef size_t size_t_aX __attribute((__aligned__(1)));
16
#else
17
typedef size_t size_t_aX;
18
#endif
19
20
/*
21
 * The input and output encrypted as though 128bit cfb mode is being used.
22
 * The extra state information to record how much of the 128bit block we have
23
 * used is contained in *num;
24
 */
25
void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
26
    size_t len, const void *key,
27
    unsigned char ivec[16], int *num,
28
    int enc, block128_f block)
29
0
{
30
0
    unsigned int n;
31
0
    size_t l = 0;
32
33
0
    if (*num < 0) {
34
        /* There is no good way to signal an error return from here */
35
0
        *num = -1;
36
0
        return;
37
0
    }
38
0
    n = *num;
39
40
0
    if (enc) {
41
0
#if !defined(OPENSSL_SMALL_FOOTPRINT)
42
0
        if (16 % sizeof(size_t) == 0) { /* always true actually */
43
0
            do {
44
0
                while (n && len) {
45
0
                    *(out++) = ivec[n] ^= *(in++);
46
0
                    --len;
47
0
                    n = (n + 1) % 16;
48
0
                }
49
#if defined(STRICT_ALIGNMENT)
50
                if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0)
51
                    break;
52
#endif
53
0
                while (len >= 16) {
54
0
                    (*block)(ivec, ivec, key);
55
0
                    for (; n < 16; n += sizeof(size_t)) {
56
0
                        *(size_t_aX *)(out + n) = *(size_t_aX *)(ivec + n)
57
0
                            ^= *(size_t_aX *)(in + n);
58
0
                    }
59
0
                    len -= 16;
60
0
                    out += 16;
61
0
                    in += 16;
62
0
                    n = 0;
63
0
                }
64
0
                if (len) {
65
0
                    (*block)(ivec, ivec, key);
66
0
                    while (len--) {
67
0
                        out[n] = ivec[n] ^= in[n];
68
0
                        ++n;
69
0
                    }
70
0
                }
71
0
                *num = n;
72
0
                return;
73
0
            } while (0);
74
0
        }
75
        /* the rest would be commonly eliminated by x86* compiler */
76
0
#endif
77
0
        while (l < len) {
78
0
            if (n == 0) {
79
0
                (*block)(ivec, ivec, key);
80
0
            }
81
0
            out[l] = ivec[n] ^= in[l];
82
0
            ++l;
83
0
            n = (n + 1) % 16;
84
0
        }
85
0
        *num = n;
86
0
    } else {
87
0
#if !defined(OPENSSL_SMALL_FOOTPRINT)
88
0
        if (16 % sizeof(size_t) == 0) { /* always true actually */
89
0
            do {
90
0
                while (n && len) {
91
0
                    unsigned char c;
92
0
                    *(out++) = ivec[n] ^ (c = *(in++));
93
0
                    ivec[n] = c;
94
0
                    --len;
95
0
                    n = (n + 1) % 16;
96
0
                }
97
#if defined(STRICT_ALIGNMENT)
98
                if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0)
99
                    break;
100
#endif
101
0
                while (len >= 16) {
102
0
                    (*block)(ivec, ivec, key);
103
0
                    for (; n < 16; n += sizeof(size_t)) {
104
0
                        size_t t = *(size_t_aX *)(in + n);
105
0
                        *(size_t_aX *)(out + n)
106
0
                            = *(size_t_aX *)(ivec + n) ^ t;
107
0
                        *(size_t_aX *)(ivec + n) = t;
108
0
                    }
109
0
                    len -= 16;
110
0
                    out += 16;
111
0
                    in += 16;
112
0
                    n = 0;
113
0
                }
114
0
                if (len) {
115
0
                    (*block)(ivec, ivec, key);
116
0
                    while (len--) {
117
0
                        unsigned char c;
118
0
                        out[n] = ivec[n] ^ (c = in[n]);
119
0
                        ivec[n] = c;
120
0
                        ++n;
121
0
                    }
122
0
                }
123
0
                *num = n;
124
0
                return;
125
0
            } while (0);
126
0
        }
127
        /* the rest would be commonly eliminated by x86* compiler */
128
0
#endif
129
0
        while (l < len) {
130
0
            unsigned char c;
131
0
            if (n == 0) {
132
0
                (*block)(ivec, ivec, key);
133
0
            }
134
0
            out[l] = ivec[n] ^ (c = in[l]);
135
0
            ivec[n] = c;
136
0
            ++l;
137
0
            n = (n + 1) % 16;
138
0
        }
139
0
        *num = n;
140
0
    }
141
0
}
142
143
/*
144
 * This expects a single block of size nbits for both in and out. Note that
145
 * it corrupts any extra bits in the last byte of out
146
 */
147
static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
148
    int nbits, const void *key,
149
    unsigned char ivec[16], int enc,
150
    block128_f block)
151
0
{
152
0
    int n, rem, num;
153
0
    unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
154
                                     * use) one byte off the end */
155
156
0
    if (nbits <= 0 || nbits > 128)
157
0
        return;
158
159
    /* fill in the first half of the new IV with the current IV */
160
0
    memcpy(ovec, ivec, 16);
161
    /* construct the new IV */
162
0
    (*block)(ivec, ivec, key);
163
0
    num = (nbits + 7) / 8;
164
0
    if (enc) /* encrypt the input */
165
0
        for (n = 0; n < num; ++n)
166
0
            out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
167
0
    else /* decrypt the input */
168
0
        for (n = 0; n < num; ++n)
169
0
            out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
170
    /* shift ovec left... */
171
0
    rem = nbits % 8;
172
0
    num = nbits / 8;
173
0
    if (rem == 0)
174
0
        memcpy(ivec, ovec + num, 16);
175
0
    else
176
0
        for (n = 0; n < 16; ++n)
177
0
            ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);
178
179
    /* it is not necessary to cleanse ovec, since the IV is not secret */
180
0
}
181
182
/* N.B. This expects the input to be packed, MS bit first */
183
void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
184
    size_t bits, const void *key,
185
    unsigned char ivec[16], int *num,
186
    int enc, block128_f block)
187
0
{
188
0
    size_t n;
189
0
    unsigned char c[1], d[1];
190
191
0
    for (n = 0; n < bits; ++n) {
192
0
        c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
193
0
        cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
194
0
        out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8));
195
0
    }
196
0
}
197
198
void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
199
    size_t length, const void *key,
200
    unsigned char ivec[16], int *num,
201
    int enc, block128_f block)
202
0
{
203
0
    size_t n;
204
205
0
    for (n = 0; n < length; ++n)
206
0
        cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
207
0
}