Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/modes/ocb128.c
Line
Count
Source
1
/*
2
 * Copyright 2014-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <string.h>
11
#include <openssl/crypto.h>
12
#include <openssl/err.h>
13
#include "crypto/modes.h"
14
15
#ifndef OPENSSL_NO_OCB
16
17
/*
18
 * Calculate the number of binary trailing zero's in any given number
19
 */
20
static u32 ocb_ntz(u64 n)
21
0
{
22
0
    u32 cnt = 0;
23
24
    /*
25
     * We do a right-to-left simple sequential search. This is surprisingly
26
     * efficient as the distribution of trailing zeros is not uniform,
27
     * e.g. the number of possible inputs with no trailing zeros is equal to
28
     * the number with 1 or more; the number with exactly 1 is equal to the
29
     * number with 2 or more, etc. Checking the last two bits covers 75% of
30
     * all numbers. Checking the last three covers 87.5%
31
     */
32
0
    while (!(n & 1)) {
33
0
        n >>= 1;
34
0
        cnt++;
35
0
    }
36
0
    return cnt;
37
0
}
38
39
/*
40
 * Shift a block of 16 bytes left by shift bits
41
 */
42
static void ocb_block_lshift(const unsigned char *in, size_t shift,
43
    unsigned char *out)
44
0
{
45
0
    int i;
46
0
    unsigned char carry = 0, carry_next;
47
48
0
    for (i = 15; i >= 0; i--) {
49
0
        carry_next = in[i] >> (8 - shift);
50
0
        out[i] = (in[i] << shift) | carry;
51
0
        carry = carry_next;
52
0
    }
53
0
}
54
55
/*
56
 * Perform a "double" operation as per OCB spec
57
 */
58
static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
59
0
{
60
0
    unsigned char mask;
61
62
    /*
63
     * Calculate the mask based on the most significant bit. There are more
64
     * efficient ways to do this - but this way is constant time
65
     */
66
0
    mask = in->c[0] & 0x80;
67
0
    mask >>= 7;
68
0
    mask = (0 - mask) & 0x87;
69
70
0
    ocb_block_lshift(in->c, 1, out->c);
71
72
0
    out->c[15] ^= mask;
73
0
}
74
75
/*
76
 * Perform an xor on in1 and in2 - each of len bytes. Store result in out
77
 */
78
static void ocb_block_xor(const unsigned char *in1,
79
    const unsigned char *in2, size_t len,
80
    unsigned char *out)
81
0
{
82
0
    size_t i;
83
0
    for (i = 0; i < len; i++) {
84
0
        out[i] = in1[i] ^ in2[i];
85
0
    }
86
0
}
87
88
/*
89
 * Lookup L_index in our lookup table. If we haven't already got it we need to
90
 * calculate it
91
 */
92
static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
93
0
{
94
0
    size_t l_index = ctx->l_index;
95
96
0
    if (idx <= l_index) {
97
0
        return ctx->l + idx;
98
0
    }
99
100
    /* We don't have it - so calculate it */
101
0
    if (idx >= ctx->max_l_index) {
102
0
        void *tmp_ptr;
103
        /*
104
         * Each additional entry allows to process almost double as
105
         * much data, so that in linear world the table will need to
106
         * be expanded with smaller and smaller increments. Originally
107
         * it was doubling in size, which was a waste. Growing it
108
         * linearly is not formally optimal, but is simpler to implement.
109
         * We grow table by minimally required 4*n that would accommodate
110
         * the index.
111
         */
112
0
        ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
113
0
        tmp_ptr = OPENSSL_realloc_array(ctx->l, ctx->max_l_index, sizeof(OCB_BLOCK));
114
0
        if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
115
0
            return NULL;
116
0
        ctx->l = tmp_ptr;
117
0
    }
118
0
    while (l_index < idx) {
119
0
        ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
120
0
        l_index++;
121
0
    }
122
0
    ctx->l_index = l_index;
123
124
0
    return ctx->l + idx;
125
0
}
126
127
/*
128
 * Create a new OCB128_CONTEXT
129
 */
130
OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
131
    block128_f encrypt, block128_f decrypt,
132
    ocb128_f stream)
133
0
{
134
0
    OCB128_CONTEXT *octx;
135
0
    int ret;
136
137
0
    if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
138
0
        ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
139
0
            stream);
140
0
        if (ret)
141
0
            return octx;
142
0
        OPENSSL_free(octx);
143
0
    }
144
145
0
    return NULL;
146
0
}
147
148
/*
149
 * Initialise an existing OCB128_CONTEXT
150
 */
151
int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
152
    block128_f encrypt, block128_f decrypt,
153
    ocb128_f stream)
154
0
{
155
0
    memset(ctx, 0, sizeof(*ctx));
156
0
    ctx->l_index = 0;
157
0
    ctx->max_l_index = 5;
158
0
    if ((ctx->l = OPENSSL_malloc_array(ctx->max_l_index, 16)) == NULL)
159
0
        return 0;
160
161
    /*
162
     * We set both the encryption and decryption key schedules - decryption
163
     * needs both. Don't really need decryption schedule if only doing
164
     * encryption - but it simplifies things to take it anyway
165
     */
166
0
    ctx->encrypt = encrypt;
167
0
    ctx->decrypt = decrypt;
168
0
    ctx->stream = stream;
169
0
    ctx->keyenc = keyenc;
170
0
    ctx->keydec = keydec;
171
172
    /* L_* = ENCIPHER(K, zeros(128)) */
173
0
    ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
174
175
    /* L_$ = double(L_*) */
176
0
    ocb_double(&ctx->l_star, &ctx->l_dollar);
177
178
    /* L_0 = double(L_$) */
179
0
    ocb_double(&ctx->l_dollar, ctx->l);
180
181
    /* L_{i} = double(L_{i-1}) */
182
0
    ocb_double(ctx->l, ctx->l + 1);
183
0
    ocb_double(ctx->l + 1, ctx->l + 2);
184
0
    ocb_double(ctx->l + 2, ctx->l + 3);
185
0
    ocb_double(ctx->l + 3, ctx->l + 4);
186
0
    ctx->l_index = 4; /* enough to process up to 496 bytes */
187
188
0
    return 1;
189
0
}
190
191
/*
192
 * Copy an OCB128_CONTEXT object
193
 */
194
int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
195
    void *keyenc, void *keydec)
196
0
{
197
0
    memcpy(dest, src, sizeof(OCB128_CONTEXT));
198
0
    if (keyenc)
199
0
        dest->keyenc = keyenc;
200
0
    if (keydec)
201
0
        dest->keydec = keydec;
202
0
    if (src->l) {
203
0
        if ((dest->l = OPENSSL_malloc_array(src->max_l_index, 16)) == NULL)
204
0
            return 0;
205
0
        memcpy(dest->l, src->l, (src->l_index + 1) * 16);
206
0
    }
207
0
    return 1;
208
0
}
209
210
/*
211
 * Set the IV to be used for this operation. Must be 1 - 15 bytes.
212
 */
213
int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
214
    size_t len, size_t taglen)
215
0
{
216
0
    unsigned char ktop[16], tmp[16], mask;
217
0
    unsigned char stretch[24], nonce[16];
218
0
    size_t bottom, shift;
219
220
    /*
221
     * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
222
     * We don't support this at this stage
223
     */
224
0
    if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
225
0
        return -1;
226
0
    }
227
228
    /* Reset nonce-dependent variables */
229
0
    memset(&ctx->sess, 0, sizeof(ctx->sess));
230
231
    /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
232
0
    nonce[0] = ((taglen * 8) % 128) << 1;
233
0
    memset(nonce + 1, 0, 15);
234
0
    memcpy(nonce + 16 - len, iv, len);
235
0
    nonce[15 - len] |= 1;
236
237
    /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
238
0
    memcpy(tmp, nonce, 16);
239
0
    tmp[15] &= 0xc0;
240
0
    ctx->encrypt(tmp, ktop, ctx->keyenc);
241
242
    /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
243
0
    memcpy(stretch, ktop, 16);
244
0
    ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);
245
246
    /* bottom = str2num(Nonce[123..128]) */
247
0
    bottom = nonce[15] & 0x3f;
248
249
    /* Offset_0 = Stretch[1+bottom..128+bottom] */
250
0
    shift = bottom % 8;
251
0
    ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
252
0
    mask = 0xff;
253
0
    mask <<= 8 - shift;
254
0
    ctx->sess.offset.c[15] |= (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
255
256
0
    return 1;
257
0
}
258
259
/*
260
 * Provide any AAD. This can be called multiple times. Only the final time can
261
 * have a partial block
262
 */
263
int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
264
    size_t len)
265
0
{
266
0
    u64 i, all_num_blocks;
267
0
    size_t num_blocks, last_len;
268
0
    OCB_BLOCK tmp;
269
270
    /* Calculate the number of blocks of AAD provided now, and so far */
271
0
    num_blocks = len / 16;
272
0
    all_num_blocks = num_blocks + ctx->sess.blocks_hashed;
273
274
    /* Loop through all full blocks of AAD */
275
0
    for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
276
0
        OCB_BLOCK *lookup;
277
278
        /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
279
0
        lookup = ocb_lookup_l(ctx, ocb_ntz(i));
280
0
        if (lookup == NULL)
281
0
            return 0;
282
0
        ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);
283
284
0
        memcpy(tmp.c, aad, 16);
285
0
        aad += 16;
286
287
        /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
288
0
        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
289
0
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
290
0
        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
291
0
    }
292
293
    /*
294
     * Check if we have any partial blocks left over. This is only valid in the
295
     * last call to this function
296
     */
297
0
    last_len = len % 16;
298
299
0
    if (last_len > 0) {
300
        /* Offset_* = Offset_m xor L_* */
301
0
        ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
302
0
            &ctx->sess.offset_aad);
303
304
        /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
305
0
        memset(tmp.c, 0, 16);
306
0
        memcpy(tmp.c, aad, last_len);
307
0
        tmp.c[last_len] = 0x80;
308
0
        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
309
310
        /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
311
0
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
312
0
        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
313
0
    }
314
315
0
    ctx->sess.blocks_hashed = all_num_blocks;
316
317
0
    return 1;
318
0
}
319
320
/*
321
 * Provide any data to be encrypted. This can be called multiple times. Only
322
 * the final time can have a partial block
323
 */
324
int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
325
    const unsigned char *in, unsigned char *out,
326
    size_t len)
327
0
{
328
0
    u64 i, all_num_blocks;
329
0
    size_t num_blocks, last_len;
330
331
    /*
332
     * Calculate the number of blocks of data to be encrypted provided now, and
333
     * so far
334
     */
335
0
    num_blocks = len / 16;
336
0
    all_num_blocks = num_blocks + ctx->sess.blocks_processed;
337
338
0
    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
339
0
        && ctx->stream != NULL) {
340
0
        size_t max_idx = 0, top = (size_t)all_num_blocks;
341
342
        /*
343
         * See how many L_{i} entries we need to process data at hand
344
         * and pre-compute missing entries in the table [if any]...
345
         */
346
0
        while (top >>= 1)
347
0
            max_idx++;
348
0
        if (ocb_lookup_l(ctx, max_idx) == NULL)
349
0
            return 0;
350
351
0
        ctx->stream(in, out, num_blocks, ctx->keyenc,
352
0
            (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
353
0
            (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
354
0
    } else {
355
        /* Loop through all full blocks to be encrypted */
356
0
        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
357
0
            OCB_BLOCK *lookup;
358
0
            OCB_BLOCK tmp;
359
360
            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
361
0
            lookup = ocb_lookup_l(ctx, ocb_ntz(i));
362
0
            if (lookup == NULL)
363
0
                return 0;
364
0
            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
365
366
0
            memcpy(tmp.c, in, 16);
367
0
            in += 16;
368
369
            /* Checksum_i = Checksum_{i-1} xor P_i */
370
0
            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
371
372
            /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
373
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
374
0
            ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
375
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
376
377
0
            memcpy(out, tmp.c, 16);
378
0
            out += 16;
379
0
        }
380
0
    }
381
382
    /*
383
     * Check if we have any partial blocks left over. This is only valid in the
384
     * last call to this function
385
     */
386
0
    last_len = len % 16;
387
388
0
    if (last_len > 0) {
389
0
        OCB_BLOCK pad;
390
391
        /* Offset_* = Offset_m xor L_* */
392
0
        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
393
394
        /* Pad = ENCIPHER(K, Offset_*) */
395
0
        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
396
397
        /* C_* = P_* xor Pad[1..bitlen(P_*)] */
398
0
        ocb_block_xor(in, pad.c, last_len, out);
399
400
        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
401
0
        memset(pad.c, 0, 16); /* borrow pad */
402
0
        memcpy(pad.c, in, last_len);
403
0
        pad.c[last_len] = 0x80;
404
0
        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
405
0
    }
406
407
0
    ctx->sess.blocks_processed = all_num_blocks;
408
409
0
    return 1;
410
0
}
411
412
/*
413
 * Provide any data to be decrypted. This can be called multiple times. Only
414
 * the final time can have a partial block
415
 */
416
int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
417
    const unsigned char *in, unsigned char *out,
418
    size_t len)
419
0
{
420
0
    u64 i, all_num_blocks;
421
0
    size_t num_blocks, last_len;
422
423
    /*
424
     * Calculate the number of blocks of data to be decrypted provided now, and
425
     * so far
426
     */
427
0
    num_blocks = len / 16;
428
0
    all_num_blocks = num_blocks + ctx->sess.blocks_processed;
429
430
0
    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
431
0
        && ctx->stream != NULL) {
432
0
        size_t max_idx = 0, top = (size_t)all_num_blocks;
433
434
        /*
435
         * See how many L_{i} entries we need to process data at hand
436
         * and pre-compute missing entries in the table [if any]...
437
         */
438
0
        while (top >>= 1)
439
0
            max_idx++;
440
0
        if (ocb_lookup_l(ctx, max_idx) == NULL)
441
0
            return 0;
442
443
0
        ctx->stream(in, out, num_blocks, ctx->keydec,
444
0
            (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
445
0
            (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
446
0
    } else {
447
0
        OCB_BLOCK tmp;
448
449
        /* Loop through all full blocks to be decrypted */
450
0
        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
451
452
            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
453
0
            OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
454
0
            if (lookup == NULL)
455
0
                return 0;
456
0
            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
457
458
0
            memcpy(tmp.c, in, 16);
459
0
            in += 16;
460
461
            /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
462
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
463
0
            ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
464
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
465
466
            /* Checksum_i = Checksum_{i-1} xor P_i */
467
0
            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
468
469
0
            memcpy(out, tmp.c, 16);
470
0
            out += 16;
471
0
        }
472
0
    }
473
474
    /*
475
     * Check if we have any partial blocks left over. This is only valid in the
476
     * last call to this function
477
     */
478
0
    last_len = len % 16;
479
480
0
    if (last_len > 0) {
481
0
        OCB_BLOCK pad;
482
483
        /* Offset_* = Offset_m xor L_* */
484
0
        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
485
486
        /* Pad = ENCIPHER(K, Offset_*) */
487
0
        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
488
489
        /* P_* = C_* xor Pad[1..bitlen(C_*)] */
490
0
        ocb_block_xor(in, pad.c, last_len, out);
491
492
        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
493
0
        memset(pad.c, 0, 16); /* borrow pad */
494
0
        memcpy(pad.c, out, last_len);
495
0
        pad.c[last_len] = 0x80;
496
0
        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
497
0
    }
498
499
0
    ctx->sess.blocks_processed = all_num_blocks;
500
501
0
    return 1;
502
0
}
503
504
static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
505
    int write)
506
0
{
507
0
    OCB_BLOCK tmp;
508
509
0
    if (len > 16 || len < 1) {
510
0
        return -1;
511
0
    }
512
513
    /*
514
     * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
515
     */
516
0
    ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
517
0
    ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
518
0
    ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
519
0
    ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);
520
521
0
    if (write) {
522
0
        memcpy(tag, &tmp, len);
523
0
        return 1;
524
0
    } else {
525
0
        return CRYPTO_memcmp(&tmp, tag, len);
526
0
    }
527
0
}
528
529
/*
530
 * Calculate the tag and verify it against the supplied tag
531
 */
532
int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
533
    size_t len)
534
0
{
535
0
    return ocb_finish(ctx, (unsigned char *)tag, len, 0);
536
0
}
537
538
/*
539
 * Retrieve the calculated tag
540
 */
541
int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
542
0
{
543
0
    return ocb_finish(ctx, tag, len, 1);
544
0
}
545
546
/*
547
 * Release all resources
548
 */
549
void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
550
0
{
551
0
    if (ctx) {
552
0
        OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
553
0
        OPENSSL_cleanse(ctx, sizeof(*ctx));
554
0
    }
555
0
}
556
557
#endif /* OPENSSL_NO_OCB */