/src/openssl/crypto/modes/siv128.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2018-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <string.h> |
11 | | #include <stdlib.h> |
12 | | #include <openssl/crypto.h> |
13 | | #include <openssl/evp.h> |
14 | | #include <openssl/core_names.h> |
15 | | #include <openssl/params.h> |
16 | | #include "internal/endian.h" |
17 | | #include "crypto/modes.h" |
18 | | #include "crypto/siv.h" |
19 | | |
20 | | #ifndef OPENSSL_NO_SIV |
21 | | |
22 | | __owur static ossl_inline uint32_t rotl8(uint32_t x) |
23 | 0 | { |
24 | 0 | return (x << 8) | (x >> 24); |
25 | 0 | } |
26 | | |
27 | | __owur static ossl_inline uint32_t rotr8(uint32_t x) |
28 | 0 | { |
29 | 0 | return (x >> 8) | (x << 24); |
30 | 0 | } |
31 | | |
32 | | __owur static ossl_inline uint64_t byteswap8(uint64_t x) |
33 | 0 | { |
34 | 0 | uint32_t high = (uint32_t)(x >> 32); |
35 | 0 | uint32_t low = (uint32_t)x; |
36 | |
|
37 | 0 | high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00); |
38 | 0 | low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00); |
39 | 0 | return ((uint64_t)low) << 32 | (uint64_t)high; |
40 | 0 | } |
41 | | |
42 | | __owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i) |
43 | 0 | { |
44 | 0 | DECLARE_IS_ENDIAN; |
45 | |
|
46 | 0 | if (IS_LITTLE_ENDIAN) |
47 | 0 | return byteswap8(b->word[i]); |
48 | 0 | return b->word[i]; |
49 | 0 | } |
50 | | |
51 | | static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x) |
52 | 0 | { |
53 | 0 | DECLARE_IS_ENDIAN; |
54 | |
|
55 | 0 | if (IS_LITTLE_ENDIAN) |
56 | 0 | b->word[i] = byteswap8(x); |
57 | 0 | else |
58 | 0 | b->word[i] = x; |
59 | 0 | } |
60 | | |
61 | | static ossl_inline void siv128_xorblock(SIV_BLOCK *x, |
62 | | SIV_BLOCK const *y) |
63 | 0 | { |
64 | 0 | x->word[0] ^= y->word[0]; |
65 | 0 | x->word[1] ^= y->word[1]; |
66 | 0 | } |
67 | | |
68 | | /* |
69 | | * Doubles |b|, which is 16 bytes representing an element |
70 | | * of GF(2**128) modulo the irreducible polynomial |
71 | | * x**128 + x**7 + x**2 + x + 1. |
72 | | * Assumes two's-complement arithmetic |
73 | | */ |
74 | | static ossl_inline void siv128_dbl(SIV_BLOCK *b) |
75 | 0 | { |
76 | 0 | uint64_t high = siv128_getword(b, 0); |
77 | 0 | uint64_t low = siv128_getword(b, 1); |
78 | 0 | uint64_t high_carry = high & (((uint64_t)1) << 63); |
79 | 0 | uint64_t low_carry = low & (((uint64_t)1) << 63); |
80 | 0 | int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87; |
81 | 0 | uint64_t high_mask = low_carry >> 63; |
82 | |
|
83 | 0 | high = (high << 1) | high_mask; |
84 | 0 | low = (low << 1) ^ (uint64_t)low_mask; |
85 | 0 | siv128_putword(b, 0, high); |
86 | 0 | siv128_putword(b, 1, low); |
87 | 0 | } |
88 | | |
89 | | __owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out, |
90 | | unsigned char const *in, size_t len) |
91 | 0 | { |
92 | 0 | SIV_BLOCK t; |
93 | 0 | size_t out_len = sizeof(out->byte); |
94 | 0 | EVP_MAC_CTX *mac_ctx; |
95 | 0 | int ret = 0; |
96 | |
|
97 | 0 | mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init); |
98 | 0 | if (mac_ctx == NULL) |
99 | 0 | return 0; |
100 | | |
101 | 0 | if (len >= SIV_LEN) { |
102 | 0 | if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN)) |
103 | 0 | goto err; |
104 | 0 | memcpy(&t, in + (len - SIV_LEN), SIV_LEN); |
105 | 0 | siv128_xorblock(&t, &ctx->d); |
106 | 0 | if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) |
107 | 0 | goto err; |
108 | 0 | } else { |
109 | 0 | memset(&t, 0, sizeof(t)); |
110 | 0 | memcpy(&t, in, len); |
111 | 0 | t.byte[len] = 0x80; |
112 | 0 | siv128_dbl(&ctx->d); |
113 | 0 | siv128_xorblock(&t, &ctx->d); |
114 | 0 | if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) |
115 | 0 | goto err; |
116 | 0 | } |
117 | 0 | if (!EVP_MAC_final(mac_ctx, out->byte, &out_len, sizeof(out->byte)) |
118 | 0 | || out_len != SIV_LEN) |
119 | 0 | goto err; |
120 | | |
121 | 0 | ret = 1; |
122 | |
|
123 | 0 | err: |
124 | 0 | EVP_MAC_CTX_free(mac_ctx); |
125 | 0 | return ret; |
126 | 0 | } |
127 | | |
128 | | __owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out, |
129 | | unsigned char const *in, size_t len, |
130 | | SIV_BLOCK *icv) |
131 | 0 | { |
132 | 0 | int out_len = (int)len; |
133 | |
|
134 | 0 | if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1)) |
135 | 0 | return 0; |
136 | 0 | return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len); |
137 | 0 | } |
138 | | |
139 | | /* |
140 | | * Create a new SIV128_CONTEXT |
141 | | */ |
142 | | SIV128_CONTEXT *ossl_siv128_new(const unsigned char *key, int klen, |
143 | | EVP_CIPHER *cbc, EVP_CIPHER *ctr, |
144 | | OSSL_LIB_CTX *libctx, const char *propq) |
145 | 0 | { |
146 | 0 | SIV128_CONTEXT *ctx; |
147 | 0 | int ret; |
148 | |
|
149 | 0 | if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) { |
150 | 0 | ret = ossl_siv128_init(ctx, key, klen, cbc, ctr, libctx, propq); |
151 | 0 | if (ret) |
152 | 0 | return ctx; |
153 | 0 | OPENSSL_free(ctx); |
154 | 0 | } |
155 | | |
156 | 0 | return NULL; |
157 | 0 | } |
158 | | |
159 | | /* |
160 | | * Initialise an existing SIV128_CONTEXT |
161 | | */ |
162 | | int ossl_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen, |
163 | | const EVP_CIPHER *cbc, const EVP_CIPHER *ctr, |
164 | | OSSL_LIB_CTX *libctx, const char *propq) |
165 | 0 | { |
166 | 0 | static const unsigned char zero[SIV_LEN] = { 0 }; |
167 | 0 | size_t out_len = SIV_LEN; |
168 | 0 | EVP_MAC_CTX *mac_ctx = NULL; |
169 | 0 | OSSL_PARAM params[3]; |
170 | 0 | const char *cbc_name; |
171 | |
|
172 | 0 | if (ctx == NULL) |
173 | 0 | return 0; |
174 | | |
175 | 0 | memset(&ctx->d, 0, sizeof(ctx->d)); |
176 | 0 | EVP_CIPHER_CTX_free(ctx->cipher_ctx); |
177 | 0 | EVP_MAC_CTX_free(ctx->mac_ctx_init); |
178 | 0 | EVP_MAC_free(ctx->mac); |
179 | 0 | ctx->mac = NULL; |
180 | 0 | ctx->cipher_ctx = NULL; |
181 | 0 | ctx->mac_ctx_init = NULL; |
182 | |
|
183 | 0 | if (key == NULL || cbc == NULL || ctr == NULL) |
184 | 0 | return 0; |
185 | | |
186 | 0 | cbc_name = EVP_CIPHER_get0_name(cbc); |
187 | 0 | params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, |
188 | 0 | (char *)cbc_name, 0); |
189 | 0 | params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
190 | 0 | (void *)key, klen); |
191 | 0 | params[2] = OSSL_PARAM_construct_end(); |
192 | |
|
193 | 0 | if ((ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL |
194 | 0 | || (ctx->mac = EVP_MAC_fetch(libctx, OSSL_MAC_NAME_CMAC, propq)) == NULL |
195 | 0 | || (ctx->mac_ctx_init = EVP_MAC_CTX_new(ctx->mac)) == NULL |
196 | 0 | || !EVP_MAC_CTX_set_params(ctx->mac_ctx_init, params) |
197 | 0 | || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL) |
198 | 0 | || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL |
199 | 0 | || !EVP_MAC_update(mac_ctx, zero, sizeof(zero)) |
200 | 0 | || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len, |
201 | 0 | sizeof(ctx->d.byte))) { |
202 | 0 | EVP_CIPHER_CTX_free(ctx->cipher_ctx); |
203 | 0 | ctx->cipher_ctx = NULL; |
204 | 0 | EVP_MAC_CTX_free(ctx->mac_ctx_init); |
205 | 0 | ctx->mac_ctx_init = NULL; |
206 | 0 | EVP_MAC_CTX_free(mac_ctx); |
207 | 0 | EVP_MAC_free(ctx->mac); |
208 | 0 | ctx->mac = NULL; |
209 | 0 | return 0; |
210 | 0 | } |
211 | 0 | EVP_MAC_CTX_free(mac_ctx); |
212 | |
|
213 | 0 | ctx->final_ret = -1; |
214 | 0 | ctx->crypto_ok = 1; |
215 | |
|
216 | 0 | return 1; |
217 | 0 | } |
218 | | |
219 | | /* |
220 | | * Copy an SIV128_CONTEXT object |
221 | | */ |
222 | | int ossl_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src) |
223 | 0 | { |
224 | 0 | memcpy(&dest->d, &src->d, sizeof(src->d)); |
225 | 0 | if (dest->cipher_ctx == NULL) { |
226 | 0 | dest->cipher_ctx = EVP_CIPHER_CTX_new(); |
227 | 0 | if (dest->cipher_ctx == NULL) |
228 | 0 | return 0; |
229 | 0 | } |
230 | 0 | if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx)) |
231 | 0 | return 0; |
232 | 0 | EVP_MAC_CTX_free(dest->mac_ctx_init); |
233 | 0 | dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init); |
234 | 0 | if (dest->mac_ctx_init == NULL) |
235 | 0 | return 0; |
236 | 0 | dest->mac = src->mac; |
237 | 0 | if (dest->mac != NULL) |
238 | 0 | EVP_MAC_up_ref(dest->mac); |
239 | 0 | return 1; |
240 | 0 | } |
241 | | |
242 | | /* |
243 | | * Provide any AAD. This can be called multiple times. |
244 | | * Per RFC5297, the last piece of associated data |
245 | | * is the nonce, but it's not treated special |
246 | | */ |
247 | | int ossl_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad, |
248 | | size_t len) |
249 | 0 | { |
250 | 0 | SIV_BLOCK mac_out; |
251 | 0 | size_t out_len = SIV_LEN; |
252 | 0 | EVP_MAC_CTX *mac_ctx; |
253 | |
|
254 | 0 | siv128_dbl(&ctx->d); |
255 | |
|
256 | 0 | if ((mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL |
257 | 0 | || !EVP_MAC_update(mac_ctx, aad, len) |
258 | 0 | || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len, |
259 | 0 | sizeof(mac_out.byte)) |
260 | 0 | || out_len != SIV_LEN) { |
261 | 0 | EVP_MAC_CTX_free(mac_ctx); |
262 | 0 | return 0; |
263 | 0 | } |
264 | 0 | EVP_MAC_CTX_free(mac_ctx); |
265 | |
|
266 | 0 | siv128_xorblock(&ctx->d, &mac_out); |
267 | |
|
268 | 0 | return 1; |
269 | 0 | } |
270 | | |
271 | | /* |
272 | | * Provide any data to be encrypted. This can be called once. |
273 | | */ |
274 | | int ossl_siv128_encrypt(SIV128_CONTEXT *ctx, |
275 | | const unsigned char *in, unsigned char *out, |
276 | | size_t len) |
277 | 0 | { |
278 | 0 | SIV_BLOCK q; |
279 | | |
280 | | /* can only do one crypto operation */ |
281 | 0 | if (ctx->crypto_ok == 0) |
282 | 0 | return 0; |
283 | 0 | ctx->crypto_ok--; |
284 | |
|
285 | 0 | if (!siv128_do_s2v_p(ctx, &q, in, len)) |
286 | 0 | return 0; |
287 | | |
288 | 0 | memcpy(ctx->tag.byte, &q, SIV_LEN); |
289 | 0 | q.byte[8] &= 0x7f; |
290 | 0 | q.byte[12] &= 0x7f; |
291 | |
|
292 | 0 | if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)) |
293 | 0 | return 0; |
294 | 0 | ctx->final_ret = 0; |
295 | 0 | return 1; |
296 | 0 | } |
297 | | |
298 | | /* |
299 | | * Provide any data to be decrypted. This can be called once. |
300 | | */ |
301 | | int ossl_siv128_decrypt(SIV128_CONTEXT *ctx, |
302 | | const unsigned char *in, unsigned char *out, |
303 | | size_t len) |
304 | 0 | { |
305 | 0 | unsigned char *p; |
306 | 0 | SIV_BLOCK t, q; |
307 | 0 | int i; |
308 | | |
309 | | /* can only do one crypto operation */ |
310 | 0 | if (ctx->crypto_ok == 0) |
311 | 0 | return 0; |
312 | 0 | ctx->crypto_ok--; |
313 | |
|
314 | 0 | memcpy(&q, ctx->tag.byte, SIV_LEN); |
315 | 0 | q.byte[8] &= 0x7f; |
316 | 0 | q.byte[12] &= 0x7f; |
317 | |
|
318 | 0 | if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q) |
319 | 0 | || !siv128_do_s2v_p(ctx, &t, out, len)) |
320 | 0 | return 0; |
321 | | |
322 | 0 | p = ctx->tag.byte; |
323 | 0 | for (i = 0; i < SIV_LEN; i++) |
324 | 0 | t.byte[i] ^= p[i]; |
325 | |
|
326 | 0 | if ((t.word[0] | t.word[1]) != 0) { |
327 | 0 | OPENSSL_cleanse(out, len); |
328 | 0 | return 0; |
329 | 0 | } |
330 | 0 | ctx->final_ret = 0; |
331 | 0 | return 1; |
332 | 0 | } |
333 | | |
334 | | /* |
335 | | * Return the already calculated final result. |
336 | | */ |
337 | | int ossl_siv128_finish(SIV128_CONTEXT *ctx) |
338 | 0 | { |
339 | 0 | return ctx->final_ret; |
340 | 0 | } |
341 | | |
342 | | /* |
343 | | * Set the tag |
344 | | */ |
345 | | int ossl_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len) |
346 | 0 | { |
347 | 0 | if (len != SIV_LEN) |
348 | 0 | return 0; |
349 | | |
350 | | /* Copy the tag from the supplied buffer */ |
351 | 0 | memcpy(ctx->tag.byte, tag, len); |
352 | 0 | return 1; |
353 | 0 | } |
354 | | |
355 | | /* |
356 | | * Retrieve the calculated tag |
357 | | */ |
358 | | int ossl_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len) |
359 | 0 | { |
360 | 0 | if (len != SIV_LEN) |
361 | 0 | return 0; |
362 | | |
363 | | /* Copy the tag into the supplied buffer */ |
364 | 0 | memcpy(tag, ctx->tag.byte, len); |
365 | 0 | return 1; |
366 | 0 | } |
367 | | |
368 | | /* |
369 | | * Release all resources |
370 | | */ |
371 | | int ossl_siv128_cleanup(SIV128_CONTEXT *ctx) |
372 | 0 | { |
373 | 0 | if (ctx != NULL) { |
374 | 0 | EVP_CIPHER_CTX_free(ctx->cipher_ctx); |
375 | 0 | ctx->cipher_ctx = NULL; |
376 | 0 | EVP_MAC_CTX_free(ctx->mac_ctx_init); |
377 | 0 | ctx->mac_ctx_init = NULL; |
378 | 0 | EVP_MAC_free(ctx->mac); |
379 | 0 | ctx->mac = NULL; |
380 | 0 | OPENSSL_cleanse(&ctx->d, sizeof(ctx->d)); |
381 | 0 | OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag)); |
382 | 0 | ctx->final_ret = -1; |
383 | 0 | ctx->crypto_ok = 1; |
384 | 0 | } |
385 | 0 | return 1; |
386 | 0 | } |
387 | | |
388 | | int ossl_siv128_speed(SIV128_CONTEXT *ctx, int arg) |
389 | 0 | { |
390 | 0 | ctx->crypto_ok = (arg == 1) ? -1 : 1; |
391 | 0 | return 1; |
392 | 0 | } |
393 | | |
394 | | #endif /* OPENSSL_NO_SIV */ |