Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/rsa/rsa_gen.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * NB: these functions have been "upgraded", the deprecated versions (which
12
 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13
 * Geoff
14
 */
15
16
/*
17
 * RSA low level APIs are deprecated for public use, but still ok for
18
 * internal use.
19
 */
20
#include "internal/deprecated.h"
21
22
#include <stdio.h>
23
#include <time.h>
24
#include "internal/cryptlib.h"
25
#include <openssl/bn.h>
26
#include <openssl/self_test.h>
27
#include "prov/providercommon.h"
28
#include "rsa_local.h"
29
30
static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
31
static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
32
    BIGNUM *e_value, BN_GENCB *cb, int pairwise_test,
33
    uint32_t a, uint32_t b);
34
35
/*
36
 * NB: this wrapper would normally be placed in rsa_lib.c and the static
37
 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
38
 * so that we don't introduce a new linker dependency. Eg. any application
39
 * that wasn't previously linking object code related to key-generation won't
40
 * have to now just because key-generation is part of RSA_METHOD.
41
 */
42
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
43
0
{
44
0
    if (rsa->meth->rsa_keygen != NULL)
45
0
        return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
46
47
0
    return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
48
0
        e_value, cb);
49
0
}
50
51
int ossl_rsa_generate_multi_prime_key(RSA *rsa, int bits, int primes,
52
    BIGNUM *e_value, BN_GENCB *cb,
53
    uint32_t a, uint32_t b)
54
0
{
55
0
#ifndef FIPS_MODULE
56
    /* multi-prime is only supported with the builtin key generation */
57
0
    if (rsa->meth->rsa_multi_prime_keygen != NULL) {
58
0
        return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
59
0
            e_value, cb);
60
0
    } else if (rsa->meth->rsa_keygen != NULL) {
61
        /*
62
         * However, if rsa->meth implements only rsa_keygen, then we
63
         * have to honour it in 2-prime case and assume that it wouldn't
64
         * know what to do with multi-prime key generated by builtin
65
         * subroutine...
66
         */
67
0
        if (primes == 2)
68
0
            return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
69
0
        else
70
0
            return 0;
71
0
    }
72
0
#endif /* FIPS_MODULE */
73
0
    return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0, a, b);
74
0
}
75
76
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
77
    BIGNUM *e, BN_GENCB *cb)
78
0
{
79
0
    return ossl_rsa_generate_multi_prime_key(rsa, bits, primes, e, cb, 0, 0);
80
0
}
81
82
DEFINE_STACK_OF(BIGNUM)
83
84
/*
85
 * Given input values, q, p, n, d and e, derive the exponents
86
 * and coefficients for each prime in this key, placing the result
87
 * on their respective exps and coeffs stacks
88
 */
89
#ifndef FIPS_MODULE
90
int ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes,
91
    BIGNUM *e_value,
92
    STACK_OF(BIGNUM) *factors,
93
    STACK_OF(BIGNUM) *exps,
94
    STACK_OF(BIGNUM) *coeffs)
95
0
{
96
0
    STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL;
97
0
    BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL;
98
0
    BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL;
99
0
    BIGNUM *p = NULL, *q = NULL;
100
0
    BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
101
0
    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL;
102
0
    BN_CTX *ctx = NULL;
103
0
    BIGNUM *tmp = NULL;
104
0
    int i;
105
0
    int ret = 0;
106
107
0
    ctx = BN_CTX_new_ex(rsa->libctx);
108
0
    if (ctx == NULL)
109
0
        goto err;
110
111
0
    BN_CTX_start(ctx);
112
113
0
    pplist = sk_BIGNUM_new_null();
114
0
    if (pplist == NULL)
115
0
        goto err;
116
117
0
    pdlist = sk_BIGNUM_new_null();
118
0
    if (pdlist == NULL)
119
0
        goto err;
120
121
0
    r0 = BN_CTX_get(ctx);
122
0
    r1 = BN_CTX_get(ctx);
123
0
    r2 = BN_CTX_get(ctx);
124
125
0
    if (r2 == NULL)
126
0
        goto err;
127
128
0
    BN_set_flags(r0, BN_FLG_CONSTTIME);
129
0
    BN_set_flags(r1, BN_FLG_CONSTTIME);
130
0
    BN_set_flags(r2, BN_FLG_CONSTTIME);
131
132
0
    if (BN_copy(r1, rsa->n) == NULL)
133
0
        goto err;
134
135
0
    p = sk_BIGNUM_value(factors, 0);
136
0
    q = sk_BIGNUM_value(factors, 1);
137
138
    /* Build list of partial products of primes */
139
0
    for (i = 0; i < sk_BIGNUM_num(factors); i++) {
140
0
        switch (i) {
141
0
        case 0:
142
            /* our first prime, p */
143
0
            if (!BN_sub(r2, p, BN_value_one()))
144
0
                goto err;
145
0
            BN_set_flags(r2, BN_FLG_CONSTTIME);
146
0
            if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL)
147
0
                goto err;
148
0
            break;
149
0
        case 1:
150
            /* second prime q */
151
0
            if (!BN_mul(r1, p, q, ctx))
152
0
                goto err;
153
0
            tmp = BN_dup(r1);
154
0
            if (tmp == NULL)
155
0
                goto err;
156
0
            if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
157
0
                goto err;
158
0
            tmp = NULL;
159
0
            break;
160
0
        default:
161
0
            factor = sk_BIGNUM_value(factors, i);
162
            /* all other primes */
163
0
            if (!BN_mul(r1, r1, factor, ctx))
164
0
                goto err;
165
0
            tmp = BN_dup(r1);
166
0
            if (tmp == NULL)
167
0
                goto err;
168
0
            if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
169
0
                goto err;
170
0
            tmp = NULL;
171
0
            break;
172
0
        }
173
0
    }
174
175
    /* build list of relative d values */
176
    /* p -1 */
177
0
    if (!BN_sub(r1, p, BN_value_one()))
178
0
        goto err;
179
0
    if (!BN_sub(r2, q, BN_value_one()))
180
0
        goto err;
181
0
    if (!BN_mul(r0, r1, r2, ctx))
182
0
        goto err;
183
0
    for (i = 2; i < sk_BIGNUM_num(factors); i++) {
184
0
        factor = sk_BIGNUM_value(factors, i);
185
0
        dval = BN_new();
186
0
        if (dval == NULL)
187
0
            goto err;
188
0
        BN_set_flags(dval, BN_FLG_CONSTTIME);
189
0
        if (!BN_sub(dval, factor, BN_value_one()))
190
0
            goto err;
191
0
        if (!BN_mul(r0, r0, dval, ctx))
192
0
            goto err;
193
0
        if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist)))
194
0
            goto err;
195
0
        dval = NULL;
196
0
    }
197
198
    /* Calculate dmp1, dmq1 and additional exponents */
199
0
    dmp1 = BN_secure_new();
200
0
    if (dmp1 == NULL)
201
0
        goto err;
202
0
    dmq1 = BN_secure_new();
203
0
    if (dmq1 == NULL)
204
0
        goto err;
205
206
0
    if (!BN_mod(dmp1, rsa->d, r1, ctx))
207
0
        goto err;
208
0
    if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps)))
209
0
        goto err;
210
0
    dmp1 = NULL;
211
212
0
    if (!BN_mod(dmq1, rsa->d, r2, ctx))
213
0
        goto err;
214
0
    if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps)))
215
0
        goto err;
216
0
    dmq1 = NULL;
217
218
0
    for (i = 2; i < sk_BIGNUM_num(factors); i++) {
219
0
        newpd = sk_BIGNUM_value(pdlist, i - 2);
220
0
        newexp = BN_new();
221
0
        if (newexp == NULL)
222
0
            goto err;
223
0
        if (!BN_mod(newexp, rsa->d, newpd, ctx))
224
0
            goto err;
225
0
        if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps)))
226
0
            goto err;
227
0
        newexp = NULL;
228
0
    }
229
230
    /* Calculate iqmp and additional coefficients */
231
0
    iqmp = BN_new();
232
0
    if (iqmp == NULL)
233
0
        goto err;
234
235
0
    if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1),
236
0
            sk_BIGNUM_value(factors, 0), ctx)
237
0
        == NULL)
238
0
        goto err;
239
0
    if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs)))
240
0
        goto err;
241
0
    iqmp = NULL;
242
243
0
    for (i = 2; i < sk_BIGNUM_num(factors); i++) {
244
0
        newpp = sk_BIGNUM_value(pplist, i - 2);
245
0
        newcoeff = BN_new();
246
0
        if (newcoeff == NULL)
247
0
            goto err;
248
0
        if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i),
249
0
                ctx)
250
0
            == NULL)
251
0
            goto err;
252
0
        if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs)))
253
0
            goto err;
254
0
        newcoeff = NULL;
255
0
    }
256
257
0
    ret = 1;
258
0
err:
259
0
    BN_free(newcoeff);
260
0
    BN_free(newexp);
261
0
    BN_free(dval);
262
0
    BN_free(tmp);
263
0
    sk_BIGNUM_pop_free(pplist, BN_free);
264
0
    sk_BIGNUM_pop_free(pdlist, BN_free);
265
0
    BN_CTX_end(ctx);
266
0
    BN_CTX_free(ctx);
267
0
    BN_clear_free(dmp1);
268
0
    BN_clear_free(dmq1);
269
0
    BN_clear_free(iqmp);
270
0
    return ret;
271
0
}
272
273
static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
274
    BIGNUM *e_value, BN_GENCB *cb)
275
0
{
276
0
    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime;
277
0
    int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
278
0
    int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
279
0
    RSA_PRIME_INFO *pinfo = NULL;
280
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
281
0
    STACK_OF(BIGNUM) *factors = NULL;
282
0
    STACK_OF(BIGNUM) *exps = NULL;
283
0
    STACK_OF(BIGNUM) *coeffs = NULL;
284
0
    BN_CTX *ctx = NULL;
285
0
    BN_ULONG bitst = 0;
286
0
    unsigned long error = 0;
287
0
    int ok = -1;
288
289
0
    if (bits < RSA_MIN_MODULUS_BITS) {
290
0
        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
291
0
        return 0;
292
0
    }
293
0
    if (e_value == NULL) {
294
0
        ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
295
0
        return 0;
296
0
    }
297
    /* A bad value for e can cause infinite loops */
298
0
    if (!ossl_rsa_check_public_exponent(e_value)) {
299
0
        ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
300
0
        return 0;
301
0
    }
302
303
0
    if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {
304
0
        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);
305
0
        return 0;
306
0
    }
307
308
0
    factors = sk_BIGNUM_new_null();
309
0
    if (factors == NULL)
310
0
        return 0;
311
312
0
    exps = sk_BIGNUM_new_null();
313
0
    if (exps == NULL)
314
0
        goto err;
315
316
0
    coeffs = sk_BIGNUM_new_null();
317
0
    if (coeffs == NULL)
318
0
        goto err;
319
320
0
    ctx = BN_CTX_new_ex(rsa->libctx);
321
0
    if (ctx == NULL)
322
0
        goto err;
323
0
    BN_CTX_start(ctx);
324
0
    r0 = BN_CTX_get(ctx);
325
0
    r1 = BN_CTX_get(ctx);
326
0
    r2 = BN_CTX_get(ctx);
327
0
    if (r2 == NULL)
328
0
        goto err;
329
330
    /* divide bits into 'primes' pieces evenly */
331
0
    quo = bits / primes;
332
0
    rmd = bits % primes;
333
334
0
    for (i = 0; i < primes; i++)
335
0
        bitsr[i] = (i < rmd) ? quo + 1 : quo;
336
337
0
    rsa->dirty_cnt++;
338
339
    /* We need the RSA components non-NULL */
340
0
    if (!rsa->n && ((rsa->n = BN_new()) == NULL))
341
0
        goto err;
342
0
    if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
343
0
        goto err;
344
0
    BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
345
0
    if (!rsa->e && ((rsa->e = BN_new()) == NULL))
346
0
        goto err;
347
0
    if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
348
0
        goto err;
349
0
    BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
350
0
    if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
351
0
        goto err;
352
0
    BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
353
354
    /* initialize multi-prime components */
355
0
    if (primes > RSA_DEFAULT_PRIME_NUM) {
356
0
        rsa->version = RSA_ASN1_VERSION_MULTI;
357
0
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
358
0
        if (prime_infos == NULL)
359
0
            goto err;
360
0
        if (rsa->prime_infos != NULL) {
361
            /* could this happen? */
362
0
            sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,
363
0
                ossl_rsa_multip_info_free);
364
0
        }
365
0
        rsa->prime_infos = prime_infos;
366
367
        /* prime_info from 2 to |primes| -1 */
368
0
        for (i = 2; i < primes; i++) {
369
0
            pinfo = ossl_rsa_multip_info_new();
370
0
            if (pinfo == NULL)
371
0
                goto err;
372
0
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
373
0
        }
374
0
    }
375
376
0
    if (BN_copy(rsa->e, e_value) == NULL)
377
0
        goto err;
378
379
    /* generate p, q and other primes (if any) */
380
0
    for (i = 0; i < primes; i++) {
381
0
        adj = 0;
382
0
        retries = 0;
383
384
0
        if (i == 0) {
385
0
            prime = rsa->p;
386
0
        } else if (i == 1) {
387
0
            prime = rsa->q;
388
0
        } else {
389
0
            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
390
0
            prime = pinfo->r;
391
0
        }
392
0
        BN_set_flags(prime, BN_FLG_CONSTTIME);
393
394
0
        for (;;) {
395
0
        redo:
396
0
            if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,
397
0
                    cb, ctx))
398
0
                goto err;
399
            /*
400
             * prime should not be equal to p, q, r_3...
401
             * (those primes prior to this one)
402
             */
403
0
            {
404
0
                int j;
405
406
0
                for (j = 0; j < i; j++) {
407
0
                    BIGNUM *prev_prime;
408
409
0
                    if (j == 0)
410
0
                        prev_prime = rsa->p;
411
0
                    else if (j == 1)
412
0
                        prev_prime = rsa->q;
413
0
                    else
414
0
                        prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
415
0
                            j - 2)
416
0
                                         ->r;
417
418
0
                    if (!BN_cmp(prime, prev_prime)) {
419
0
                        goto redo;
420
0
                    }
421
0
                }
422
0
            }
423
0
            if (!BN_sub(r2, prime, BN_value_one()))
424
0
                goto err;
425
0
            ERR_set_mark();
426
0
            BN_set_flags(r2, BN_FLG_CONSTTIME);
427
0
            if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
428
                /* GCD == 1 since inverse exists */
429
0
                break;
430
0
            }
431
0
            error = ERR_peek_last_error();
432
0
            if (ERR_GET_LIB(error) == ERR_LIB_BN
433
0
                && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
434
                /* GCD != 1 */
435
0
                ERR_pop_to_mark();
436
0
            } else {
437
0
                goto err;
438
0
            }
439
0
            if (!BN_GENCB_call(cb, 2, n++))
440
0
                goto err;
441
0
        }
442
443
0
        bitse += bitsr[i];
444
445
        /* calculate n immediately to see if it's sufficient */
446
0
        if (i == 1) {
447
            /* we get at least 2 primes */
448
0
            if (!BN_mul(r1, rsa->p, rsa->q, ctx))
449
0
                goto err;
450
0
        } else if (i != 0) {
451
            /* modulus n = p * q * r_3 * r_4 ... */
452
0
            if (!BN_mul(r1, rsa->n, prime, ctx))
453
0
                goto err;
454
0
        } else {
455
            /* i == 0, do nothing */
456
0
            if (!BN_GENCB_call(cb, 3, i))
457
0
                goto err;
458
0
            tmp = BN_dup(prime);
459
0
            if (tmp == NULL)
460
0
                goto err;
461
0
            if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
462
0
                goto err;
463
0
            continue;
464
0
        }
465
466
        /*
467
         * if |r1|, product of factors so far, is not as long as expected
468
         * (by checking the first 4 bits are less than 0x9 or greater than
469
         * 0xF). If so, re-generate the last prime.
470
         *
471
         * NOTE: This actually can't happen in two-prime case, because of
472
         * the way factors are generated.
473
         *
474
         * Besides, another consideration is, for multi-prime case, even the
475
         * length modulus is as long as expected, the modulus could start at
476
         * 0x8, which could be utilized to distinguish a multi-prime private
477
         * key by using the modulus in a certificate. This is also covered
478
         * by checking the length should not be less than 0x9.
479
         */
480
0
        if (!BN_rshift(r2, r1, bitse - 4))
481
0
            goto err;
482
0
        bitst = BN_get_word(r2);
483
484
0
        if (bitst < 0x9 || bitst > 0xF) {
485
            /*
486
             * For keys with more than 4 primes, we attempt longer factor to
487
             * meet length requirement.
488
             *
489
             * Otherwise, we just re-generate the prime with the same length.
490
             *
491
             * This strategy has the following goals:
492
             *
493
             * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
494
             * 2. stay the same logic with normal 2-prime key
495
             */
496
0
            bitse -= bitsr[i];
497
0
            if (!BN_GENCB_call(cb, 2, n++))
498
0
                goto err;
499
0
            if (primes > 4) {
500
0
                if (bitst < 0x9)
501
0
                    adj++;
502
0
                else
503
0
                    adj--;
504
0
            } else if (retries == 4) {
505
                /*
506
                 * re-generate all primes from scratch, mainly used
507
                 * in 4 prime case to avoid long loop. Max retry times
508
                 * is set to 4.
509
                 */
510
0
                i = -1;
511
0
                bitse = 0;
512
0
                sk_BIGNUM_pop_free(factors, BN_clear_free);
513
0
                factors = sk_BIGNUM_new_null();
514
0
                if (factors == NULL)
515
0
                    goto err;
516
0
                continue;
517
0
            }
518
0
            retries++;
519
0
            goto redo;
520
0
        }
521
        /* save product of primes for further use, for multi-prime only */
522
0
        if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
523
0
            goto err;
524
0
        if (BN_copy(rsa->n, r1) == NULL)
525
0
            goto err;
526
0
        if (!BN_GENCB_call(cb, 3, i))
527
0
            goto err;
528
0
        tmp = BN_dup(prime);
529
0
        if (tmp == NULL)
530
0
            goto err;
531
0
        if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
532
0
            goto err;
533
0
    }
534
535
0
    if (BN_cmp(rsa->p, rsa->q) < 0) {
536
0
        tmp = rsa->p;
537
0
        rsa->p = rsa->q;
538
0
        rsa->q = tmp;
539
        /* mirror this in our factor stack */
540
0
        if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1))
541
0
            goto err;
542
0
    }
543
544
    /* calculate d */
545
546
    /* p - 1 */
547
0
    if (!BN_sub(r1, rsa->p, BN_value_one()))
548
0
        goto err;
549
    /* q - 1 */
550
0
    if (!BN_sub(r2, rsa->q, BN_value_one()))
551
0
        goto err;
552
    /* (p - 1)(q - 1) */
553
0
    if (!BN_mul(r0, r1, r2, ctx))
554
0
        goto err;
555
    /* multi-prime */
556
0
    for (i = 2; i < primes; i++) {
557
0
        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
558
        /* save r_i - 1 to pinfo->d temporarily */
559
0
        if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
560
0
            goto err;
561
0
        if (!BN_mul(r0, r0, pinfo->d, ctx))
562
0
            goto err;
563
0
    }
564
565
0
    BN_set_flags(r0, BN_FLG_CONSTTIME);
566
0
    if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) {
567
0
        goto err; /* d */
568
0
    }
569
570
    /* derive any missing exponents and coefficients */
571
0
    if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value,
572
0
            factors, exps, coeffs))
573
0
        goto err;
574
575
    /*
576
     * first 2 factors/exps are already tracked in p/q/dmq1/dmp1
577
     * and the first coeff is in iqmp, so pop those off the stack
578
     * Note, the first 2 factors/exponents are already tracked by p and q
579
     * assign dmp1/dmq1 and iqmp
580
     * the remaining pinfo values are separately allocated, so copy and delete
581
     * those
582
     */
583
0
    BN_clear_free(sk_BIGNUM_delete(factors, 0));
584
0
    BN_clear_free(sk_BIGNUM_delete(factors, 0));
585
0
    rsa->dmp1 = sk_BIGNUM_delete(exps, 0);
586
0
    rsa->dmq1 = sk_BIGNUM_delete(exps, 0);
587
0
    rsa->iqmp = sk_BIGNUM_delete(coeffs, 0);
588
0
    for (i = 2; i < primes; i++) {
589
0
        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
590
0
        tmp = sk_BIGNUM_delete(factors, 0);
591
0
        BN_copy(pinfo->r, tmp);
592
0
        BN_clear_free(tmp);
593
0
        tmp = sk_BIGNUM_delete(exps, 0);
594
0
        tmp2 = BN_copy(pinfo->d, tmp);
595
0
        BN_clear_free(tmp);
596
0
        if (tmp2 == NULL)
597
0
            goto err;
598
0
        tmp = sk_BIGNUM_delete(coeffs, 0);
599
0
        tmp2 = BN_copy(pinfo->t, tmp);
600
0
        BN_clear_free(tmp);
601
0
        if (tmp2 == NULL)
602
0
            goto err;
603
0
    }
604
0
    ok = 1;
605
0
err:
606
0
    sk_BIGNUM_free(factors);
607
0
    sk_BIGNUM_free(exps);
608
0
    sk_BIGNUM_free(coeffs);
609
0
    if (ok == -1) {
610
0
        ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
611
0
        ok = 0;
612
0
    }
613
0
    BN_CTX_end(ctx);
614
0
    BN_CTX_free(ctx);
615
0
    return ok;
616
0
}
617
#endif /* FIPS_MODULE */
618
619
static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
620
    BIGNUM *e_value, BN_GENCB *cb, int pairwise_test,
621
    uint32_t a, uint32_t b)
622
0
{
623
0
    int ok = 0;
624
625
#ifdef FIPS_MODULE
626
    ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb, a, b);
627
    pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
628
#else
629
    /*
630
     * Only multi-prime keys or insecure keys with a small key length or a
631
     * public exponent <= 2^16 will use the older rsa_multiprime_keygen().
632
     */
633
0
    if (primes == 2
634
0
        && bits >= 2048
635
0
        && (e_value == NULL || BN_num_bits(e_value) > 16))
636
0
        ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb, a, b);
637
0
    else
638
0
        ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
639
0
#endif /* FIPS_MODULE */
640
641
0
    if (pairwise_test && ok > 0) {
642
0
        OSSL_CALLBACK *stcb = NULL;
643
0
        void *stcbarg = NULL;
644
645
0
        OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
646
0
        ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
647
0
        if (!ok) {
648
0
            ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
649
            /* Clear intermediate results */
650
0
            BN_clear_free(rsa->d);
651
0
            BN_clear_free(rsa->p);
652
0
            BN_clear_free(rsa->q);
653
0
            BN_clear_free(rsa->dmp1);
654
0
            BN_clear_free(rsa->dmq1);
655
0
            BN_clear_free(rsa->iqmp);
656
0
            rsa->d = NULL;
657
0
            rsa->p = NULL;
658
0
            rsa->q = NULL;
659
0
            rsa->dmp1 = NULL;
660
0
            rsa->dmq1 = NULL;
661
0
            rsa->iqmp = NULL;
662
0
        }
663
0
    }
664
0
    return ok;
665
0
}
666
667
/*
668
 * AS10.35 (and its VEs/TEs) of the FIPS 140-3 standard requires a PCT for every
669
 * generated key pair. There are 3 options:
670
 * 1) If the key pair is to be used for key transport (asymmetric cipher), the
671
 *    PCT consists of encrypting a plaintext, verifying that the result
672
 *    (ciphertext) is not equal to the plaintext, decrypting the ciphertext, and
673
 *    verifying that the result is equal to the plaintext.
674
 * 2) If the key pair is to be used for digital signatures, the PCT consists of
675
 *    computing and verifying a signature.
676
 * 3) If the key pair is to be used for key agreement, the exact PCT is defined
677
 *    in the applicable standards. For RSA-based schemes, this is defined in
678
 *    SP 800-56Br2 (Section 6.4.1.1) as:
679
 *    "The owner shall perform a pair-wise consistency test by verifying that m
680
 *    = (m^e)^d mod n for some integer m satisfying 1 < m < (n - 1)."
681
 *
682
 * OpenSSL implements all three use cases: RSA-OAEP for key transport,
683
 * RSA signatures with PKCS#1 v1.5 or PSS padding, and KAS-IFC-SSC (KAS1/KAS2)
684
 * using RSASVE.
685
 *
686
 * According to FIPS 140-3 IG 10.3.A, if at the time when the PCT is performed
687
 * the keys' intended usage is not known, then any of the three PCTs described
688
 * in AS10.35 shall be performed on this key pair.
689
 *
690
 * Because of this allowance from the IG, the simplest option is 3, i.e.
691
 * RSA_public_encrypt() and RSA_private_decrypt() with RSA_NO_PADDING.
692
 */
693
static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
694
0
{
695
0
    int ret = 0;
696
0
    unsigned int plaintxt_len;
697
0
    unsigned char *plaintxt = NULL;
698
0
    unsigned int ciphertxt_len;
699
0
    unsigned char *ciphertxt = NULL;
700
0
    unsigned char *decoded = NULL;
701
0
    unsigned int decoded_len;
702
0
    int padding = RSA_NO_PADDING;
703
0
    OSSL_SELF_TEST *st = NULL;
704
705
0
    st = OSSL_SELF_TEST_new(cb, cbarg);
706
0
    if (st == NULL)
707
0
        goto err;
708
0
    OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
709
0
        OSSL_SELF_TEST_DESC_PCT_RSA);
710
711
    /*
712
     * For RSA_NO_PADDING, RSA_public_encrypt() and RSA_private_decrypt()
713
     * require the 'to' and 'from' parameters to have equal length and a
714
     * maximum of RSA_size() - allocate space for plaintxt, ciphertxt, and
715
     * decoded.
716
     */
717
0
    plaintxt_len = RSA_size(rsa);
718
0
    plaintxt = OPENSSL_calloc(plaintxt_len, 3);
719
0
    if (plaintxt == NULL)
720
0
        goto err;
721
0
    ciphertxt = plaintxt + plaintxt_len;
722
0
    decoded = ciphertxt + plaintxt_len;
723
724
    /* SP 800-56Br2 Section 6.4.1.1 requires that plaintext is greater than 1 */
725
0
    plaintxt[plaintxt_len - 1] = 2;
726
727
0
    ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
728
0
        padding);
729
0
    if (ciphertxt_len <= 0)
730
0
        goto err;
731
732
0
    OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
733
734
0
    decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
735
0
        padding);
736
0
    if (decoded_len != plaintxt_len
737
0
        || memcmp(decoded, plaintxt, decoded_len) != 0)
738
0
        goto err;
739
740
0
    ret = 1;
741
0
err:
742
0
    OSSL_SELF_TEST_onend(st, ret);
743
0
    OSSL_SELF_TEST_free(st);
744
0
    OPENSSL_free(plaintxt);
745
746
0
    return ret;
747
0
}