/src/openssl/crypto/rsa/rsa_ossl.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include "internal/cryptlib.h" |
17 | | #include "crypto/bn.h" |
18 | | #include "crypto/sparse_array.h" |
19 | | #include "rsa_local.h" |
20 | | #include "internal/constant_time.h" |
21 | | #if defined(OPENSSL_SYS_TANDEM) |
22 | | #include "internal/tsan_assist.h" |
23 | | #include "internal/threads_common.h" |
24 | | #endif |
25 | | #include <openssl/evp.h> |
26 | | #include <openssl/sha.h> |
27 | | #include <openssl/hmac.h> |
28 | | |
29 | | DEFINE_SPARSE_ARRAY_OF(BN_BLINDING); |
30 | | |
31 | | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
32 | | unsigned char *to, RSA *rsa, int padding); |
33 | | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
34 | | unsigned char *to, RSA *rsa, int padding); |
35 | | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
36 | | unsigned char *to, RSA *rsa, int padding); |
37 | | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
38 | | unsigned char *to, RSA *rsa, int padding); |
39 | | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
40 | | BN_CTX *ctx); |
41 | | static int rsa_ossl_init(RSA *rsa); |
42 | | static int rsa_ossl_finish(RSA *rsa); |
43 | | #ifdef S390X_MOD_EXP |
44 | | static int rsa_ossl_s390x_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
45 | | BN_CTX *ctx); |
46 | | static const RSA_METHOD rsa_pkcs1_ossl_meth = { |
47 | | "OpenSSL PKCS#1 RSA", |
48 | | rsa_ossl_public_encrypt, |
49 | | rsa_ossl_public_decrypt, /* signature verification */ |
50 | | rsa_ossl_private_encrypt, /* signing */ |
51 | | rsa_ossl_private_decrypt, |
52 | | rsa_ossl_s390x_mod_exp, |
53 | | s390x_mod_exp, |
54 | | rsa_ossl_init, |
55 | | rsa_ossl_finish, |
56 | | RSA_FLAG_FIPS_METHOD, /* flags */ |
57 | | NULL, |
58 | | 0, /* rsa_sign */ |
59 | | 0, /* rsa_verify */ |
60 | | NULL, /* rsa_keygen */ |
61 | | NULL /* rsa_multi_prime_keygen */ |
62 | | }; |
63 | | #else |
64 | | static const RSA_METHOD rsa_pkcs1_ossl_meth = { |
65 | | "OpenSSL PKCS#1 RSA", |
66 | | rsa_ossl_public_encrypt, |
67 | | rsa_ossl_public_decrypt, /* signature verification */ |
68 | | rsa_ossl_private_encrypt, /* signing */ |
69 | | rsa_ossl_private_decrypt, |
70 | | rsa_ossl_mod_exp, |
71 | | BN_mod_exp_mont, /* XXX probably we should not use Montgomery |
72 | | * if e == 3 */ |
73 | | rsa_ossl_init, |
74 | | rsa_ossl_finish, |
75 | | RSA_FLAG_FIPS_METHOD, /* flags */ |
76 | | NULL, |
77 | | 0, /* rsa_sign */ |
78 | | 0, /* rsa_verify */ |
79 | | NULL, /* rsa_keygen */ |
80 | | NULL /* rsa_multi_prime_keygen */ |
81 | | }; |
82 | | #endif |
83 | | |
84 | | static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth; |
85 | | |
86 | | void RSA_set_default_method(const RSA_METHOD *meth) |
87 | 0 | { |
88 | 0 | default_RSA_meth = meth; |
89 | 0 | } |
90 | | |
91 | | const RSA_METHOD *RSA_get_default_method(void) |
92 | 0 | { |
93 | 0 | return default_RSA_meth; |
94 | 0 | } |
95 | | |
96 | | const RSA_METHOD *RSA_PKCS1_OpenSSL(void) |
97 | 0 | { |
98 | 0 | return &rsa_pkcs1_ossl_meth; |
99 | 0 | } |
100 | | |
101 | | const RSA_METHOD *RSA_null_method(void) |
102 | 0 | { |
103 | 0 | return NULL; |
104 | 0 | } |
105 | | |
106 | | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
107 | | unsigned char *to, RSA *rsa, int padding) |
108 | 0 | { |
109 | 0 | BIGNUM *f, *ret; |
110 | 0 | int i, num = 0, r = -1; |
111 | 0 | unsigned char *buf = NULL; |
112 | 0 | BN_CTX *ctx = NULL; |
113 | |
|
114 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
115 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); |
116 | 0 | return -1; |
117 | 0 | } |
118 | | |
119 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
120 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
121 | 0 | return -1; |
122 | 0 | } |
123 | | |
124 | | /* for large moduli, enforce exponent limit */ |
125 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
126 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
127 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
128 | 0 | return -1; |
129 | 0 | } |
130 | 0 | } |
131 | | |
132 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
133 | 0 | goto err; |
134 | 0 | BN_CTX_start(ctx); |
135 | 0 | f = BN_CTX_get(ctx); |
136 | 0 | ret = BN_CTX_get(ctx); |
137 | 0 | num = BN_num_bytes(rsa->n); |
138 | 0 | buf = OPENSSL_malloc(num); |
139 | 0 | if (ret == NULL || buf == NULL) |
140 | 0 | goto err; |
141 | | |
142 | 0 | switch (padding) { |
143 | 0 | case RSA_PKCS1_PADDING: |
144 | 0 | i = ossl_rsa_padding_add_PKCS1_type_2_ex(rsa->libctx, buf, num, |
145 | 0 | from, flen); |
146 | 0 | break; |
147 | 0 | case RSA_PKCS1_OAEP_PADDING: |
148 | 0 | i = ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(rsa->libctx, buf, num, |
149 | 0 | from, flen, NULL, 0, |
150 | 0 | NULL, NULL); |
151 | 0 | break; |
152 | 0 | case RSA_NO_PADDING: |
153 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
154 | 0 | break; |
155 | 0 | default: |
156 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
157 | 0 | goto err; |
158 | 0 | } |
159 | 0 | if (i <= 0) |
160 | 0 | goto err; |
161 | | |
162 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
163 | 0 | goto err; |
164 | | |
165 | | #ifdef FIPS_MODULE |
166 | | /* |
167 | | * See SP800-56Br2, section 7.1.1.1 |
168 | | * RSAEP: 1 < f < (n – 1). |
169 | | * (where f is the plaintext). |
170 | | */ |
171 | | if (padding == RSA_NO_PADDING) { |
172 | | BIGNUM *nminus1 = BN_CTX_get(ctx); |
173 | | |
174 | | if (BN_ucmp(f, BN_value_one()) <= 0) { |
175 | | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL); |
176 | | goto err; |
177 | | } |
178 | | if (nminus1 == NULL |
179 | | || BN_copy(nminus1, rsa->n) == NULL |
180 | | || !BN_sub_word(nminus1, 1)) |
181 | | goto err; |
182 | | if (BN_ucmp(f, nminus1) >= 0) { |
183 | | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
184 | | goto err; |
185 | | } |
186 | | } else |
187 | | #endif |
188 | 0 | { |
189 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
190 | | /* usually the padding functions would catch this */ |
191 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
192 | 0 | goto err; |
193 | 0 | } |
194 | 0 | } |
195 | | |
196 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
197 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
198 | 0 | rsa->n, ctx)) |
199 | 0 | goto err; |
200 | | |
201 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
202 | 0 | rsa->_method_mod_n)) |
203 | 0 | goto err; |
204 | | |
205 | | /* |
206 | | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
207 | | * the length of the modulus. |
208 | | */ |
209 | 0 | r = BN_bn2binpad(ret, to, num); |
210 | 0 | err: |
211 | 0 | BN_CTX_end(ctx); |
212 | 0 | BN_CTX_free(ctx); |
213 | 0 | OPENSSL_clear_free(buf, num); |
214 | 0 | return r; |
215 | 0 | } |
216 | | |
217 | | #if defined(OPENSSL_SYS_TANDEM) |
218 | | static TSAN_QUALIFIER uint64_t tsan_thread_id = 1; |
219 | | #endif |
220 | | |
221 | | static uintptr_t get_unique_thread_id(void) |
222 | 0 | { |
223 | | #if defined(OPENSSL_SYS_TANDEM) |
224 | | uintptr_t thread_id = (uintptr_t)CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_TANDEM_ID_KEY, |
225 | | NULL); |
226 | | |
227 | | if (thread_id == 0) { |
228 | | thread_id = tsan_counter(&tsan_thread_id); |
229 | | CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_TANDEM_ID_KEY, NULL, (void *)thread_id); |
230 | | } |
231 | | return thread_id; |
232 | | #else |
233 | 0 | return (uintptr_t)CRYPTO_THREAD_get_current_id(); |
234 | 0 | #endif |
235 | 0 | } |
236 | | |
237 | | static void free_bn_blinding(ossl_uintmax_t idx, BN_BLINDING *b, void *arg) |
238 | 0 | { |
239 | 0 | BN_BLINDING_free(b); |
240 | 0 | } |
241 | | |
242 | | void ossl_rsa_free_blinding(RSA *rsa) |
243 | 0 | { |
244 | 0 | SPARSE_ARRAY_OF(BN_BLINDING) *blindings = rsa->blindings_sa; |
245 | |
|
246 | 0 | ossl_sa_BN_BLINDING_doall_arg(blindings, free_bn_blinding, NULL); |
247 | 0 | ossl_sa_BN_BLINDING_free(blindings); |
248 | 0 | } |
249 | | |
250 | | void *ossl_rsa_alloc_blinding(void) |
251 | 0 | { |
252 | 0 | return ossl_sa_BN_BLINDING_new(); |
253 | 0 | } |
254 | | |
255 | | static BN_BLINDING *ossl_rsa_get_thread_bn_blinding(RSA *rsa) |
256 | 0 | { |
257 | 0 | SPARSE_ARRAY_OF(BN_BLINDING) *blindings = rsa->blindings_sa; |
258 | 0 | uintptr_t tid = get_unique_thread_id(); |
259 | |
|
260 | 0 | return ossl_sa_BN_BLINDING_get(blindings, tid); |
261 | 0 | } |
262 | | |
263 | | static int ossl_rsa_set_thread_bn_blinding(RSA *rsa, BN_BLINDING *b) |
264 | 0 | { |
265 | 0 | SPARSE_ARRAY_OF(BN_BLINDING) *blindings = rsa->blindings_sa; |
266 | 0 | uintptr_t tid = get_unique_thread_id(); |
267 | |
|
268 | 0 | return ossl_sa_BN_BLINDING_set(blindings, tid, b); |
269 | 0 | } |
270 | | |
271 | | static BN_BLINDING *rsa_get_blinding(RSA *rsa, BN_CTX *ctx) |
272 | 0 | { |
273 | 0 | BN_BLINDING *ret; |
274 | |
|
275 | 0 | if (!CRYPTO_THREAD_read_lock(rsa->lock)) |
276 | 0 | return NULL; |
277 | | |
278 | 0 | ret = ossl_rsa_get_thread_bn_blinding(rsa); |
279 | 0 | CRYPTO_THREAD_unlock(rsa->lock); |
280 | |
|
281 | 0 | if (ret == NULL) { |
282 | 0 | ret = RSA_setup_blinding(rsa, ctx); |
283 | 0 | if (!CRYPTO_THREAD_write_lock(rsa->lock)) { |
284 | 0 | BN_BLINDING_free(ret); |
285 | 0 | ret = NULL; |
286 | 0 | } else { |
287 | 0 | if (!ossl_rsa_set_thread_bn_blinding(rsa, ret)) { |
288 | 0 | BN_BLINDING_free(ret); |
289 | 0 | ret = NULL; |
290 | 0 | } |
291 | 0 | CRYPTO_THREAD_unlock(rsa->lock); |
292 | 0 | } |
293 | 0 | } |
294 | |
|
295 | 0 | return ret; |
296 | 0 | } |
297 | | |
298 | | static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BN_CTX *ctx) |
299 | 0 | { |
300 | | /* |
301 | | * Local blinding: store the unblinding factor in BN_BLINDING. |
302 | | */ |
303 | 0 | return BN_BLINDING_convert_ex(f, NULL, b, ctx); |
304 | 0 | } |
305 | | |
306 | | static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BN_CTX *ctx) |
307 | 0 | { |
308 | | /* |
309 | | * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex |
310 | | * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING |
311 | | * is shared between threads, unblind must be non-null: |
312 | | * BN_BLINDING_invert_ex will then use the local unblinding factor, and |
313 | | * will only read the modulus from BN_BLINDING. In both cases it's safe |
314 | | * to access the blinding without a lock. |
315 | | */ |
316 | 0 | BN_set_flags(f, BN_FLG_CONSTTIME); |
317 | 0 | return BN_BLINDING_invert_ex(f, NULL, b, ctx); |
318 | 0 | } |
319 | | |
320 | | /* signing */ |
321 | | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
322 | | unsigned char *to, RSA *rsa, int padding) |
323 | 0 | { |
324 | 0 | BIGNUM *f, *ret, *res; |
325 | 0 | int i, num = 0, r = -1; |
326 | 0 | unsigned char *buf = NULL; |
327 | 0 | BN_CTX *ctx = NULL; |
328 | 0 | BN_BLINDING *blinding = NULL; |
329 | |
|
330 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
331 | 0 | goto err; |
332 | 0 | BN_CTX_start(ctx); |
333 | 0 | f = BN_CTX_get(ctx); |
334 | 0 | ret = BN_CTX_get(ctx); |
335 | 0 | num = BN_num_bytes(rsa->n); |
336 | 0 | buf = OPENSSL_malloc(num); |
337 | 0 | if (ret == NULL || buf == NULL) |
338 | 0 | goto err; |
339 | | |
340 | 0 | switch (padding) { |
341 | 0 | case RSA_PKCS1_PADDING: |
342 | 0 | i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); |
343 | 0 | break; |
344 | 0 | case RSA_X931_PADDING: |
345 | 0 | i = RSA_padding_add_X931(buf, num, from, flen); |
346 | 0 | break; |
347 | 0 | case RSA_NO_PADDING: |
348 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
349 | 0 | break; |
350 | 0 | default: |
351 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
352 | 0 | goto err; |
353 | 0 | } |
354 | 0 | if (i <= 0) |
355 | 0 | goto err; |
356 | | |
357 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
358 | 0 | goto err; |
359 | | |
360 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
361 | | /* usually the padding functions would catch this */ |
362 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
363 | 0 | goto err; |
364 | 0 | } |
365 | | |
366 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
367 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
368 | 0 | rsa->n, ctx)) |
369 | 0 | goto err; |
370 | | |
371 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
372 | 0 | blinding = rsa_get_blinding(rsa, ctx); |
373 | 0 | if (blinding == NULL) { |
374 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
375 | 0 | goto err; |
376 | 0 | } |
377 | | |
378 | 0 | if (!rsa_blinding_convert(blinding, f, ctx)) |
379 | 0 | goto err; |
380 | 0 | } |
381 | | |
382 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || (rsa->version == RSA_ASN1_VERSION_MULTI) || ((rsa->p != NULL) && (rsa->q != NULL) && (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
383 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
384 | 0 | goto err; |
385 | 0 | } else { |
386 | 0 | BIGNUM *d = BN_new(); |
387 | 0 | if (d == NULL) { |
388 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); |
389 | 0 | goto err; |
390 | 0 | } |
391 | 0 | if (rsa->d == NULL) { |
392 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); |
393 | 0 | BN_free(d); |
394 | 0 | goto err; |
395 | 0 | } |
396 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
397 | |
|
398 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
399 | 0 | rsa->_method_mod_n)) { |
400 | 0 | BN_free(d); |
401 | 0 | goto err; |
402 | 0 | } |
403 | | /* We MUST free d before any further use of rsa->d */ |
404 | 0 | BN_free(d); |
405 | 0 | } |
406 | | |
407 | 0 | if (blinding) |
408 | 0 | if (!rsa_blinding_invert(blinding, ret, ctx)) |
409 | 0 | goto err; |
410 | | |
411 | 0 | if (padding == RSA_X931_PADDING) { |
412 | 0 | if (!BN_sub(f, rsa->n, ret)) |
413 | 0 | goto err; |
414 | 0 | if (BN_cmp(ret, f) > 0) |
415 | 0 | res = f; |
416 | 0 | else |
417 | 0 | res = ret; |
418 | 0 | } else { |
419 | 0 | res = ret; |
420 | 0 | } |
421 | | |
422 | | /* |
423 | | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
424 | | * the length of the modulus. |
425 | | */ |
426 | 0 | r = BN_bn2binpad(res, to, num); |
427 | 0 | err: |
428 | 0 | BN_CTX_end(ctx); |
429 | 0 | BN_CTX_free(ctx); |
430 | 0 | OPENSSL_clear_free(buf, num); |
431 | 0 | return r; |
432 | 0 | } |
433 | | |
434 | | static int derive_kdk(int flen, const unsigned char *from, RSA *rsa, |
435 | | unsigned char *buf, int num, unsigned char *kdk) |
436 | 0 | { |
437 | 0 | int ret = 0; |
438 | 0 | HMAC_CTX *hmac = NULL; |
439 | 0 | EVP_MD *md = NULL; |
440 | 0 | unsigned int md_len = SHA256_DIGEST_LENGTH; |
441 | 0 | unsigned char d_hash[SHA256_DIGEST_LENGTH] = { 0 }; |
442 | | /* |
443 | | * because we use d as a handle to rsa->d we need to keep it local and |
444 | | * free before any further use of rsa->d |
445 | | */ |
446 | 0 | BIGNUM *d = BN_new(); |
447 | |
|
448 | 0 | if (d == NULL) { |
449 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); |
450 | 0 | goto err; |
451 | 0 | } |
452 | 0 | if (rsa->d == NULL) { |
453 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); |
454 | 0 | BN_free(d); |
455 | 0 | goto err; |
456 | 0 | } |
457 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
458 | 0 | if (BN_bn2binpad(d, buf, num) < 0) { |
459 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
460 | 0 | BN_free(d); |
461 | 0 | goto err; |
462 | 0 | } |
463 | 0 | BN_free(d); |
464 | | |
465 | | /* |
466 | | * we use hardcoded hash so that migrating between versions that use |
467 | | * different hash doesn't provide a Bleichenbacher oracle: |
468 | | * if the attacker can see that different versions return different |
469 | | * messages for the same ciphertext, they'll know that the message is |
470 | | * synthetically generated, which means that the padding check failed |
471 | | */ |
472 | 0 | md = EVP_MD_fetch(rsa->libctx, "sha256", NULL); |
473 | 0 | if (md == NULL) { |
474 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_FETCH_FAILED); |
475 | 0 | goto err; |
476 | 0 | } |
477 | | |
478 | 0 | if (EVP_Digest(buf, num, d_hash, NULL, md, NULL) <= 0) { |
479 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
480 | 0 | goto err; |
481 | 0 | } |
482 | | |
483 | 0 | hmac = HMAC_CTX_new(); |
484 | 0 | if (hmac == NULL) { |
485 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); |
486 | 0 | goto err; |
487 | 0 | } |
488 | | |
489 | 0 | if (HMAC_Init_ex(hmac, d_hash, sizeof(d_hash), md, NULL) <= 0) { |
490 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
491 | 0 | goto err; |
492 | 0 | } |
493 | | |
494 | 0 | if (flen < num) { |
495 | 0 | memset(buf, 0, num - flen); |
496 | 0 | if (HMAC_Update(hmac, buf, num - flen) <= 0) { |
497 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
498 | 0 | goto err; |
499 | 0 | } |
500 | 0 | } |
501 | 0 | if (HMAC_Update(hmac, from, flen) <= 0) { |
502 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
503 | 0 | goto err; |
504 | 0 | } |
505 | | |
506 | 0 | md_len = SHA256_DIGEST_LENGTH; |
507 | 0 | if (HMAC_Final(hmac, kdk, &md_len) <= 0) { |
508 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
509 | 0 | goto err; |
510 | 0 | } |
511 | 0 | ret = 1; |
512 | |
|
513 | 0 | err: |
514 | 0 | HMAC_CTX_free(hmac); |
515 | 0 | EVP_MD_free(md); |
516 | 0 | return ret; |
517 | 0 | } |
518 | | |
519 | | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
520 | | unsigned char *to, RSA *rsa, int padding) |
521 | 0 | { |
522 | 0 | BIGNUM *f, *ret; |
523 | 0 | int j, num = 0, r = -1; |
524 | 0 | unsigned char *buf = NULL; |
525 | 0 | unsigned char kdk[SHA256_DIGEST_LENGTH] = { 0 }; |
526 | 0 | BN_CTX *ctx = NULL; |
527 | 0 | BN_BLINDING *blinding = NULL; |
528 | | |
529 | | /* |
530 | | * we need the value of the private exponent to perform implicit rejection |
531 | | */ |
532 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) && (padding == RSA_PKCS1_PADDING)) |
533 | 0 | padding = RSA_PKCS1_NO_IMPLICIT_REJECT_PADDING; |
534 | |
|
535 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
536 | 0 | goto err; |
537 | 0 | BN_CTX_start(ctx); |
538 | 0 | f = BN_CTX_get(ctx); |
539 | 0 | ret = BN_CTX_get(ctx); |
540 | 0 | if (ret == NULL) { |
541 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); |
542 | 0 | goto err; |
543 | 0 | } |
544 | 0 | num = BN_num_bytes(rsa->n); |
545 | 0 | buf = OPENSSL_malloc(num); |
546 | 0 | if (buf == NULL) |
547 | 0 | goto err; |
548 | | |
549 | | /* |
550 | | * This check was for equality but PGP does evil things and chops off the |
551 | | * top '0' bytes |
552 | | */ |
553 | 0 | if (flen > num) { |
554 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
555 | 0 | goto err; |
556 | 0 | } |
557 | | |
558 | 0 | if (flen < 1) { |
559 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL); |
560 | 0 | goto err; |
561 | 0 | } |
562 | | |
563 | | /* make data into a big number */ |
564 | 0 | if (BN_bin2bn(from, (int)flen, f) == NULL) |
565 | 0 | goto err; |
566 | | |
567 | | #ifdef FIPS_MODULE |
568 | | /* |
569 | | * See SP800-56Br2, section 7.1.2.1 |
570 | | * RSADP: 1 < f < (n – 1) |
571 | | * (where f is the ciphertext). |
572 | | */ |
573 | | if (padding == RSA_NO_PADDING) { |
574 | | BIGNUM *nminus1 = BN_CTX_get(ctx); |
575 | | |
576 | | if (BN_ucmp(f, BN_value_one()) <= 0) { |
577 | | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL); |
578 | | goto err; |
579 | | } |
580 | | if (nminus1 == NULL |
581 | | || BN_copy(nminus1, rsa->n) == NULL |
582 | | || !BN_sub_word(nminus1, 1)) |
583 | | goto err; |
584 | | if (BN_ucmp(f, nminus1) >= 0) { |
585 | | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
586 | | goto err; |
587 | | } |
588 | | } else |
589 | | #endif |
590 | 0 | { |
591 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
592 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
593 | 0 | goto err; |
594 | 0 | } |
595 | 0 | } |
596 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
597 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
598 | 0 | rsa->n, ctx)) |
599 | 0 | goto err; |
600 | | |
601 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
602 | 0 | blinding = rsa_get_blinding(rsa, ctx); |
603 | 0 | if (blinding == NULL) { |
604 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
605 | 0 | goto err; |
606 | 0 | } |
607 | | |
608 | 0 | if (!rsa_blinding_convert(blinding, f, ctx)) |
609 | 0 | goto err; |
610 | 0 | } |
611 | | |
612 | | /* do the decrypt */ |
613 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || (rsa->version == RSA_ASN1_VERSION_MULTI) || ((rsa->p != NULL) && (rsa->q != NULL) && (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
614 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
615 | 0 | goto err; |
616 | 0 | } else { |
617 | 0 | BIGNUM *d = BN_new(); |
618 | 0 | if (d == NULL) { |
619 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); |
620 | 0 | goto err; |
621 | 0 | } |
622 | 0 | if (rsa->d == NULL) { |
623 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); |
624 | 0 | BN_free(d); |
625 | 0 | goto err; |
626 | 0 | } |
627 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
628 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
629 | 0 | rsa->_method_mod_n)) { |
630 | 0 | BN_free(d); |
631 | 0 | goto err; |
632 | 0 | } |
633 | | /* We MUST free d before any further use of rsa->d */ |
634 | 0 | BN_free(d); |
635 | 0 | } |
636 | | |
637 | 0 | if (blinding) |
638 | 0 | if (!rsa_blinding_invert(blinding, ret, ctx)) |
639 | 0 | goto err; |
640 | | |
641 | | /* |
642 | | * derive the Key Derivation Key from private exponent and public |
643 | | * ciphertext |
644 | | */ |
645 | 0 | if (padding == RSA_PKCS1_PADDING) { |
646 | 0 | if (derive_kdk(flen, from, rsa, buf, num, kdk) == 0) |
647 | 0 | goto err; |
648 | 0 | } |
649 | | |
650 | 0 | j = BN_bn2binpad(ret, buf, num); |
651 | 0 | if (j < 0) |
652 | 0 | goto err; |
653 | | |
654 | 0 | switch (padding) { |
655 | 0 | case RSA_PKCS1_NO_IMPLICIT_REJECT_PADDING: |
656 | 0 | r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); |
657 | 0 | break; |
658 | 0 | case RSA_PKCS1_PADDING: |
659 | 0 | r = ossl_rsa_padding_check_PKCS1_type_2(rsa->libctx, to, num, buf, j, num, kdk); |
660 | 0 | break; |
661 | 0 | case RSA_PKCS1_OAEP_PADDING: |
662 | 0 | r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); |
663 | 0 | break; |
664 | 0 | case RSA_NO_PADDING: |
665 | 0 | memcpy(to, buf, (r = j)); |
666 | 0 | break; |
667 | 0 | default: |
668 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
669 | 0 | goto err; |
670 | 0 | } |
671 | 0 | #ifndef FIPS_MODULE |
672 | | /* |
673 | | * This trick doesn't work in the FIPS provider because libcrypto manages |
674 | | * the error stack. Instead we opt not to put an error on the stack at all |
675 | | * in case of padding failure in the FIPS provider. |
676 | | */ |
677 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED); |
678 | 0 | err_clear_last_constant_time(1 & ~constant_time_msb(r)); |
679 | 0 | #endif |
680 | |
|
681 | 0 | err: |
682 | 0 | BN_CTX_end(ctx); |
683 | 0 | BN_CTX_free(ctx); |
684 | 0 | OPENSSL_clear_free(buf, num); |
685 | 0 | return r; |
686 | 0 | } |
687 | | |
688 | | /* signature verification */ |
689 | | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
690 | | unsigned char *to, RSA *rsa, int padding) |
691 | 0 | { |
692 | 0 | BIGNUM *f, *ret; |
693 | 0 | int i, num = 0, r = -1; |
694 | 0 | unsigned char *buf = NULL; |
695 | 0 | BN_CTX *ctx = NULL; |
696 | |
|
697 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
698 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); |
699 | 0 | return -1; |
700 | 0 | } |
701 | | |
702 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
703 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
704 | 0 | return -1; |
705 | 0 | } |
706 | | |
707 | | /* for large moduli, enforce exponent limit */ |
708 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
709 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
710 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
711 | 0 | return -1; |
712 | 0 | } |
713 | 0 | } |
714 | | |
715 | 0 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) |
716 | 0 | goto err; |
717 | 0 | BN_CTX_start(ctx); |
718 | 0 | f = BN_CTX_get(ctx); |
719 | 0 | ret = BN_CTX_get(ctx); |
720 | 0 | if (ret == NULL) { |
721 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); |
722 | 0 | goto err; |
723 | 0 | } |
724 | 0 | num = BN_num_bytes(rsa->n); |
725 | 0 | buf = OPENSSL_malloc(num); |
726 | 0 | if (buf == NULL) |
727 | 0 | goto err; |
728 | | |
729 | | /* |
730 | | * This check was for equality but PGP does evil things and chops off the |
731 | | * top '0' bytes |
732 | | */ |
733 | 0 | if (flen > num) { |
734 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
735 | 0 | goto err; |
736 | 0 | } |
737 | | |
738 | 0 | if (BN_bin2bn(from, flen, f) == NULL) |
739 | 0 | goto err; |
740 | | |
741 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
742 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
743 | 0 | goto err; |
744 | 0 | } |
745 | | |
746 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
747 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
748 | 0 | rsa->n, ctx)) |
749 | 0 | goto err; |
750 | | |
751 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
752 | 0 | rsa->_method_mod_n)) |
753 | 0 | goto err; |
754 | | |
755 | | /* For X9.31: Assuming e is odd it does a 12 mod 16 test */ |
756 | 0 | if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12)) |
757 | 0 | if (!BN_sub(ret, rsa->n, ret)) |
758 | 0 | goto err; |
759 | | |
760 | 0 | i = BN_bn2binpad(ret, buf, num); |
761 | 0 | if (i < 0) |
762 | 0 | goto err; |
763 | | |
764 | 0 | switch (padding) { |
765 | 0 | case RSA_PKCS1_PADDING: |
766 | 0 | r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); |
767 | 0 | break; |
768 | 0 | case RSA_X931_PADDING: |
769 | 0 | r = RSA_padding_check_X931(to, num, buf, i, num); |
770 | 0 | break; |
771 | 0 | case RSA_NO_PADDING: |
772 | 0 | memcpy(to, buf, (r = i)); |
773 | 0 | break; |
774 | 0 | default: |
775 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
776 | 0 | goto err; |
777 | 0 | } |
778 | 0 | if (r < 0) |
779 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED); |
780 | |
|
781 | 0 | err: |
782 | 0 | BN_CTX_end(ctx); |
783 | 0 | BN_CTX_free(ctx); |
784 | 0 | OPENSSL_clear_free(buf, num); |
785 | 0 | return r; |
786 | 0 | } |
787 | | |
788 | | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
789 | 0 | { |
790 | 0 | BIGNUM *r1, *m1, *vrfy; |
791 | 0 | int ret = 0, smooth = 0; |
792 | 0 | #ifndef FIPS_MODULE |
793 | 0 | BIGNUM *r2, *m[RSA_MAX_PRIME_NUM - 2]; |
794 | 0 | int i, ex_primes = 0; |
795 | 0 | RSA_PRIME_INFO *pinfo; |
796 | 0 | #endif |
797 | |
|
798 | 0 | BN_CTX_start(ctx); |
799 | |
|
800 | 0 | r1 = BN_CTX_get(ctx); |
801 | 0 | #ifndef FIPS_MODULE |
802 | 0 | r2 = BN_CTX_get(ctx); |
803 | 0 | #endif |
804 | 0 | m1 = BN_CTX_get(ctx); |
805 | 0 | vrfy = BN_CTX_get(ctx); |
806 | 0 | if (vrfy == NULL) |
807 | 0 | goto err; |
808 | | |
809 | 0 | #ifndef FIPS_MODULE |
810 | 0 | if (rsa->version == RSA_ASN1_VERSION_MULTI |
811 | 0 | && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 |
812 | 0 | || ex_primes > RSA_MAX_PRIME_NUM - 2)) |
813 | 0 | goto err; |
814 | 0 | #endif |
815 | | |
816 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { |
817 | 0 | BIGNUM *factor = BN_new(); |
818 | |
|
819 | 0 | if (factor == NULL) |
820 | 0 | goto err; |
821 | | |
822 | | /* |
823 | | * Make sure BN_mod_inverse in Montgomery initialization uses the |
824 | | * BN_FLG_CONSTTIME flag |
825 | | */ |
826 | 0 | if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), |
827 | 0 | BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, |
828 | 0 | factor, ctx)) |
829 | 0 | || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), |
830 | 0 | BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, |
831 | 0 | factor, ctx))) { |
832 | 0 | BN_free(factor); |
833 | 0 | goto err; |
834 | 0 | } |
835 | 0 | #ifndef FIPS_MODULE |
836 | 0 | for (i = 0; i < ex_primes; i++) { |
837 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
838 | 0 | BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); |
839 | 0 | if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { |
840 | 0 | BN_free(factor); |
841 | 0 | goto err; |
842 | 0 | } |
843 | 0 | } |
844 | 0 | #endif |
845 | | /* |
846 | | * We MUST free |factor| before any further use of the prime factors |
847 | | */ |
848 | 0 | BN_free(factor); |
849 | |
|
850 | 0 | smooth = (rsa->meth->bn_mod_exp == BN_mod_exp_mont) |
851 | 0 | #ifndef FIPS_MODULE |
852 | 0 | && (ex_primes == 0) |
853 | 0 | #endif |
854 | 0 | && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); |
855 | 0 | } |
856 | | |
857 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
858 | 0 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
859 | 0 | rsa->n, ctx)) |
860 | 0 | goto err; |
861 | | |
862 | 0 | if (smooth) { |
863 | | /* |
864 | | * Conversion from Montgomery domain, a.k.a. Montgomery reduction, |
865 | | * accepts values in [0-m*2^w) range. w is m's bit width rounded up |
866 | | * to limb width. So that at the very least if |I| is fully reduced, |
867 | | * i.e. less than p*q, we can count on from-to round to perform |
868 | | * below modulo operations on |I|. Unlike BN_mod it's constant time. |
869 | | */ |
870 | 0 | if (/* m1 = I moq q */ |
871 | 0 | !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) |
872 | 0 | || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) |
873 | | /* r1 = I mod p */ |
874 | 0 | || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) |
875 | 0 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
876 | | /* |
877 | | * Use parallel exponentiations optimization if possible, |
878 | | * otherwise fallback to two sequential exponentiations: |
879 | | * m1 = m1^dmq1 mod q |
880 | | * r1 = r1^dmp1 mod p |
881 | | */ |
882 | 0 | || !BN_mod_exp_mont_consttime_x2(m1, m1, rsa->dmq1, rsa->q, |
883 | 0 | rsa->_method_mod_q, |
884 | 0 | r1, r1, rsa->dmp1, rsa->p, |
885 | 0 | rsa->_method_mod_p, |
886 | 0 | ctx) |
887 | | /* r1 = (r1 - m1) mod p */ |
888 | | /* |
889 | | * bn_mod_sub_fixed_top is not regular modular subtraction, |
890 | | * it can tolerate subtrahend to be larger than modulus, but |
891 | | * not bit-wise wider. This makes up for uncommon q>p case, |
892 | | * when |m1| can be larger than |rsa->p|. |
893 | | */ |
894 | 0 | || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) |
895 | | |
896 | | /* r1 = r1 * iqmp mod p */ |
897 | 0 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
898 | 0 | || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, |
899 | 0 | ctx) |
900 | | /* r0 = r1 * q + m1 */ |
901 | 0 | || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) |
902 | 0 | || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) |
903 | 0 | goto err; |
904 | | |
905 | 0 | goto tail; |
906 | 0 | } |
907 | | |
908 | | /* compute I mod q */ |
909 | 0 | { |
910 | 0 | BIGNUM *c = BN_new(); |
911 | 0 | if (c == NULL) |
912 | 0 | goto err; |
913 | 0 | BN_with_flags(c, I, BN_FLG_CONSTTIME); |
914 | |
|
915 | 0 | if (!BN_mod(r1, c, rsa->q, ctx)) { |
916 | 0 | BN_free(c); |
917 | 0 | goto err; |
918 | 0 | } |
919 | | |
920 | 0 | { |
921 | 0 | BIGNUM *dmq1 = BN_new(); |
922 | 0 | if (dmq1 == NULL) { |
923 | 0 | BN_free(c); |
924 | 0 | goto err; |
925 | 0 | } |
926 | 0 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
927 | | |
928 | | /* compute r1^dmq1 mod q */ |
929 | 0 | if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, |
930 | 0 | rsa->_method_mod_q)) { |
931 | 0 | BN_free(c); |
932 | 0 | BN_free(dmq1); |
933 | 0 | goto err; |
934 | 0 | } |
935 | | /* We MUST free dmq1 before any further use of rsa->dmq1 */ |
936 | 0 | BN_free(dmq1); |
937 | 0 | } |
938 | | |
939 | | /* compute I mod p */ |
940 | 0 | if (!BN_mod(r1, c, rsa->p, ctx)) { |
941 | 0 | BN_free(c); |
942 | 0 | goto err; |
943 | 0 | } |
944 | | /* We MUST free c before any further use of I */ |
945 | 0 | BN_free(c); |
946 | 0 | } |
947 | | |
948 | 0 | { |
949 | 0 | BIGNUM *dmp1 = BN_new(); |
950 | 0 | if (dmp1 == NULL) |
951 | 0 | goto err; |
952 | 0 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
953 | | |
954 | | /* compute r1^dmp1 mod p */ |
955 | 0 | if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, |
956 | 0 | rsa->_method_mod_p)) { |
957 | 0 | BN_free(dmp1); |
958 | 0 | goto err; |
959 | 0 | } |
960 | | /* We MUST free dmp1 before any further use of rsa->dmp1 */ |
961 | 0 | BN_free(dmp1); |
962 | 0 | } |
963 | | |
964 | 0 | #ifndef FIPS_MODULE |
965 | 0 | if (ex_primes > 0) { |
966 | 0 | BIGNUM *di = BN_new(), *cc = BN_new(); |
967 | |
|
968 | 0 | if (cc == NULL || di == NULL) { |
969 | 0 | BN_free(cc); |
970 | 0 | BN_free(di); |
971 | 0 | goto err; |
972 | 0 | } |
973 | | |
974 | 0 | for (i = 0; i < ex_primes; i++) { |
975 | | /* prepare m_i */ |
976 | 0 | if ((m[i] = BN_CTX_get(ctx)) == NULL) { |
977 | 0 | BN_free(cc); |
978 | 0 | BN_free(di); |
979 | 0 | goto err; |
980 | 0 | } |
981 | | |
982 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
983 | | |
984 | | /* prepare c and d_i */ |
985 | 0 | BN_with_flags(cc, I, BN_FLG_CONSTTIME); |
986 | 0 | BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); |
987 | |
|
988 | 0 | if (!BN_mod(r1, cc, pinfo->r, ctx)) { |
989 | 0 | BN_free(cc); |
990 | 0 | BN_free(di); |
991 | 0 | goto err; |
992 | 0 | } |
993 | | /* compute r1 ^ d_i mod r_i */ |
994 | 0 | if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { |
995 | 0 | BN_free(cc); |
996 | 0 | BN_free(di); |
997 | 0 | goto err; |
998 | 0 | } |
999 | 0 | } |
1000 | | |
1001 | 0 | BN_free(cc); |
1002 | 0 | BN_free(di); |
1003 | 0 | } |
1004 | 0 | #endif |
1005 | | |
1006 | 0 | if (!BN_sub(r0, r0, m1)) |
1007 | 0 | goto err; |
1008 | | /* |
1009 | | * This will help stop the size of r0 increasing, which does affect the |
1010 | | * multiply if it optimised for a power of 2 size |
1011 | | */ |
1012 | 0 | if (BN_is_negative(r0)) |
1013 | 0 | if (!BN_add(r0, r0, rsa->p)) |
1014 | 0 | goto err; |
1015 | | |
1016 | 0 | if (!BN_mul(r1, r0, rsa->iqmp, ctx)) |
1017 | 0 | goto err; |
1018 | | |
1019 | 0 | { |
1020 | 0 | BIGNUM *pr1 = BN_new(); |
1021 | 0 | if (pr1 == NULL) |
1022 | 0 | goto err; |
1023 | 0 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
1024 | |
|
1025 | 0 | if (!BN_mod(r0, pr1, rsa->p, ctx)) { |
1026 | 0 | BN_free(pr1); |
1027 | 0 | goto err; |
1028 | 0 | } |
1029 | | /* We MUST free pr1 before any further use of r1 */ |
1030 | 0 | BN_free(pr1); |
1031 | 0 | } |
1032 | | |
1033 | | /* |
1034 | | * If p < q it is occasionally possible for the correction of adding 'p' |
1035 | | * if r0 is negative above to leave the result still negative. This can |
1036 | | * break the private key operations: the following second correction |
1037 | | * should *always* correct this rare occurrence. This will *never* happen |
1038 | | * with OpenSSL generated keys because they ensure p > q [steve] |
1039 | | */ |
1040 | 0 | if (BN_is_negative(r0)) |
1041 | 0 | if (!BN_add(r0, r0, rsa->p)) |
1042 | 0 | goto err; |
1043 | 0 | if (!BN_mul(r1, r0, rsa->q, ctx)) |
1044 | 0 | goto err; |
1045 | 0 | if (!BN_add(r0, r1, m1)) |
1046 | 0 | goto err; |
1047 | | |
1048 | 0 | #ifndef FIPS_MODULE |
1049 | | /* add m_i to m in multi-prime case */ |
1050 | 0 | if (ex_primes > 0) { |
1051 | 0 | BIGNUM *pr2 = BN_new(); |
1052 | |
|
1053 | 0 | if (pr2 == NULL) |
1054 | 0 | goto err; |
1055 | | |
1056 | 0 | for (i = 0; i < ex_primes; i++) { |
1057 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
1058 | 0 | if (!BN_sub(r1, m[i], r0)) { |
1059 | 0 | BN_free(pr2); |
1060 | 0 | goto err; |
1061 | 0 | } |
1062 | | |
1063 | 0 | if (!BN_mul(r2, r1, pinfo->t, ctx)) { |
1064 | 0 | BN_free(pr2); |
1065 | 0 | goto err; |
1066 | 0 | } |
1067 | | |
1068 | 0 | BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); |
1069 | |
|
1070 | 0 | if (!BN_mod(r1, pr2, pinfo->r, ctx)) { |
1071 | 0 | BN_free(pr2); |
1072 | 0 | goto err; |
1073 | 0 | } |
1074 | | |
1075 | 0 | if (BN_is_negative(r1)) |
1076 | 0 | if (!BN_add(r1, r1, pinfo->r)) { |
1077 | 0 | BN_free(pr2); |
1078 | 0 | goto err; |
1079 | 0 | } |
1080 | 0 | if (!BN_mul(r1, r1, pinfo->pp, ctx)) { |
1081 | 0 | BN_free(pr2); |
1082 | 0 | goto err; |
1083 | 0 | } |
1084 | 0 | if (!BN_add(r0, r0, r1)) { |
1085 | 0 | BN_free(pr2); |
1086 | 0 | goto err; |
1087 | 0 | } |
1088 | 0 | } |
1089 | 0 | BN_free(pr2); |
1090 | 0 | } |
1091 | 0 | #endif |
1092 | | |
1093 | 0 | tail: |
1094 | 0 | if (rsa->e && rsa->n) { |
1095 | 0 | if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { |
1096 | 0 | if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, |
1097 | 0 | rsa->_method_mod_n)) |
1098 | 0 | goto err; |
1099 | 0 | } else { |
1100 | 0 | bn_correct_top(r0); |
1101 | 0 | if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, |
1102 | 0 | rsa->_method_mod_n)) |
1103 | 0 | goto err; |
1104 | 0 | } |
1105 | | /* |
1106 | | * If 'I' was greater than (or equal to) rsa->n, the operation will |
1107 | | * be equivalent to using 'I mod n'. However, the result of the |
1108 | | * verify will *always* be less than 'n' so we don't check for |
1109 | | * absolute equality, just congruency. |
1110 | | */ |
1111 | 0 | if (!BN_sub(vrfy, vrfy, I)) |
1112 | 0 | goto err; |
1113 | 0 | if (BN_is_zero(vrfy)) { |
1114 | 0 | bn_correct_top(r0); |
1115 | 0 | ret = 1; |
1116 | 0 | goto err; /* not actually error */ |
1117 | 0 | } |
1118 | 0 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) |
1119 | 0 | goto err; |
1120 | 0 | if (BN_is_negative(vrfy)) |
1121 | 0 | if (!BN_add(vrfy, vrfy, rsa->n)) |
1122 | 0 | goto err; |
1123 | 0 | if (!BN_is_zero(vrfy)) { |
1124 | | /* |
1125 | | * 'I' and 'vrfy' aren't congruent mod n. Don't leak |
1126 | | * miscalculated CRT output, just do a raw (slower) mod_exp and |
1127 | | * return that instead. |
1128 | | */ |
1129 | |
|
1130 | 0 | BIGNUM *d = BN_new(); |
1131 | 0 | if (d == NULL) |
1132 | 0 | goto err; |
1133 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
1134 | |
|
1135 | 0 | if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, |
1136 | 0 | rsa->_method_mod_n)) { |
1137 | 0 | BN_free(d); |
1138 | 0 | goto err; |
1139 | 0 | } |
1140 | | /* We MUST free d before any further use of rsa->d */ |
1141 | 0 | BN_free(d); |
1142 | 0 | } |
1143 | 0 | } |
1144 | | /* |
1145 | | * It's unfortunate that we have to bn_correct_top(r0). What hopefully |
1146 | | * saves the day is that correction is highly unlike, and private key |
1147 | | * operations are customarily performed on blinded message. Which means |
1148 | | * that attacker won't observe correlation with chosen plaintext. |
1149 | | * Secondly, remaining code would still handle it in same computational |
1150 | | * time and even conceal memory access pattern around corrected top. |
1151 | | */ |
1152 | 0 | bn_correct_top(r0); |
1153 | 0 | ret = 1; |
1154 | 0 | err: |
1155 | 0 | BN_CTX_end(ctx); |
1156 | 0 | return ret; |
1157 | 0 | } |
1158 | | |
1159 | | static int rsa_ossl_init(RSA *rsa) |
1160 | 0 | { |
1161 | 0 | rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; |
1162 | 0 | return 1; |
1163 | 0 | } |
1164 | | |
1165 | | static int rsa_ossl_finish(RSA *rsa) |
1166 | 0 | { |
1167 | 0 | #ifndef FIPS_MODULE |
1168 | 0 | int i; |
1169 | 0 | RSA_PRIME_INFO *pinfo; |
1170 | |
|
1171 | 0 | for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) { |
1172 | 0 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
1173 | 0 | BN_MONT_CTX_free(pinfo->m); |
1174 | 0 | } |
1175 | 0 | #endif |
1176 | |
|
1177 | 0 | BN_MONT_CTX_free(rsa->_method_mod_n); |
1178 | 0 | BN_MONT_CTX_free(rsa->_method_mod_p); |
1179 | 0 | BN_MONT_CTX_free(rsa->_method_mod_q); |
1180 | 0 | return 1; |
1181 | 0 | } |
1182 | | |
1183 | | #ifdef S390X_MOD_EXP |
1184 | | static int rsa_ossl_s390x_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
1185 | | BN_CTX *ctx) |
1186 | | { |
1187 | | if (rsa->version != RSA_ASN1_VERSION_MULTI) { |
1188 | | if (s390x_crt(r0, i, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1, rsa->iqmp) == 1) |
1189 | | return 1; |
1190 | | } |
1191 | | return rsa_ossl_mod_exp(r0, i, rsa, ctx); |
1192 | | } |
1193 | | |
1194 | | #endif |