/src/openssl/crypto/rsa/rsa_pk1.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include "internal/constant_time.h" |
17 | | |
18 | | #include <stdio.h> |
19 | | #include <openssl/bn.h> |
20 | | #include <openssl/rsa.h> |
21 | | #include <openssl/rand.h> |
22 | | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ |
23 | | #include <openssl/prov_ssl.h> |
24 | | #include <openssl/evp.h> |
25 | | #include <openssl/sha.h> |
26 | | #include <openssl/hmac.h> |
27 | | #include "internal/cryptlib.h" |
28 | | #include "crypto/rsa.h" |
29 | | #include "rsa_local.h" |
30 | | |
31 | | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
32 | | const unsigned char *from, int flen) |
33 | 0 | { |
34 | 0 | int j; |
35 | 0 | unsigned char *p; |
36 | |
|
37 | 0 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
38 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
39 | 0 | return 0; |
40 | 0 | } |
41 | | |
42 | 0 | p = (unsigned char *)to; |
43 | |
|
44 | 0 | *(p++) = 0; |
45 | 0 | *(p++) = 1; /* Private Key BT (Block Type) */ |
46 | | |
47 | | /* pad out with 0xff data */ |
48 | 0 | j = tlen - 3 - flen; |
49 | 0 | memset(p, 0xff, j); |
50 | 0 | p += j; |
51 | 0 | *(p++) = '\0'; |
52 | 0 | memcpy(p, from, (unsigned int)flen); |
53 | 0 | return 1; |
54 | 0 | } |
55 | | |
56 | | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
57 | | const unsigned char *from, int flen, |
58 | | int num) |
59 | 0 | { |
60 | 0 | int i, j; |
61 | 0 | const unsigned char *p; |
62 | |
|
63 | 0 | p = from; |
64 | | |
65 | | /* |
66 | | * The format is |
67 | | * 00 || 01 || PS || 00 || D |
68 | | * PS - padding string, at least 8 bytes of FF |
69 | | * D - data. |
70 | | */ |
71 | |
|
72 | 0 | if (num < RSA_PKCS1_PADDING_SIZE) |
73 | 0 | return -1; |
74 | | |
75 | | /* Accept inputs with and without the leading 0-byte. */ |
76 | 0 | if (num == flen) { |
77 | 0 | if ((*p++) != 0x00) { |
78 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING); |
79 | 0 | return -1; |
80 | 0 | } |
81 | 0 | flen--; |
82 | 0 | } |
83 | | |
84 | 0 | if ((num != (flen + 1)) || (*(p++) != 0x01)) { |
85 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); |
86 | 0 | return -1; |
87 | 0 | } |
88 | | |
89 | | /* scan over padding data */ |
90 | 0 | j = flen - 1; /* one for type. */ |
91 | 0 | for (i = 0; i < j; i++) { |
92 | 0 | if (*p != 0xff) { /* should decrypt to 0xff */ |
93 | 0 | if (*p == 0) { |
94 | 0 | p++; |
95 | 0 | break; |
96 | 0 | } else { |
97 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); |
98 | 0 | return -1; |
99 | 0 | } |
100 | 0 | } |
101 | 0 | p++; |
102 | 0 | } |
103 | | |
104 | 0 | if (i == j) { |
105 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); |
106 | 0 | return -1; |
107 | 0 | } |
108 | | |
109 | 0 | if (i < 8) { |
110 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT); |
111 | 0 | return -1; |
112 | 0 | } |
113 | 0 | i++; /* Skip over the '\0' */ |
114 | 0 | j -= i; |
115 | 0 | if (j > tlen) { |
116 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE); |
117 | 0 | return -1; |
118 | 0 | } |
119 | 0 | memcpy(to, p, (unsigned int)j); |
120 | |
|
121 | 0 | return j; |
122 | 0 | } |
123 | | |
124 | | int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to, |
125 | | int tlen, const unsigned char *from, |
126 | | int flen) |
127 | 0 | { |
128 | 0 | int i, j; |
129 | 0 | unsigned char *p; |
130 | |
|
131 | 0 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
132 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
133 | 0 | return 0; |
134 | 0 | } else if (flen < 0) { |
135 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH); |
136 | 0 | return 0; |
137 | 0 | } |
138 | | |
139 | 0 | p = (unsigned char *)to; |
140 | |
|
141 | 0 | *(p++) = 0; |
142 | 0 | *(p++) = 2; /* Public Key BT (Block Type) */ |
143 | | |
144 | | /* pad out with non-zero random data */ |
145 | 0 | j = tlen - 3 - flen; |
146 | |
|
147 | 0 | if (RAND_bytes_ex(libctx, p, j, 0) <= 0) |
148 | 0 | return 0; |
149 | 0 | for (i = 0; i < j; i++) { |
150 | 0 | if (*p == '\0') |
151 | 0 | do { |
152 | 0 | if (RAND_bytes_ex(libctx, p, 1, 0) <= 0) |
153 | 0 | return 0; |
154 | 0 | } while (*p == '\0'); |
155 | 0 | p++; |
156 | 0 | } |
157 | | |
158 | 0 | *(p++) = '\0'; |
159 | |
|
160 | 0 | memcpy(p, from, (unsigned int)flen); |
161 | 0 | return 1; |
162 | 0 | } |
163 | | |
164 | | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
165 | | const unsigned char *from, int flen) |
166 | 0 | { |
167 | 0 | return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen); |
168 | 0 | } |
169 | | |
170 | | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
171 | | const unsigned char *from, int flen, |
172 | | int num) |
173 | 0 | { |
174 | 0 | int i; |
175 | | /* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
176 | 0 | unsigned char *em = NULL; |
177 | 0 | unsigned int good, found_zero_byte, mask; |
178 | 0 | int zero_index = 0, msg_index, mlen = -1; |
179 | |
|
180 | 0 | if (tlen <= 0 || flen <= 0) |
181 | 0 | return -1; |
182 | | |
183 | | /* |
184 | | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
185 | | * section 7.2.2. |
186 | | */ |
187 | | |
188 | 0 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { |
189 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
190 | 0 | return -1; |
191 | 0 | } |
192 | | |
193 | 0 | em = OPENSSL_malloc(num); |
194 | 0 | if (em == NULL) |
195 | 0 | return -1; |
196 | | /* |
197 | | * Caller is encouraged to pass zero-padded message created with |
198 | | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
199 | | * bounds, it's impossible to have an invariant memory access pattern |
200 | | * in case |from| was not zero-padded in advance. |
201 | | */ |
202 | 0 | for (from += flen, em += num, i = 0; i < num; i++) { |
203 | 0 | mask = ~constant_time_is_zero(flen); |
204 | 0 | flen -= 1 & mask; |
205 | 0 | from -= 1 & mask; |
206 | 0 | *--em = *from & mask; |
207 | 0 | } |
208 | |
|
209 | 0 | good = constant_time_is_zero(em[0]); |
210 | 0 | good &= constant_time_eq(em[1], 2); |
211 | | |
212 | | /* scan over padding data */ |
213 | 0 | found_zero_byte = 0; |
214 | 0 | for (i = 2; i < num; i++) { |
215 | 0 | unsigned int equals0 = constant_time_is_zero(em[i]); |
216 | |
|
217 | 0 | zero_index = constant_time_select_int(~found_zero_byte & equals0, |
218 | 0 | i, zero_index); |
219 | 0 | found_zero_byte |= equals0; |
220 | 0 | } |
221 | | |
222 | | /* |
223 | | * PS must be at least 8 bytes long, and it starts two bytes into |em|. |
224 | | * If we never found a 0-byte, then |zero_index| is 0 and the check |
225 | | * also fails. |
226 | | */ |
227 | 0 | good &= constant_time_ge(zero_index, 2 + 8); |
228 | | |
229 | | /* |
230 | | * Skip the zero byte. This is incorrect if we never found a zero-byte |
231 | | * but in this case we also do not copy the message out. |
232 | | */ |
233 | 0 | msg_index = zero_index + 1; |
234 | 0 | mlen = num - msg_index; |
235 | | |
236 | | /* |
237 | | * For good measure, do this check in constant time as well. |
238 | | */ |
239 | 0 | good &= constant_time_ge(tlen, mlen); |
240 | | |
241 | | /* |
242 | | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. |
243 | | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. |
244 | | * Otherwise leave |to| unchanged. |
245 | | * Copy the memory back in a way that does not reveal the size of |
246 | | * the data being copied via a timing side channel. This requires copying |
247 | | * parts of the buffer multiple times based on the bits set in the real |
248 | | * length. Clear bits do a non-copy with identical access pattern. |
249 | | * The loop below has overall complexity of O(N*log(N)). |
250 | | */ |
251 | 0 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), |
252 | 0 | num - RSA_PKCS1_PADDING_SIZE, tlen); |
253 | 0 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { |
254 | 0 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); |
255 | 0 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) |
256 | 0 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); |
257 | 0 | } |
258 | 0 | for (i = 0; i < tlen; i++) { |
259 | 0 | mask = good & constant_time_lt(i, mlen); |
260 | 0 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); |
261 | 0 | } |
262 | |
|
263 | 0 | OPENSSL_clear_free(em, num); |
264 | 0 | #ifndef FIPS_MODULE |
265 | | /* |
266 | | * This trick doesn't work in the FIPS provider because libcrypto manages |
267 | | * the error stack. Instead we opt not to put an error on the stack at all |
268 | | * in case of padding failure in the FIPS provider. |
269 | | */ |
270 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
271 | 0 | err_clear_last_constant_time(1 & good); |
272 | 0 | #endif |
273 | |
|
274 | 0 | return constant_time_select_int(good, mlen, -1); |
275 | 0 | } |
276 | | |
277 | | static int ossl_rsa_prf(OSSL_LIB_CTX *ctx, |
278 | | unsigned char *to, int tlen, |
279 | | const char *label, int llen, |
280 | | const unsigned char *kdk, |
281 | | uint16_t bitlen) |
282 | 0 | { |
283 | 0 | int pos; |
284 | 0 | int ret = -1; |
285 | 0 | uint16_t iter = 0; |
286 | 0 | unsigned char be_iter[sizeof(iter)]; |
287 | 0 | unsigned char be_bitlen[sizeof(bitlen)]; |
288 | 0 | HMAC_CTX *hmac = NULL; |
289 | 0 | EVP_MD *md = NULL; |
290 | 0 | unsigned char hmac_out[SHA256_DIGEST_LENGTH]; |
291 | 0 | unsigned int md_len; |
292 | |
|
293 | 0 | if (tlen * 8 != bitlen) { |
294 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
295 | 0 | return ret; |
296 | 0 | } |
297 | | |
298 | 0 | be_bitlen[0] = (bitlen >> 8) & 0xff; |
299 | 0 | be_bitlen[1] = bitlen & 0xff; |
300 | |
|
301 | 0 | hmac = HMAC_CTX_new(); |
302 | 0 | if (hmac == NULL) { |
303 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
304 | 0 | goto err; |
305 | 0 | } |
306 | | |
307 | | /* |
308 | | * we use hardcoded hash so that migrating between versions that use |
309 | | * different hash doesn't provide a Bleichenbacher oracle: |
310 | | * if the attacker can see that different versions return different |
311 | | * messages for the same ciphertext, they'll know that the message is |
312 | | * synthetically generated, which means that the padding check failed |
313 | | */ |
314 | 0 | md = EVP_MD_fetch(ctx, "sha256", NULL); |
315 | 0 | if (md == NULL) { |
316 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
317 | 0 | goto err; |
318 | 0 | } |
319 | | |
320 | 0 | if (HMAC_Init_ex(hmac, kdk, SHA256_DIGEST_LENGTH, md, NULL) <= 0) { |
321 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
322 | 0 | goto err; |
323 | 0 | } |
324 | | |
325 | 0 | for (pos = 0; pos < tlen; pos += SHA256_DIGEST_LENGTH, iter++) { |
326 | 0 | if (HMAC_Init_ex(hmac, NULL, 0, NULL, NULL) <= 0) { |
327 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
328 | 0 | goto err; |
329 | 0 | } |
330 | | |
331 | 0 | be_iter[0] = (iter >> 8) & 0xff; |
332 | 0 | be_iter[1] = iter & 0xff; |
333 | |
|
334 | 0 | if (HMAC_Update(hmac, be_iter, sizeof(be_iter)) <= 0) { |
335 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
336 | 0 | goto err; |
337 | 0 | } |
338 | 0 | if (HMAC_Update(hmac, (unsigned char *)label, llen) <= 0) { |
339 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
340 | 0 | goto err; |
341 | 0 | } |
342 | 0 | if (HMAC_Update(hmac, be_bitlen, sizeof(be_bitlen)) <= 0) { |
343 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
344 | 0 | goto err; |
345 | 0 | } |
346 | | |
347 | | /* |
348 | | * HMAC_Final requires the output buffer to fit the whole MAC |
349 | | * value, so we need to use the intermediate buffer for the last |
350 | | * unaligned block |
351 | | */ |
352 | 0 | md_len = SHA256_DIGEST_LENGTH; |
353 | 0 | if (pos + SHA256_DIGEST_LENGTH > tlen) { |
354 | 0 | if (HMAC_Final(hmac, hmac_out, &md_len) <= 0) { |
355 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
356 | 0 | goto err; |
357 | 0 | } |
358 | 0 | memcpy(to + pos, hmac_out, tlen - pos); |
359 | 0 | } else { |
360 | 0 | if (HMAC_Final(hmac, to + pos, &md_len) <= 0) { |
361 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
362 | 0 | goto err; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | } |
366 | | |
367 | 0 | ret = 0; |
368 | |
|
369 | 0 | err: |
370 | 0 | HMAC_CTX_free(hmac); |
371 | 0 | EVP_MD_free(md); |
372 | 0 | return ret; |
373 | 0 | } |
374 | | |
375 | | /* |
376 | | * ossl_rsa_padding_check_PKCS1_type_2() checks and removes the PKCS#1 type 2 |
377 | | * padding from a decrypted RSA message. Unlike the |
378 | | * RSA_padding_check_PKCS1_type_2() it will not return an error in case it |
379 | | * detects a padding error, rather it will return a deterministically generated |
380 | | * random message. In other words it will perform an implicit rejection |
381 | | * of an invalid padding. This means that the returned value does not indicate |
382 | | * if the padding of the encrypted message was correct or not, making |
383 | | * side channel attacks like the ones described by Bleichenbacher impossible |
384 | | * without access to the full decrypted value and a brute-force search of |
385 | | * remaining padding bytes |
386 | | */ |
387 | | int ossl_rsa_padding_check_PKCS1_type_2(OSSL_LIB_CTX *ctx, |
388 | | unsigned char *to, int tlen, |
389 | | const unsigned char *from, int flen, |
390 | | int num, unsigned char *kdk) |
391 | 0 | { |
392 | | /* |
393 | | * We need to generate a random length for the synthetic message, to avoid |
394 | | * bias towards zero and avoid non-constant timeness of DIV, we prepare |
395 | | * 128 values to check if they are not too large for the used key size, |
396 | | * and use 0 in case none of them are small enough, as 2^-128 is a good enough |
397 | | * safety margin |
398 | | */ |
399 | 0 | #define MAX_LEN_GEN_TRIES 128 |
400 | 0 | unsigned char *synthetic = NULL; |
401 | 0 | int synthetic_length; |
402 | 0 | uint16_t len_candidate; |
403 | 0 | unsigned char candidate_lengths[MAX_LEN_GEN_TRIES * sizeof(len_candidate)]; |
404 | 0 | uint16_t len_mask; |
405 | 0 | uint16_t max_sep_offset; |
406 | 0 | int synth_msg_index = 0; |
407 | 0 | int ret = -1; |
408 | 0 | int i, j; |
409 | 0 | unsigned int good, found_zero_byte; |
410 | 0 | int zero_index = 0, msg_index; |
411 | | |
412 | | /* |
413 | | * If these checks fail then either the message in publicly invalid, or |
414 | | * we've been called incorrectly. We can fail immediately. |
415 | | * Since this code is called only internally by openssl, those are just |
416 | | * sanity checks |
417 | | */ |
418 | 0 | if (num != flen || tlen <= 0 || flen <= 0) { |
419 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
420 | 0 | return -1; |
421 | 0 | } |
422 | | |
423 | | /* Generate a random message to return in case the padding checks fail */ |
424 | 0 | synthetic = OPENSSL_malloc(flen); |
425 | 0 | if (synthetic == NULL) { |
426 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
427 | 0 | return -1; |
428 | 0 | } |
429 | | |
430 | 0 | if (ossl_rsa_prf(ctx, synthetic, flen, "message", 7, kdk, flen * 8) < 0) |
431 | 0 | goto err; |
432 | | |
433 | | /* decide how long the random message should be */ |
434 | 0 | if (ossl_rsa_prf(ctx, candidate_lengths, sizeof(candidate_lengths), |
435 | 0 | "length", 6, kdk, |
436 | 0 | MAX_LEN_GEN_TRIES * sizeof(len_candidate) * 8) |
437 | 0 | < 0) |
438 | 0 | goto err; |
439 | | |
440 | | /* |
441 | | * max message size is the size of the modulus size less 2 bytes for |
442 | | * version and padding type and a minimum of 8 bytes padding |
443 | | */ |
444 | 0 | len_mask = max_sep_offset = flen - 2 - 8; |
445 | | /* |
446 | | * we want a mask so lets propagate the high bit to all positions less |
447 | | * significant than it |
448 | | */ |
449 | 0 | len_mask |= len_mask >> 1; |
450 | 0 | len_mask |= len_mask >> 2; |
451 | 0 | len_mask |= len_mask >> 4; |
452 | 0 | len_mask |= len_mask >> 8; |
453 | |
|
454 | 0 | synthetic_length = 0; |
455 | 0 | for (i = 0; i < MAX_LEN_GEN_TRIES * (int)sizeof(len_candidate); |
456 | 0 | i += sizeof(len_candidate)) { |
457 | 0 | len_candidate = (candidate_lengths[i] << 8) | candidate_lengths[i + 1]; |
458 | 0 | len_candidate &= len_mask; |
459 | |
|
460 | 0 | synthetic_length = constant_time_select_int( |
461 | 0 | constant_time_lt(len_candidate, max_sep_offset), |
462 | 0 | len_candidate, synthetic_length); |
463 | 0 | } |
464 | |
|
465 | 0 | synth_msg_index = flen - synthetic_length; |
466 | | |
467 | | /* we have alternative message ready, check the real one */ |
468 | 0 | good = constant_time_is_zero(from[0]); |
469 | 0 | good &= constant_time_eq(from[1], 2); |
470 | | |
471 | | /* then look for the padding|message separator (the first zero byte) */ |
472 | 0 | found_zero_byte = 0; |
473 | 0 | for (i = 2; i < flen; i++) { |
474 | 0 | unsigned int equals0 = constant_time_is_zero(from[i]); |
475 | 0 | zero_index = constant_time_select_int(~found_zero_byte & equals0, |
476 | 0 | i, zero_index); |
477 | 0 | found_zero_byte |= equals0; |
478 | 0 | } |
479 | | |
480 | | /* |
481 | | * padding must be at least 8 bytes long, and it starts two bytes into |
482 | | * |from|. If we never found a 0-byte, then |zero_index| is 0 and the check |
483 | | * also fails. |
484 | | */ |
485 | 0 | good &= constant_time_ge(zero_index, 2 + 8); |
486 | | |
487 | | /* |
488 | | * Skip the zero byte. This is incorrect if we never found a zero-byte |
489 | | * but in this case we also do not copy the message out. |
490 | | */ |
491 | 0 | msg_index = zero_index + 1; |
492 | | |
493 | | /* |
494 | | * old code returned an error in case the decrypted message wouldn't fit |
495 | | * into the |to|, since that would leak information, return the synthetic |
496 | | * message instead |
497 | | */ |
498 | 0 | good &= constant_time_ge(tlen, num - msg_index); |
499 | |
|
500 | 0 | msg_index = constant_time_select_int(good, msg_index, synth_msg_index); |
501 | | |
502 | | /* |
503 | | * since at this point the |msg_index| does not provide the signal |
504 | | * indicating if the padding check failed or not, we don't have to worry |
505 | | * about leaking the length of returned message, we still need to ensure |
506 | | * that we read contents of both buffers so that cache accesses don't leak |
507 | | * the value of |good| |
508 | | */ |
509 | 0 | for (i = msg_index, j = 0; i < flen && j < tlen; i++, j++) |
510 | 0 | to[j] = constant_time_select_8(good, from[i], synthetic[i]); |
511 | 0 | ret = j; |
512 | |
|
513 | 0 | err: |
514 | | /* |
515 | | * the only time ret < 0 is when the ciphertext is publicly invalid |
516 | | * or we were called with invalid parameters, so we don't have to perform |
517 | | * a side-channel secure raising of the error |
518 | | */ |
519 | 0 | if (ret < 0) |
520 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
521 | 0 | OPENSSL_free(synthetic); |
522 | 0 | return ret; |
523 | 0 | } |
524 | | |
525 | | /* |
526 | | * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 |
527 | | * padding from a decrypted RSA message in a TLS signature. The result is stored |
528 | | * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| |
529 | | * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message |
530 | | * should be stored in |from| which must be |flen| bytes in length and padded |
531 | | * such that |flen == RSA_size()|. The TLS protocol version that the client |
532 | | * originally requested should be passed in |client_version|. Some buggy clients |
533 | | * can exist which use the negotiated version instead of the originally |
534 | | * requested protocol version. If it is necessary to work around this bug then |
535 | | * the negotiated protocol version can be passed in |alt_version|, otherwise 0 |
536 | | * should be passed. |
537 | | * |
538 | | * If the passed message is publicly invalid or some other error that can be |
539 | | * treated in non-constant time occurs then -1 is returned. On success the |
540 | | * length of the decrypted data is returned. This will always be |
541 | | * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in |
542 | | * constant time then this function will appear to return successfully, but the |
543 | | * decrypted data will be randomly generated (as per |
544 | | * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). |
545 | | */ |
546 | | int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx, |
547 | | unsigned char *to, size_t tlen, |
548 | | const unsigned char *from, |
549 | | size_t flen, int client_version, |
550 | | int alt_version) |
551 | 0 | { |
552 | 0 | unsigned int i, good, version_good; |
553 | 0 | unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; |
554 | | |
555 | | /* |
556 | | * If these checks fail then either the message in publicly invalid, or |
557 | | * we've been called incorrectly. We can fail immediately. |
558 | | */ |
559 | 0 | if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH |
560 | 0 | || tlen < SSL_MAX_MASTER_KEY_LENGTH) { |
561 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
562 | 0 | return -1; |
563 | 0 | } |
564 | | |
565 | | /* |
566 | | * Generate a random premaster secret to use in the event that we fail |
567 | | * to decrypt. |
568 | | */ |
569 | 0 | if (RAND_priv_bytes_ex(libctx, rand_premaster_secret, |
570 | 0 | sizeof(rand_premaster_secret), 0) |
571 | 0 | <= 0) { |
572 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
573 | 0 | return -1; |
574 | 0 | } |
575 | | |
576 | 0 | good = constant_time_is_zero(from[0]); |
577 | 0 | good &= constant_time_eq(from[1], 2); |
578 | | |
579 | | /* Check we have the expected padding data */ |
580 | 0 | for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) |
581 | 0 | good &= ~constant_time_is_zero_8(from[i]); |
582 | 0 | good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); |
583 | | |
584 | | /* |
585 | | * If the version in the decrypted pre-master secret is correct then |
586 | | * version_good will be 0xff, otherwise it'll be zero. The |
587 | | * Klima-Pokorny-Rosa extension of Bleichenbacher's attack |
588 | | * (http://eprint.iacr.org/2003/052/) exploits the version number |
589 | | * check as a "bad version oracle". Thus version checks are done in |
590 | | * constant time and are treated like any other decryption error. |
591 | | */ |
592 | 0 | version_good = constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
593 | 0 | (client_version >> 8) & 0xff); |
594 | 0 | version_good &= constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
595 | 0 | client_version & 0xff); |
596 | | |
597 | | /* |
598 | | * The premaster secret must contain the same version number as the |
599 | | * ClientHello to detect version rollback attacks (strangely, the |
600 | | * protocol does not offer such protection for DH ciphersuites). |
601 | | * However, buggy clients exist that send the negotiated protocol |
602 | | * version instead if the server does not support the requested |
603 | | * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate |
604 | | * such clients. In that case alt_version will be non-zero and set to |
605 | | * the negotiated version. |
606 | | */ |
607 | 0 | if (alt_version > 0) { |
608 | 0 | unsigned int workaround_good; |
609 | |
|
610 | 0 | workaround_good = constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
611 | 0 | (alt_version >> 8) & 0xff); |
612 | 0 | workaround_good &= constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
613 | 0 | alt_version & 0xff); |
614 | 0 | version_good |= workaround_good; |
615 | 0 | } |
616 | |
|
617 | 0 | good &= version_good; |
618 | | |
619 | | /* |
620 | | * Now copy the result over to the to buffer if good, or random data if |
621 | | * not good. |
622 | | */ |
623 | 0 | for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { |
624 | 0 | to[i] = constant_time_select_8(good, |
625 | 0 | from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], |
626 | 0 | rand_premaster_secret[i]); |
627 | 0 | } |
628 | | |
629 | | /* |
630 | | * We must not leak whether a decryption failure occurs because of |
631 | | * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, |
632 | | * section 7.4.7.1). The code follows that advice of the TLS RFC and |
633 | | * generates a random premaster secret for the case that the decrypt |
634 | | * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 |
635 | | * So, whether we actually succeeded or not, return success. |
636 | | */ |
637 | |
|
638 | 0 | return SSL_MAX_MASTER_KEY_LENGTH; |
639 | 0 | } |