/src/openssl/crypto/sha/keccak1600.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <openssl/e_os2.h> |
11 | | #include <string.h> |
12 | | #include <assert.h> |
13 | | |
14 | | #include "internal/nelem.h" |
15 | | |
16 | | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
17 | | size_t r); |
18 | | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r, int next); |
19 | | |
20 | | #if !defined(KECCAK1600_ASM) || !defined(SELFTEST) |
21 | | |
22 | | /* |
23 | | * Choose some sensible defaults |
24 | | */ |
25 | | #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) |
26 | | #define KECCAK_2X /* default to KECCAK_2X variant */ |
27 | | #endif |
28 | | |
29 | | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || (defined(__x86_64) && !defined(__BMI__)) || defined(_M_X64) || defined(__mips) || defined(__riscv) || defined(__s390__) || defined(__EMSCRIPTEN__) |
30 | | /* |
31 | | * These don't have "and with complement" instruction, so minimize amount |
32 | | * of "not"-s. Implemented only in the [default] KECCAK_2X variant. |
33 | | */ |
34 | | #define KECCAK_COMPLEMENTING_TRANSFORM |
35 | | #endif |
36 | | |
37 | | #if defined(__x86_64__) || defined(__aarch64__) || defined(__mips64) || defined(__ia64) || (defined(__VMS) && !defined(__vax)) |
38 | | /* |
39 | | * These are available even in ILP32 flavours, but even then they are |
40 | | * capable of performing 64-bit operations as efficiently as in *P64. |
41 | | * Since it's not given that we can use sizeof(void *), just shunt it. |
42 | | */ |
43 | 472M | #define BIT_INTERLEAVE (0) |
44 | | #else |
45 | | #define BIT_INTERLEAVE (sizeof(void *) < 8) |
46 | | #endif |
47 | | |
48 | 0 | #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) |
49 | | |
50 | | static uint64_t ROL64(uint64_t val, int offset) |
51 | 461M | { |
52 | 461M | if (offset == 0) { |
53 | 0 | return val; |
54 | 461M | } else if (!BIT_INTERLEAVE) { |
55 | 461M | return (val << offset) | (val >> (64 - offset)); |
56 | 461M | } else { |
57 | 0 | uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; |
58 | |
|
59 | 0 | if (offset & 1) { |
60 | 0 | uint32_t tmp = hi; |
61 | |
|
62 | 0 | offset >>= 1; |
63 | 0 | hi = ROL32(lo, offset); |
64 | 0 | lo = ROL32(tmp, offset + 1); |
65 | 0 | } else { |
66 | 0 | offset >>= 1; |
67 | 0 | lo = ROL32(lo, offset); |
68 | 0 | hi = ROL32(hi, offset); |
69 | 0 | } |
70 | |
|
71 | 0 | return ((uint64_t)hi << 32) | lo; |
72 | 0 | } |
73 | 461M | } |
74 | | |
75 | | static const unsigned char rhotates[5][5] = { |
76 | | { 0, 1, 62, 28, 27 }, |
77 | | { 36, 44, 6, 55, 20 }, |
78 | | { 3, 10, 43, 25, 39 }, |
79 | | { 41, 45, 15, 21, 8 }, |
80 | | { 18, 2, 61, 56, 14 } |
81 | | }; |
82 | | |
83 | | static const uint64_t iotas[] = { |
84 | | BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, |
85 | | BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, |
86 | | BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, |
87 | | BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, |
88 | | BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, |
89 | | BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, |
90 | | BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, |
91 | | BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, |
92 | | BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, |
93 | | BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, |
94 | | BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, |
95 | | BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, |
96 | | BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, |
97 | | BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, |
98 | | BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, |
99 | | BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, |
100 | | BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, |
101 | | BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, |
102 | | BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, |
103 | | BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, |
104 | | BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, |
105 | | BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, |
106 | | BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, |
107 | | BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL |
108 | | }; |
109 | | |
110 | | #if defined(KECCAK_REF) |
111 | | /* |
112 | | * This is straightforward or "maximum clarity" implementation aiming |
113 | | * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: |
114 | | * Permutation-Based Hash and Extendible-Output Functions" as much as |
115 | | * possible. With one caveat. Because of the way C stores matrices, |
116 | | * references to A[x,y] in the specification are presented as A[y][x]. |
117 | | * Implementation unrolls inner x-loops so that modulo 5 operations are |
118 | | * explicitly pre-computed. |
119 | | */ |
120 | | static void Theta(uint64_t A[5][5]) |
121 | | { |
122 | | uint64_t C[5], D[5]; |
123 | | size_t y; |
124 | | |
125 | | C[0] = A[0][0]; |
126 | | C[1] = A[0][1]; |
127 | | C[2] = A[0][2]; |
128 | | C[3] = A[0][3]; |
129 | | C[4] = A[0][4]; |
130 | | |
131 | | for (y = 1; y < 5; y++) { |
132 | | C[0] ^= A[y][0]; |
133 | | C[1] ^= A[y][1]; |
134 | | C[2] ^= A[y][2]; |
135 | | C[3] ^= A[y][3]; |
136 | | C[4] ^= A[y][4]; |
137 | | } |
138 | | |
139 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
140 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
141 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
142 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
143 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
144 | | |
145 | | for (y = 0; y < 5; y++) { |
146 | | A[y][0] ^= D[0]; |
147 | | A[y][1] ^= D[1]; |
148 | | A[y][2] ^= D[2]; |
149 | | A[y][3] ^= D[3]; |
150 | | A[y][4] ^= D[4]; |
151 | | } |
152 | | } |
153 | | |
154 | | static void Rho(uint64_t A[5][5]) |
155 | | { |
156 | | size_t y; |
157 | | |
158 | | for (y = 0; y < 5; y++) { |
159 | | A[y][0] = ROL64(A[y][0], rhotates[y][0]); |
160 | | A[y][1] = ROL64(A[y][1], rhotates[y][1]); |
161 | | A[y][2] = ROL64(A[y][2], rhotates[y][2]); |
162 | | A[y][3] = ROL64(A[y][3], rhotates[y][3]); |
163 | | A[y][4] = ROL64(A[y][4], rhotates[y][4]); |
164 | | } |
165 | | } |
166 | | |
167 | | static void Pi(uint64_t A[5][5]) |
168 | | { |
169 | | uint64_t T[5][5]; |
170 | | |
171 | | /* |
172 | | * T = A |
173 | | * A[y][x] = T[x][(3*y+x)%5] |
174 | | */ |
175 | | memcpy(T, A, sizeof(T)); |
176 | | |
177 | | A[0][0] = T[0][0]; |
178 | | A[0][1] = T[1][1]; |
179 | | A[0][2] = T[2][2]; |
180 | | A[0][3] = T[3][3]; |
181 | | A[0][4] = T[4][4]; |
182 | | |
183 | | A[1][0] = T[0][3]; |
184 | | A[1][1] = T[1][4]; |
185 | | A[1][2] = T[2][0]; |
186 | | A[1][3] = T[3][1]; |
187 | | A[1][4] = T[4][2]; |
188 | | |
189 | | A[2][0] = T[0][1]; |
190 | | A[2][1] = T[1][2]; |
191 | | A[2][2] = T[2][3]; |
192 | | A[2][3] = T[3][4]; |
193 | | A[2][4] = T[4][0]; |
194 | | |
195 | | A[3][0] = T[0][4]; |
196 | | A[3][1] = T[1][0]; |
197 | | A[3][2] = T[2][1]; |
198 | | A[3][3] = T[3][2]; |
199 | | A[3][4] = T[4][3]; |
200 | | |
201 | | A[4][0] = T[0][2]; |
202 | | A[4][1] = T[1][3]; |
203 | | A[4][2] = T[2][4]; |
204 | | A[4][3] = T[3][0]; |
205 | | A[4][4] = T[4][1]; |
206 | | } |
207 | | |
208 | | static void Chi(uint64_t A[5][5]) |
209 | | { |
210 | | uint64_t C[5]; |
211 | | size_t y; |
212 | | |
213 | | for (y = 0; y < 5; y++) { |
214 | | C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); |
215 | | C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); |
216 | | C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); |
217 | | C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); |
218 | | C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); |
219 | | |
220 | | A[y][0] = C[0]; |
221 | | A[y][1] = C[1]; |
222 | | A[y][2] = C[2]; |
223 | | A[y][3] = C[3]; |
224 | | A[y][4] = C[4]; |
225 | | } |
226 | | } |
227 | | |
228 | | static void Iota(uint64_t A[5][5], size_t i) |
229 | | { |
230 | | assert(i < OSSL_NELEM(iotas)); |
231 | | A[0][0] ^= iotas[i]; |
232 | | } |
233 | | |
234 | | static void KeccakF1600(uint64_t A[5][5]) |
235 | | { |
236 | | size_t i; |
237 | | |
238 | | for (i = 0; i < 24; i++) { |
239 | | Theta(A); |
240 | | Rho(A); |
241 | | Pi(A); |
242 | | Chi(A); |
243 | | Iota(A, i); |
244 | | } |
245 | | } |
246 | | |
247 | | #elif defined(KECCAK_1X) |
248 | | /* |
249 | | * This implementation is optimization of above code featuring unroll |
250 | | * of even y-loops, their fusion and code motion. It also minimizes |
251 | | * temporary storage. Compiler would normally do all these things for |
252 | | * you, purpose of manual optimization is to provide "unobscured" |
253 | | * reference for assembly implementation [in case this approach is |
254 | | * chosen for implementation on some platform]. In the nutshell it's |
255 | | * equivalent of "plane-per-plane processing" approach discussed in |
256 | | * section 2.4 of "Keccak implementation overview". |
257 | | */ |
258 | | static void Round(uint64_t A[5][5], size_t i) |
259 | | { |
260 | | uint64_t C[5], E[2]; /* registers */ |
261 | | uint64_t D[5], T[2][5]; /* memory */ |
262 | | |
263 | | assert(i < OSSL_NELEM(iotas)); |
264 | | |
265 | | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
266 | | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
267 | | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
268 | | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
269 | | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
270 | | |
271 | | #if defined(__arm__) |
272 | | D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; |
273 | | D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; |
274 | | D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; |
275 | | D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; |
276 | | D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; |
277 | | |
278 | | T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ |
279 | | T[0][1] = A[0][1] ^ E[0]; /* D[1] */ |
280 | | T[0][2] = A[0][2] ^ C[1]; /* D[2] */ |
281 | | T[0][3] = A[0][3] ^ C[2]; /* D[3] */ |
282 | | T[0][4] = A[0][4] ^ E[1]; /* D[4] */ |
283 | | |
284 | | C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ |
285 | | C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ |
286 | | C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ |
287 | | C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ |
288 | | C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ |
289 | | #else |
290 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
291 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
292 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
293 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
294 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
295 | | |
296 | | T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ |
297 | | T[0][1] = A[0][1] ^ D[1]; |
298 | | T[0][2] = A[0][2] ^ D[2]; |
299 | | T[0][3] = A[0][3] ^ D[3]; |
300 | | T[0][4] = A[0][4] ^ D[4]; |
301 | | |
302 | | C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
303 | | C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
304 | | C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
305 | | C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
306 | | C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
307 | | #endif |
308 | | A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
309 | | A[0][1] = C[1] ^ (~C[2] & C[3]); |
310 | | A[0][2] = C[2] ^ (~C[3] & C[4]); |
311 | | A[0][3] = C[3] ^ (~C[4] & C[0]); |
312 | | A[0][4] = C[4] ^ (~C[0] & C[1]); |
313 | | |
314 | | T[1][0] = A[1][0] ^ (C[3] = D[0]); |
315 | | T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ |
316 | | T[1][2] = A[1][2] ^ (E[0] = D[2]); |
317 | | T[1][3] = A[1][3] ^ (E[1] = D[3]); |
318 | | T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ |
319 | | |
320 | | C[0] = ROL64(T[0][3], rhotates[0][3]); |
321 | | C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ |
322 | | C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ |
323 | | C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ |
324 | | C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ |
325 | | |
326 | | A[1][0] = C[0] ^ (~C[1] & C[2]); |
327 | | A[1][1] = C[1] ^ (~C[2] & C[3]); |
328 | | A[1][2] = C[2] ^ (~C[3] & C[4]); |
329 | | A[1][3] = C[3] ^ (~C[4] & C[0]); |
330 | | A[1][4] = C[4] ^ (~C[0] & C[1]); |
331 | | |
332 | | C[0] = ROL64(T[0][1], rhotates[0][1]); |
333 | | C[1] = ROL64(T[1][2], rhotates[1][2]); |
334 | | C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
335 | | C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
336 | | C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
337 | | |
338 | | A[2][0] = C[0] ^ (~C[1] & C[2]); |
339 | | A[2][1] = C[1] ^ (~C[2] & C[3]); |
340 | | A[2][2] = C[2] ^ (~C[3] & C[4]); |
341 | | A[2][3] = C[3] ^ (~C[4] & C[0]); |
342 | | A[2][4] = C[4] ^ (~C[0] & C[1]); |
343 | | |
344 | | C[0] = ROL64(T[0][4], rhotates[0][4]); |
345 | | C[1] = ROL64(T[1][0], rhotates[1][0]); |
346 | | C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ |
347 | | C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
348 | | C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
349 | | |
350 | | A[3][0] = C[0] ^ (~C[1] & C[2]); |
351 | | A[3][1] = C[1] ^ (~C[2] & C[3]); |
352 | | A[3][2] = C[2] ^ (~C[3] & C[4]); |
353 | | A[3][3] = C[3] ^ (~C[4] & C[0]); |
354 | | A[3][4] = C[4] ^ (~C[0] & C[1]); |
355 | | |
356 | | C[0] = ROL64(T[0][2], rhotates[0][2]); |
357 | | C[1] = ROL64(T[1][3], rhotates[1][3]); |
358 | | C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ |
359 | | C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ |
360 | | C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
361 | | |
362 | | A[4][0] = C[0] ^ (~C[1] & C[2]); |
363 | | A[4][1] = C[1] ^ (~C[2] & C[3]); |
364 | | A[4][2] = C[2] ^ (~C[3] & C[4]); |
365 | | A[4][3] = C[3] ^ (~C[4] & C[0]); |
366 | | A[4][4] = C[4] ^ (~C[0] & C[1]); |
367 | | } |
368 | | |
369 | | static void KeccakF1600(uint64_t A[5][5]) |
370 | | { |
371 | | size_t i; |
372 | | |
373 | | for (i = 0; i < 24; i++) { |
374 | | Round(A, i); |
375 | | } |
376 | | } |
377 | | |
378 | | #elif defined(KECCAK_1X_ALT) |
379 | | /* |
380 | | * This is variant of above KECCAK_1X that reduces requirement for |
381 | | * temporary storage even further, but at cost of more updates to A[][]. |
382 | | * It's less suitable if A[][] is memory bound, but better if it's |
383 | | * register bound. |
384 | | */ |
385 | | |
386 | | static void Round(uint64_t A[5][5], size_t i) |
387 | | { |
388 | | uint64_t C[5], D[5]; |
389 | | |
390 | | assert(i < OSSL_NELEM(iotas)); |
391 | | |
392 | | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
393 | | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
394 | | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
395 | | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
396 | | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
397 | | |
398 | | D[1] = C[0] ^ ROL64(C[2], 1); |
399 | | D[2] = C[1] ^ ROL64(C[3], 1); |
400 | | D[3] = C[2] ^= ROL64(C[4], 1); |
401 | | D[4] = C[3] ^= ROL64(C[0], 1); |
402 | | D[0] = C[4] ^= ROL64(C[1], 1); |
403 | | |
404 | | A[0][1] ^= D[1]; |
405 | | A[1][1] ^= D[1]; |
406 | | A[2][1] ^= D[1]; |
407 | | A[3][1] ^= D[1]; |
408 | | A[4][1] ^= D[1]; |
409 | | |
410 | | A[0][2] ^= D[2]; |
411 | | A[1][2] ^= D[2]; |
412 | | A[2][2] ^= D[2]; |
413 | | A[3][2] ^= D[2]; |
414 | | A[4][2] ^= D[2]; |
415 | | |
416 | | A[0][3] ^= C[2]; |
417 | | A[1][3] ^= C[2]; |
418 | | A[2][3] ^= C[2]; |
419 | | A[3][3] ^= C[2]; |
420 | | A[4][3] ^= C[2]; |
421 | | |
422 | | A[0][4] ^= C[3]; |
423 | | A[1][4] ^= C[3]; |
424 | | A[2][4] ^= C[3]; |
425 | | A[3][4] ^= C[3]; |
426 | | A[4][4] ^= C[3]; |
427 | | |
428 | | A[0][0] ^= C[4]; |
429 | | A[1][0] ^= C[4]; |
430 | | A[2][0] ^= C[4]; |
431 | | A[3][0] ^= C[4]; |
432 | | A[4][0] ^= C[4]; |
433 | | |
434 | | C[1] = A[0][1]; |
435 | | C[2] = A[0][2]; |
436 | | C[3] = A[0][3]; |
437 | | C[4] = A[0][4]; |
438 | | |
439 | | A[0][1] = ROL64(A[1][1], rhotates[1][1]); |
440 | | A[0][2] = ROL64(A[2][2], rhotates[2][2]); |
441 | | A[0][3] = ROL64(A[3][3], rhotates[3][3]); |
442 | | A[0][4] = ROL64(A[4][4], rhotates[4][4]); |
443 | | |
444 | | A[1][1] = ROL64(A[1][4], rhotates[1][4]); |
445 | | A[2][2] = ROL64(A[2][3], rhotates[2][3]); |
446 | | A[3][3] = ROL64(A[3][2], rhotates[3][2]); |
447 | | A[4][4] = ROL64(A[4][1], rhotates[4][1]); |
448 | | |
449 | | A[1][4] = ROL64(A[4][2], rhotates[4][2]); |
450 | | A[2][3] = ROL64(A[3][4], rhotates[3][4]); |
451 | | A[3][2] = ROL64(A[2][1], rhotates[2][1]); |
452 | | A[4][1] = ROL64(A[1][3], rhotates[1][3]); |
453 | | |
454 | | A[4][2] = ROL64(A[2][4], rhotates[2][4]); |
455 | | A[3][4] = ROL64(A[4][3], rhotates[4][3]); |
456 | | A[2][1] = ROL64(A[1][2], rhotates[1][2]); |
457 | | A[1][3] = ROL64(A[3][1], rhotates[3][1]); |
458 | | |
459 | | A[2][4] = ROL64(A[4][0], rhotates[4][0]); |
460 | | A[4][3] = ROL64(A[3][0], rhotates[3][0]); |
461 | | A[1][2] = ROL64(A[2][0], rhotates[2][0]); |
462 | | A[3][1] = ROL64(A[1][0], rhotates[1][0]); |
463 | | |
464 | | A[1][0] = ROL64(C[3], rhotates[0][3]); |
465 | | A[2][0] = ROL64(C[1], rhotates[0][1]); |
466 | | A[3][0] = ROL64(C[4], rhotates[0][4]); |
467 | | A[4][0] = ROL64(C[2], rhotates[0][2]); |
468 | | |
469 | | C[0] = A[0][0]; |
470 | | C[1] = A[1][0]; |
471 | | D[0] = A[0][1]; |
472 | | D[1] = A[1][1]; |
473 | | |
474 | | A[0][0] ^= (~A[0][1] & A[0][2]); |
475 | | A[1][0] ^= (~A[1][1] & A[1][2]); |
476 | | A[0][1] ^= (~A[0][2] & A[0][3]); |
477 | | A[1][1] ^= (~A[1][2] & A[1][3]); |
478 | | A[0][2] ^= (~A[0][3] & A[0][4]); |
479 | | A[1][2] ^= (~A[1][3] & A[1][4]); |
480 | | A[0][3] ^= (~A[0][4] & C[0]); |
481 | | A[1][3] ^= (~A[1][4] & C[1]); |
482 | | A[0][4] ^= (~C[0] & D[0]); |
483 | | A[1][4] ^= (~C[1] & D[1]); |
484 | | |
485 | | C[2] = A[2][0]; |
486 | | C[3] = A[3][0]; |
487 | | D[2] = A[2][1]; |
488 | | D[3] = A[3][1]; |
489 | | |
490 | | A[2][0] ^= (~A[2][1] & A[2][2]); |
491 | | A[3][0] ^= (~A[3][1] & A[3][2]); |
492 | | A[2][1] ^= (~A[2][2] & A[2][3]); |
493 | | A[3][1] ^= (~A[3][2] & A[3][3]); |
494 | | A[2][2] ^= (~A[2][3] & A[2][4]); |
495 | | A[3][2] ^= (~A[3][3] & A[3][4]); |
496 | | A[2][3] ^= (~A[2][4] & C[2]); |
497 | | A[3][3] ^= (~A[3][4] & C[3]); |
498 | | A[2][4] ^= (~C[2] & D[2]); |
499 | | A[3][4] ^= (~C[3] & D[3]); |
500 | | |
501 | | C[4] = A[4][0]; |
502 | | D[4] = A[4][1]; |
503 | | |
504 | | A[4][0] ^= (~A[4][1] & A[4][2]); |
505 | | A[4][1] ^= (~A[4][2] & A[4][3]); |
506 | | A[4][2] ^= (~A[4][3] & A[4][4]); |
507 | | A[4][3] ^= (~A[4][4] & C[4]); |
508 | | A[4][4] ^= (~C[4] & D[4]); |
509 | | A[0][0] ^= iotas[i]; |
510 | | } |
511 | | |
512 | | static void KeccakF1600(uint64_t A[5][5]) |
513 | | { |
514 | | size_t i; |
515 | | |
516 | | for (i = 0; i < 24; i++) { |
517 | | Round(A, i); |
518 | | } |
519 | | } |
520 | | |
521 | | #elif defined(KECCAK_2X) |
522 | | /* |
523 | | * This implementation is variant of KECCAK_1X above with outer-most |
524 | | * round loop unrolled twice. This allows to take temporary storage |
525 | | * out of round procedure and simplify references to it by alternating |
526 | | * it with actual data (see round loop below). Originally it was meant |
527 | | * rather as reference for an assembly implementation, but it seems to |
528 | | * play best with compilers [as well as provide best instruction per |
529 | | * processed byte ratio at minimal round unroll factor]... |
530 | | */ |
531 | | static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) |
532 | 15.9M | { |
533 | 15.9M | uint64_t C[5], D[5]; |
534 | | |
535 | 15.9M | assert(i < OSSL_NELEM(iotas)); |
536 | | |
537 | 15.9M | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
538 | 15.9M | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
539 | 15.9M | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
540 | 15.9M | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
541 | 15.9M | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
542 | | |
543 | 15.9M | D[0] = ROL64(C[1], 1) ^ C[4]; |
544 | 15.9M | D[1] = ROL64(C[2], 1) ^ C[0]; |
545 | 15.9M | D[2] = ROL64(C[3], 1) ^ C[1]; |
546 | 15.9M | D[3] = ROL64(C[4], 1) ^ C[2]; |
547 | 15.9M | D[4] = ROL64(C[0], 1) ^ C[3]; |
548 | | |
549 | 15.9M | C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
550 | 15.9M | C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
551 | 15.9M | C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
552 | 15.9M | C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
553 | 15.9M | C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
554 | | |
555 | 15.9M | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
556 | 15.9M | R[0][0] = C[0] ^ (C[1] | C[2]) ^ iotas[i]; |
557 | 15.9M | R[0][1] = C[1] ^ (~C[2] | C[3]); |
558 | 15.9M | R[0][2] = C[2] ^ (C[3] & C[4]); |
559 | 15.9M | R[0][3] = C[3] ^ (C[4] | C[0]); |
560 | 15.9M | R[0][4] = C[4] ^ (C[0] & C[1]); |
561 | | #else |
562 | | R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
563 | | R[0][1] = C[1] ^ (~C[2] & C[3]); |
564 | | R[0][2] = C[2] ^ (~C[3] & C[4]); |
565 | | R[0][3] = C[3] ^ (~C[4] & C[0]); |
566 | | R[0][4] = C[4] ^ (~C[0] & C[1]); |
567 | | #endif |
568 | | |
569 | 15.9M | C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
570 | 15.9M | C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
571 | 15.9M | C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
572 | 15.9M | C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
573 | 15.9M | C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
574 | | |
575 | 15.9M | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
576 | 15.9M | R[1][0] = C[0] ^ (C[1] | C[2]); |
577 | 15.9M | R[1][1] = C[1] ^ (C[2] & C[3]); |
578 | 15.9M | R[1][2] = C[2] ^ (C[3] | ~C[4]); |
579 | 15.9M | R[1][3] = C[3] ^ (C[4] | C[0]); |
580 | 15.9M | R[1][4] = C[4] ^ (C[0] & C[1]); |
581 | | #else |
582 | | R[1][0] = C[0] ^ (~C[1] & C[2]); |
583 | | R[1][1] = C[1] ^ (~C[2] & C[3]); |
584 | | R[1][2] = C[2] ^ (~C[3] & C[4]); |
585 | | R[1][3] = C[3] ^ (~C[4] & C[0]); |
586 | | R[1][4] = C[4] ^ (~C[0] & C[1]); |
587 | | #endif |
588 | | |
589 | 15.9M | C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
590 | 15.9M | C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
591 | 15.9M | C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
592 | 15.9M | C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
593 | 15.9M | C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
594 | | |
595 | 15.9M | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
596 | 15.9M | R[2][0] = C[0] ^ (C[1] | C[2]); |
597 | 15.9M | R[2][1] = C[1] ^ (C[2] & C[3]); |
598 | 15.9M | R[2][2] = C[2] ^ (~C[3] & C[4]); |
599 | 15.9M | R[2][3] = ~C[3] ^ (C[4] | C[0]); |
600 | 15.9M | R[2][4] = C[4] ^ (C[0] & C[1]); |
601 | | #else |
602 | | R[2][0] = C[0] ^ (~C[1] & C[2]); |
603 | | R[2][1] = C[1] ^ (~C[2] & C[3]); |
604 | | R[2][2] = C[2] ^ (~C[3] & C[4]); |
605 | | R[2][3] = C[3] ^ (~C[4] & C[0]); |
606 | | R[2][4] = C[4] ^ (~C[0] & C[1]); |
607 | | #endif |
608 | | |
609 | 15.9M | C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
610 | 15.9M | C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
611 | 15.9M | C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
612 | 15.9M | C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
613 | 15.9M | C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
614 | | |
615 | 15.9M | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
616 | 15.9M | R[3][0] = C[0] ^ (C[1] & C[2]); |
617 | 15.9M | R[3][1] = C[1] ^ (C[2] | C[3]); |
618 | 15.9M | R[3][2] = C[2] ^ (~C[3] | C[4]); |
619 | 15.9M | R[3][3] = ~C[3] ^ (C[4] & C[0]); |
620 | 15.9M | R[3][4] = C[4] ^ (C[0] | C[1]); |
621 | | #else |
622 | | R[3][0] = C[0] ^ (~C[1] & C[2]); |
623 | | R[3][1] = C[1] ^ (~C[2] & C[3]); |
624 | | R[3][2] = C[2] ^ (~C[3] & C[4]); |
625 | | R[3][3] = C[3] ^ (~C[4] & C[0]); |
626 | | R[3][4] = C[4] ^ (~C[0] & C[1]); |
627 | | #endif |
628 | | |
629 | 15.9M | C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
630 | 15.9M | C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
631 | 15.9M | C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
632 | 15.9M | C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
633 | 15.9M | C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
634 | | |
635 | 15.9M | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
636 | 15.9M | R[4][0] = C[0] ^ (~C[1] & C[2]); |
637 | 15.9M | R[4][1] = ~C[1] ^ (C[2] | C[3]); |
638 | 15.9M | R[4][2] = C[2] ^ (C[3] & C[4]); |
639 | 15.9M | R[4][3] = C[3] ^ (C[4] | C[0]); |
640 | 15.9M | R[4][4] = C[4] ^ (C[0] & C[1]); |
641 | | #else |
642 | | R[4][0] = C[0] ^ (~C[1] & C[2]); |
643 | | R[4][1] = C[1] ^ (~C[2] & C[3]); |
644 | | R[4][2] = C[2] ^ (~C[3] & C[4]); |
645 | | R[4][3] = C[3] ^ (~C[4] & C[0]); |
646 | | R[4][4] = C[4] ^ (~C[0] & C[1]); |
647 | | #endif |
648 | 15.9M | } |
649 | | |
650 | | static void KeccakF1600(uint64_t A[5][5]) |
651 | 663k | { |
652 | 663k | uint64_t T[5][5]; |
653 | 663k | size_t i; |
654 | | |
655 | 663k | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
656 | 663k | A[0][1] = ~A[0][1]; |
657 | 663k | A[0][2] = ~A[0][2]; |
658 | 663k | A[1][3] = ~A[1][3]; |
659 | 663k | A[2][2] = ~A[2][2]; |
660 | 663k | A[3][2] = ~A[3][2]; |
661 | 663k | A[4][0] = ~A[4][0]; |
662 | 663k | #endif |
663 | | |
664 | 8.62M | for (i = 0; i < 24; i += 2) { |
665 | 7.96M | Round(T, A, i); |
666 | 7.96M | Round(A, T, i + 1); |
667 | 7.96M | } |
668 | | |
669 | 663k | #ifdef KECCAK_COMPLEMENTING_TRANSFORM |
670 | 663k | A[0][1] = ~A[0][1]; |
671 | 663k | A[0][2] = ~A[0][2]; |
672 | 663k | A[1][3] = ~A[1][3]; |
673 | 663k | A[2][2] = ~A[2][2]; |
674 | 663k | A[3][2] = ~A[3][2]; |
675 | 663k | A[4][0] = ~A[4][0]; |
676 | 663k | #endif |
677 | 663k | } |
678 | | |
679 | | #else /* define KECCAK_INPLACE to compile this code path */ |
680 | | /* |
681 | | * This implementation is KECCAK_1X from above combined 4 times with |
682 | | * a twist that allows to omit temporary storage and perform in-place |
683 | | * processing. It's discussed in section 2.5 of "Keccak implementation |
684 | | * overview". It's likely to be best suited for processors with large |
685 | | * register bank... On the other hand processor with large register |
686 | | * bank can as well use KECCAK_1X_ALT, it would be as fast but much |
687 | | * more compact... |
688 | | */ |
689 | | static void FourRounds(uint64_t A[5][5], size_t i) |
690 | | { |
691 | | uint64_t B[5], C[5], D[5]; |
692 | | |
693 | | assert(i <= OSSL_NELEM(iotas) - 4); |
694 | | |
695 | | /* Round 4*n */ |
696 | | C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
697 | | C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
698 | | C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
699 | | C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
700 | | C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
701 | | |
702 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
703 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
704 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
705 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
706 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
707 | | |
708 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
709 | | B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
710 | | B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
711 | | B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
712 | | B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
713 | | |
714 | | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; |
715 | | C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); |
716 | | C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); |
717 | | C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); |
718 | | C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); |
719 | | |
720 | | B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
721 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
722 | | B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
723 | | B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
724 | | B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
725 | | |
726 | | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
727 | | C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
728 | | C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
729 | | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
730 | | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
731 | | |
732 | | B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
733 | | B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
734 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
735 | | B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
736 | | B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
737 | | |
738 | | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
739 | | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
740 | | C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
741 | | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
742 | | C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
743 | | |
744 | | B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
745 | | B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
746 | | B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
747 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
748 | | B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
749 | | |
750 | | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
751 | | C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
752 | | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
753 | | C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
754 | | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
755 | | |
756 | | B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
757 | | B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
758 | | B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
759 | | B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
760 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
761 | | |
762 | | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
763 | | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
764 | | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
765 | | C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
766 | | C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
767 | | |
768 | | /* Round 4*n+1 */ |
769 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
770 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
771 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
772 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
773 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
774 | | |
775 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
776 | | B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); |
777 | | B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); |
778 | | B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); |
779 | | B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); |
780 | | |
781 | | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; |
782 | | C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); |
783 | | C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); |
784 | | C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); |
785 | | C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); |
786 | | |
787 | | B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); |
788 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
789 | | B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); |
790 | | B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); |
791 | | B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); |
792 | | |
793 | | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
794 | | C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
795 | | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
796 | | C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
797 | | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
798 | | |
799 | | B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); |
800 | | B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); |
801 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
802 | | B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); |
803 | | B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); |
804 | | |
805 | | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
806 | | C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
807 | | C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
808 | | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
809 | | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
810 | | |
811 | | B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); |
812 | | B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); |
813 | | B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); |
814 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
815 | | B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); |
816 | | |
817 | | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
818 | | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
819 | | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
820 | | C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
821 | | C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
822 | | |
823 | | B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); |
824 | | B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); |
825 | | B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); |
826 | | B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); |
827 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
828 | | |
829 | | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
830 | | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
831 | | C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
832 | | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
833 | | C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
834 | | |
835 | | /* Round 4*n+2 */ |
836 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
837 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
838 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
839 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
840 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
841 | | |
842 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
843 | | B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); |
844 | | B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); |
845 | | B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); |
846 | | B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); |
847 | | |
848 | | C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; |
849 | | C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); |
850 | | C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); |
851 | | C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); |
852 | | C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); |
853 | | |
854 | | B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); |
855 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
856 | | B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); |
857 | | B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); |
858 | | B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); |
859 | | |
860 | | C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
861 | | C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
862 | | C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
863 | | C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
864 | | C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
865 | | |
866 | | B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); |
867 | | B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); |
868 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
869 | | B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); |
870 | | B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); |
871 | | |
872 | | C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
873 | | C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
874 | | C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
875 | | C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
876 | | C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
877 | | |
878 | | B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); |
879 | | B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); |
880 | | B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); |
881 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
882 | | B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); |
883 | | |
884 | | C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
885 | | C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
886 | | C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
887 | | C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
888 | | C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
889 | | |
890 | | B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); |
891 | | B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); |
892 | | B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); |
893 | | B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); |
894 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
895 | | |
896 | | C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
897 | | C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
898 | | C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
899 | | C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
900 | | C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
901 | | |
902 | | /* Round 4*n+3 */ |
903 | | D[0] = ROL64(C[1], 1) ^ C[4]; |
904 | | D[1] = ROL64(C[2], 1) ^ C[0]; |
905 | | D[2] = ROL64(C[3], 1) ^ C[1]; |
906 | | D[3] = ROL64(C[4], 1) ^ C[2]; |
907 | | D[4] = ROL64(C[0], 1) ^ C[3]; |
908 | | |
909 | | B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
910 | | B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); |
911 | | B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); |
912 | | B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); |
913 | | B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); |
914 | | |
915 | | /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; |
916 | | /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); |
917 | | /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); |
918 | | /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); |
919 | | /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); |
920 | | |
921 | | B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); |
922 | | B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
923 | | B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); |
924 | | B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); |
925 | | B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); |
926 | | |
927 | | /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); |
928 | | /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); |
929 | | /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); |
930 | | /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); |
931 | | /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); |
932 | | |
933 | | B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); |
934 | | B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); |
935 | | B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
936 | | B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); |
937 | | B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); |
938 | | |
939 | | /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); |
940 | | /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); |
941 | | /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); |
942 | | /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); |
943 | | /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); |
944 | | |
945 | | B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); |
946 | | B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); |
947 | | B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); |
948 | | B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
949 | | B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); |
950 | | |
951 | | /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); |
952 | | /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); |
953 | | /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); |
954 | | /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); |
955 | | /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); |
956 | | |
957 | | B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); |
958 | | B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); |
959 | | B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); |
960 | | B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); |
961 | | B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
962 | | |
963 | | /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); |
964 | | /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); |
965 | | /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); |
966 | | /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); |
967 | | /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); |
968 | | } |
969 | | |
970 | | static void KeccakF1600(uint64_t A[5][5]) |
971 | | { |
972 | | size_t i; |
973 | | |
974 | | for (i = 0; i < 24; i += 4) { |
975 | | FourRounds(A, i); |
976 | | } |
977 | | } |
978 | | |
979 | | #endif |
980 | | |
981 | | static uint64_t BitInterleave(uint64_t Ai) |
982 | 10.6M | { |
983 | 10.6M | if (BIT_INTERLEAVE) { |
984 | 0 | uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; |
985 | 0 | uint32_t t0, t1; |
986 | |
|
987 | 0 | t0 = lo & 0x55555555; |
988 | 0 | t0 |= t0 >> 1; |
989 | 0 | t0 &= 0x33333333; |
990 | 0 | t0 |= t0 >> 2; |
991 | 0 | t0 &= 0x0f0f0f0f; |
992 | 0 | t0 |= t0 >> 4; |
993 | 0 | t0 &= 0x00ff00ff; |
994 | 0 | t0 |= t0 >> 8; |
995 | 0 | t0 &= 0x0000ffff; |
996 | |
|
997 | 0 | t1 = hi & 0x55555555; |
998 | 0 | t1 |= t1 >> 1; |
999 | 0 | t1 &= 0x33333333; |
1000 | 0 | t1 |= t1 >> 2; |
1001 | 0 | t1 &= 0x0f0f0f0f; |
1002 | 0 | t1 |= t1 >> 4; |
1003 | 0 | t1 &= 0x00ff00ff; |
1004 | 0 | t1 |= t1 >> 8; |
1005 | 0 | t1 <<= 16; |
1006 | |
|
1007 | 0 | lo &= 0xaaaaaaaa; |
1008 | 0 | lo |= lo << 1; |
1009 | 0 | lo &= 0xcccccccc; |
1010 | 0 | lo |= lo << 2; |
1011 | 0 | lo &= 0xf0f0f0f0; |
1012 | 0 | lo |= lo << 4; |
1013 | 0 | lo &= 0xff00ff00; |
1014 | 0 | lo |= lo << 8; |
1015 | 0 | lo >>= 16; |
1016 | |
|
1017 | 0 | hi &= 0xaaaaaaaa; |
1018 | 0 | hi |= hi << 1; |
1019 | 0 | hi &= 0xcccccccc; |
1020 | 0 | hi |= hi << 2; |
1021 | 0 | hi &= 0xf0f0f0f0; |
1022 | 0 | hi |= hi << 4; |
1023 | 0 | hi &= 0xff00ff00; |
1024 | 0 | hi |= hi << 8; |
1025 | 0 | hi &= 0xffff0000; |
1026 | |
|
1027 | 0 | Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); |
1028 | 0 | } |
1029 | | |
1030 | 10.6M | return Ai; |
1031 | 10.6M | } |
1032 | | |
1033 | | static uint64_t BitDeinterleave(uint64_t Ai) |
1034 | 254 | { |
1035 | 254 | if (BIT_INTERLEAVE) { |
1036 | 0 | uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; |
1037 | 0 | uint32_t t0, t1; |
1038 | |
|
1039 | 0 | t0 = lo & 0x0000ffff; |
1040 | 0 | t0 |= t0 << 8; |
1041 | 0 | t0 &= 0x00ff00ff; |
1042 | 0 | t0 |= t0 << 4; |
1043 | 0 | t0 &= 0x0f0f0f0f; |
1044 | 0 | t0 |= t0 << 2; |
1045 | 0 | t0 &= 0x33333333; |
1046 | 0 | t0 |= t0 << 1; |
1047 | 0 | t0 &= 0x55555555; |
1048 | |
|
1049 | 0 | t1 = hi << 16; |
1050 | 0 | t1 |= t1 >> 8; |
1051 | 0 | t1 &= 0xff00ff00; |
1052 | 0 | t1 |= t1 >> 4; |
1053 | 0 | t1 &= 0xf0f0f0f0; |
1054 | 0 | t1 |= t1 >> 2; |
1055 | 0 | t1 &= 0xcccccccc; |
1056 | 0 | t1 |= t1 >> 1; |
1057 | 0 | t1 &= 0xaaaaaaaa; |
1058 | |
|
1059 | 0 | lo >>= 16; |
1060 | 0 | lo |= lo << 8; |
1061 | 0 | lo &= 0x00ff00ff; |
1062 | 0 | lo |= lo << 4; |
1063 | 0 | lo &= 0x0f0f0f0f; |
1064 | 0 | lo |= lo << 2; |
1065 | 0 | lo &= 0x33333333; |
1066 | 0 | lo |= lo << 1; |
1067 | 0 | lo &= 0x55555555; |
1068 | |
|
1069 | 0 | hi &= 0xffff0000; |
1070 | 0 | hi |= hi >> 8; |
1071 | 0 | hi &= 0xff00ff00; |
1072 | 0 | hi |= hi >> 4; |
1073 | 0 | hi &= 0xf0f0f0f0; |
1074 | 0 | hi |= hi >> 2; |
1075 | 0 | hi &= 0xcccccccc; |
1076 | 0 | hi |= hi >> 1; |
1077 | 0 | hi &= 0xaaaaaaaa; |
1078 | |
|
1079 | 0 | Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); |
1080 | 0 | } |
1081 | | |
1082 | 254 | return Ai; |
1083 | 254 | } |
1084 | | |
1085 | | /* |
1086 | | * SHA3_absorb can be called multiple times, but at each invocation |
1087 | | * largest multiple of |r| out of |len| bytes are processed. Then |
1088 | | * remaining amount of bytes is returned. This is done to spare caller |
1089 | | * trouble of calculating the largest multiple of |r|. |r| can be viewed |
1090 | | * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, |
1091 | | * 72, but can also be (1600 - 448)/8 = 144. All this means that message |
1092 | | * padding and intermediate sub-block buffering, byte- or bitwise, is |
1093 | | * caller's responsibility. |
1094 | | */ |
1095 | | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
1096 | | size_t r) |
1097 | 220 | { |
1098 | 220 | uint64_t *A_flat = (uint64_t *)A; |
1099 | 220 | size_t i, w = r / 8; |
1100 | | |
1101 | 220 | assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
1102 | | |
1103 | 663k | while (len >= r) { |
1104 | 11.3M | for (i = 0; i < w; i++) { |
1105 | 10.6M | uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; |
1106 | 10.6M | inp += 8; |
1107 | | |
1108 | 10.6M | A_flat[i] ^= BitInterleave(Ai); |
1109 | 10.6M | } |
1110 | 663k | KeccakF1600(A); |
1111 | 663k | len -= r; |
1112 | 663k | } |
1113 | | |
1114 | 220 | return len; |
1115 | 220 | } |
1116 | | |
1117 | | /* |
1118 | | * SHA3_squeeze may be called after SHA3_absorb to generate |out| hash value of |
1119 | | * |len| bytes. |
1120 | | * If multiple SHA3_squeeze calls are required the output length |len| must be a |
1121 | | * multiple of the blocksize, with |next| being 0 on the first call and 1 on |
1122 | | * subsequent calls. It is the callers responsibility to buffer the results. |
1123 | | * When only a single call to SHA3_squeeze is required, |len| can be any size |
1124 | | * and |next| must be 0. |
1125 | | */ |
1126 | | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r, |
1127 | | int next) |
1128 | 55 | { |
1129 | 55 | uint64_t *A_flat = (uint64_t *)A; |
1130 | 55 | size_t i, w = r / 8; |
1131 | | |
1132 | 55 | assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
1133 | | |
1134 | 78 | while (len != 0) { |
1135 | 55 | if (next) |
1136 | 0 | KeccakF1600(A); |
1137 | 55 | next = 1; |
1138 | 277 | for (i = 0; i < w && len != 0; i++) { |
1139 | 254 | uint64_t Ai = BitDeinterleave(A_flat[i]); |
1140 | | |
1141 | 254 | if (len < 8) { |
1142 | 160 | for (i = 0; i < len; i++) { |
1143 | 128 | *out++ = (unsigned char)Ai; |
1144 | 128 | Ai >>= 8; |
1145 | 128 | } |
1146 | 32 | return; |
1147 | 32 | } |
1148 | | |
1149 | 222 | out[0] = (unsigned char)(Ai); |
1150 | 222 | out[1] = (unsigned char)(Ai >> 8); |
1151 | 222 | out[2] = (unsigned char)(Ai >> 16); |
1152 | 222 | out[3] = (unsigned char)(Ai >> 24); |
1153 | 222 | out[4] = (unsigned char)(Ai >> 32); |
1154 | 222 | out[5] = (unsigned char)(Ai >> 40); |
1155 | 222 | out[6] = (unsigned char)(Ai >> 48); |
1156 | 222 | out[7] = (unsigned char)(Ai >> 56); |
1157 | 222 | out += 8; |
1158 | 222 | len -= 8; |
1159 | 222 | } |
1160 | 55 | } |
1161 | 55 | } |
1162 | | #endif |
1163 | | |
1164 | | #ifdef SELFTEST |
1165 | | /* |
1166 | | * Post-padding one-shot implementations would look as following: |
1167 | | * |
1168 | | * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); |
1169 | | * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); |
1170 | | * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); |
1171 | | * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); |
1172 | | * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); |
1173 | | * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); |
1174 | | */ |
1175 | | |
1176 | | void SHA3_sponge(const unsigned char *inp, size_t len, |
1177 | | unsigned char *out, size_t d, size_t r) |
1178 | | { |
1179 | | uint64_t A[5][5]; |
1180 | | |
1181 | | memset(A, 0, sizeof(A)); |
1182 | | SHA3_absorb(A, inp, len, r); |
1183 | | SHA3_squeeze(A, out, d, r); |
1184 | | } |
1185 | | |
1186 | | #include <stdio.h> |
1187 | | |
1188 | | int main(void) |
1189 | | { |
1190 | | /* |
1191 | | * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing |
1192 | | */ |
1193 | | unsigned char test[168] = { '\xf3', '\x3' }; |
1194 | | unsigned char out[512]; |
1195 | | size_t i; |
1196 | | static const unsigned char result[512] = { |
1197 | | 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, |
1198 | | 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, |
1199 | | 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, |
1200 | | 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, |
1201 | | 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, |
1202 | | 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, |
1203 | | 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, |
1204 | | 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, |
1205 | | 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, |
1206 | | 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, |
1207 | | 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, |
1208 | | 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, |
1209 | | 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, |
1210 | | 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, |
1211 | | 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, |
1212 | | 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, |
1213 | | 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, |
1214 | | 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, |
1215 | | 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, |
1216 | | 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, |
1217 | | 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, |
1218 | | 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, |
1219 | | 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, |
1220 | | 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, |
1221 | | 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, |
1222 | | 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, |
1223 | | 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, |
1224 | | 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, |
1225 | | 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, |
1226 | | 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, |
1227 | | 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, |
1228 | | 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, |
1229 | | 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, |
1230 | | 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, |
1231 | | 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, |
1232 | | 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, |
1233 | | 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, |
1234 | | 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, |
1235 | | 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, |
1236 | | 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, |
1237 | | 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, |
1238 | | 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, |
1239 | | 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, |
1240 | | 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, |
1241 | | 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, |
1242 | | 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, |
1243 | | 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, |
1244 | | 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, |
1245 | | 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, |
1246 | | 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, |
1247 | | 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, |
1248 | | 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, |
1249 | | 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, |
1250 | | 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, |
1251 | | 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, |
1252 | | 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, |
1253 | | 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, |
1254 | | 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, |
1255 | | 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, |
1256 | | 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, |
1257 | | 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, |
1258 | | 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, |
1259 | | 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, |
1260 | | 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 |
1261 | | }; |
1262 | | |
1263 | | test[167] = '\x80'; |
1264 | | SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); |
1265 | | |
1266 | | /* |
1267 | | * Rationale behind keeping output [formatted as below] is that |
1268 | | * one should be able to redirect it to a file, then copy-n-paste |
1269 | | * final "output val" from official example to another file, and |
1270 | | * compare the two with diff(1). |
1271 | | */ |
1272 | | for (i = 0; i < sizeof(out);) { |
1273 | | printf("%02X", out[i]); |
1274 | | printf(++i % 16 && i != sizeof(out) ? " " : "\n"); |
1275 | | } |
1276 | | |
1277 | | if (memcmp(out, result, sizeof(out))) { |
1278 | | fprintf(stderr, "failure\n"); |
1279 | | return 1; |
1280 | | } else { |
1281 | | fprintf(stderr, "success\n"); |
1282 | | return 0; |
1283 | | } |
1284 | | } |
1285 | | #endif |