Coverage Report

Created: 2025-12-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl/crypto/x509/v3_addr.c
Line
Count
Source
1
/*
2
 * Copyright 2006-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include <openssl/conf.h>
20
#include <openssl/asn1.h>
21
#include <openssl/asn1t.h>
22
#include <openssl/buffer.h>
23
#include <openssl/x509v3.h>
24
#include "internal/cryptlib.h"
25
#include "crypto/asn1.h"
26
#include "crypto/x509.h"
27
#include "ext_dat.h"
28
#include "x509_local.h"
29
30
#ifndef OPENSSL_NO_RFC3779
31
32
/*
33
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
34
 */
35
36
ASN1_SEQUENCE(IPAddressRange) = {
37
    ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
38
    ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
39
0
} ASN1_SEQUENCE_END(IPAddressRange)
40
0
41
0
ASN1_CHOICE(IPAddressOrRange) = {
42
0
    ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
43
0
    ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
44
0
} ASN1_CHOICE_END(IPAddressOrRange)
45
0
46
0
ASN1_CHOICE(IPAddressChoice) = {
47
0
    ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
48
0
    ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
49
0
} ASN1_CHOICE_END(IPAddressChoice)
50
0
51
0
ASN1_SEQUENCE(IPAddressFamily) = {
52
0
    ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
53
0
    ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
54
0
} ASN1_SEQUENCE_END(IPAddressFamily)
55
0
56
0
ASN1_ITEM_TEMPLATE(IPAddrBlocks) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
57
0
    IPAddrBlocks, IPAddressFamily)
58
0
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
59
60
    IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
63
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
64
65
/*
66
 * How much buffer space do we need for a raw address?
67
 */
68
#define ADDR_RAW_BUF_LEN 16
69
70
/*
71
 * What's the address length associated with this AFI?
72
 */
73
static int length_from_afi(const unsigned afi)
74
0
{
75
0
    switch (afi) {
76
0
    case IANA_AFI_IPV4:
77
0
        return 4;
78
0
    case IANA_AFI_IPV6:
79
0
        return 16;
80
0
    default:
81
0
        return 0;
82
0
    }
83
0
}
84
85
/*
86
 * Extract the AFI from an IPAddressFamily.
87
 */
88
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
89
0
{
90
0
    if (f == NULL
91
0
        || f->addressFamily == NULL
92
0
        || f->addressFamily->data == NULL
93
0
        || f->addressFamily->length < 2)
94
0
        return 0;
95
0
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
96
0
}
97
98
/*
99
 * Expand the bitstring form of an address into a raw byte array.
100
 * At the moment this is coded for simplicity, not speed.
101
 */
102
static int addr_expand(unsigned char *addr,
103
    const ASN1_BIT_STRING *bs,
104
    const int length, const unsigned char fill)
105
0
{
106
0
    if (bs->length < 0 || bs->length > length)
107
0
        return 0;
108
0
    if (bs->length > 0) {
109
0
        memcpy(addr, bs->data, bs->length);
110
0
        if ((bs->flags & 7) != 0) {
111
0
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
112
113
0
            if (fill == 0)
114
0
                addr[bs->length - 1] &= ~mask;
115
0
            else
116
0
                addr[bs->length - 1] |= mask;
117
0
        }
118
0
    }
119
0
    memset(addr + bs->length, fill, length - bs->length);
120
0
    return 1;
121
0
}
122
123
/*
124
 * Extract the prefix length from a bitstring.
125
 */
126
0
#define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))
127
128
/*
129
 * i2r handler for one address bitstring.
130
 */
131
static int i2r_address(BIO *out,
132
    const unsigned afi,
133
    const unsigned char fill, const ASN1_BIT_STRING *bs)
134
0
{
135
0
    unsigned char addr[ADDR_RAW_BUF_LEN];
136
0
    int i, n;
137
138
0
    if (bs->length < 0)
139
0
        return 0;
140
0
    switch (afi) {
141
0
    case IANA_AFI_IPV4:
142
0
        if (!addr_expand(addr, bs, 4, fill))
143
0
            return 0;
144
0
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
145
0
        break;
146
0
    case IANA_AFI_IPV6:
147
0
        if (!addr_expand(addr, bs, 16, fill))
148
0
            return 0;
149
0
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
150
0
            n -= 2)
151
0
            ;
152
0
        for (i = 0; i < n; i += 2)
153
0
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
154
0
                (i < 14 ? ":" : ""));
155
0
        if (i < 16)
156
0
            BIO_puts(out, ":");
157
0
        if (i == 0)
158
0
            BIO_puts(out, ":");
159
0
        break;
160
0
    default:
161
0
        for (i = 0; i < bs->length; i++)
162
0
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
163
0
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
164
0
        break;
165
0
    }
166
0
    return 1;
167
0
}
168
169
/*
170
 * i2r handler for a sequence of addresses and ranges.
171
 */
172
static int i2r_IPAddressOrRanges(BIO *out,
173
    const int indent,
174
    const IPAddressOrRanges *aors,
175
    const unsigned afi)
176
0
{
177
0
    int i;
178
179
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
180
0
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
181
182
0
        BIO_printf(out, "%*s", indent, "");
183
0
        switch (aor->type) {
184
0
        case IPAddressOrRange_addressPrefix:
185
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
186
0
                return 0;
187
0
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
188
0
            continue;
189
0
        case IPAddressOrRange_addressRange:
190
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
191
0
                return 0;
192
0
            BIO_puts(out, "-");
193
0
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
194
0
                return 0;
195
0
            BIO_puts(out, "\n");
196
0
            continue;
197
0
        }
198
0
    }
199
0
    return 1;
200
0
}
201
202
/*
203
 * i2r handler for an IPAddrBlocks extension.
204
 */
205
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
206
    void *ext, BIO *out, int indent)
207
0
{
208
0
    const IPAddrBlocks *addr = ext;
209
0
    int i;
210
211
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
212
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
213
0
        const unsigned int afi = X509v3_addr_get_afi(f);
214
215
0
        switch (afi) {
216
0
        case IANA_AFI_IPV4:
217
0
            BIO_printf(out, "%*sIPv4", indent, "");
218
0
            break;
219
0
        case IANA_AFI_IPV6:
220
0
            BIO_printf(out, "%*sIPv6", indent, "");
221
0
            break;
222
0
        default:
223
0
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
224
0
            break;
225
0
        }
226
0
        if (f->addressFamily->length > 2) {
227
0
            switch (f->addressFamily->data[2]) {
228
0
            case 1:
229
0
                BIO_puts(out, " (Unicast)");
230
0
                break;
231
0
            case 2:
232
0
                BIO_puts(out, " (Multicast)");
233
0
                break;
234
0
            case 3:
235
0
                BIO_puts(out, " (Unicast/Multicast)");
236
0
                break;
237
0
            case 4:
238
0
                BIO_puts(out, " (MPLS)");
239
0
                break;
240
0
            case 64:
241
0
                BIO_puts(out, " (Tunnel)");
242
0
                break;
243
0
            case 65:
244
0
                BIO_puts(out, " (VPLS)");
245
0
                break;
246
0
            case 66:
247
0
                BIO_puts(out, " (BGP MDT)");
248
0
                break;
249
0
            case 128:
250
0
                BIO_puts(out, " (MPLS-labeled VPN)");
251
0
                break;
252
0
            default:
253
0
                BIO_printf(out, " (Unknown SAFI %u)",
254
0
                    (unsigned)f->addressFamily->data[2]);
255
0
                break;
256
0
            }
257
0
        }
258
0
        switch (f->ipAddressChoice->type) {
259
0
        case IPAddressChoice_inherit:
260
0
            BIO_puts(out, ": inherit\n");
261
0
            break;
262
0
        case IPAddressChoice_addressesOrRanges:
263
0
            BIO_puts(out, ":\n");
264
0
            if (!i2r_IPAddressOrRanges(out,
265
0
                    indent + 2,
266
0
                    f->ipAddressChoice->u.addressesOrRanges, afi))
267
0
                return 0;
268
0
            break;
269
0
        }
270
0
    }
271
0
    return 1;
272
0
}
273
274
/*
275
 * Sort comparison function for a sequence of IPAddressOrRange
276
 * elements.
277
 *
278
 * There's no sane answer we can give if addr_expand() fails, and an
279
 * assertion failure on externally supplied data is seriously uncool,
280
 * so we just arbitrarily declare that if given invalid inputs this
281
 * function returns -1.  If this messes up your preferred sort order
282
 * for garbage input, tough noogies.
283
 */
284
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
285
    const IPAddressOrRange *b, const int length)
286
0
{
287
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
288
0
    int prefixlen_a = 0, prefixlen_b = 0;
289
0
    int r;
290
291
0
    switch (a->type) {
292
0
    case IPAddressOrRange_addressPrefix:
293
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
294
0
            return -1;
295
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
296
0
        break;
297
0
    case IPAddressOrRange_addressRange:
298
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
299
0
            return -1;
300
0
        prefixlen_a = length * 8;
301
0
        break;
302
0
    default:
303
0
        return -1;
304
0
    }
305
306
0
    switch (b->type) {
307
0
    case IPAddressOrRange_addressPrefix:
308
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
309
0
            return -1;
310
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
311
0
        break;
312
0
    case IPAddressOrRange_addressRange:
313
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
314
0
            return -1;
315
0
        prefixlen_b = length * 8;
316
0
        break;
317
0
    default:
318
0
        return -1;
319
0
    }
320
321
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
322
0
        return r;
323
0
    else
324
0
        return prefixlen_a - prefixlen_b;
325
0
}
326
327
/*
328
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
329
 * comparison routines are only allowed two arguments.
330
 */
331
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
332
    const IPAddressOrRange *const *b)
333
0
{
334
0
    return IPAddressOrRange_cmp(*a, *b, 4);
335
0
}
336
337
/*
338
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
339
 * comparison routines are only allowed two arguments.
340
 */
341
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
342
    const IPAddressOrRange *const *b)
343
0
{
344
0
    return IPAddressOrRange_cmp(*a, *b, 16);
345
0
}
346
347
/*
348
 * Calculate whether a range collapses to a prefix.
349
 * See last paragraph of RFC 3779 2.2.3.7.
350
 */
351
static int range_should_be_prefix(const unsigned char *min,
352
    const unsigned char *max, const int length)
353
0
{
354
0
    unsigned char mask;
355
0
    int i, j;
356
357
    /*
358
     * It is the responsibility of the caller to confirm min <= max. We don't
359
     * use ossl_assert() here since we have no way of signalling an error from
360
     * this function - so we just use a plain assert instead.
361
     */
362
0
    assert(memcmp(min, max, length) <= 0);
363
364
0
    for (i = 0; i < length && min[i] == max[i]; i++)
365
0
        ;
366
0
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
367
0
        ;
368
0
    if (i < j)
369
0
        return -1;
370
0
    if (i > j)
371
0
        return i * 8;
372
0
    mask = min[i] ^ max[i];
373
0
    switch (mask) {
374
0
    case 0x01:
375
0
        j = 7;
376
0
        break;
377
0
    case 0x03:
378
0
        j = 6;
379
0
        break;
380
0
    case 0x07:
381
0
        j = 5;
382
0
        break;
383
0
    case 0x0F:
384
0
        j = 4;
385
0
        break;
386
0
    case 0x1F:
387
0
        j = 3;
388
0
        break;
389
0
    case 0x3F:
390
0
        j = 2;
391
0
        break;
392
0
    case 0x7F:
393
0
        j = 1;
394
0
        break;
395
0
    default:
396
0
        return -1;
397
0
    }
398
0
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
399
0
        return -1;
400
0
    else
401
0
        return i * 8 + j;
402
0
}
403
404
/*
405
 * Construct a prefix.
406
 */
407
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
408
    const int prefixlen, const int afilen)
409
0
{
410
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
411
0
    IPAddressOrRange *aor;
412
413
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
414
0
        return 0;
415
0
    if ((aor = IPAddressOrRange_new()) == NULL)
416
0
        return 0;
417
0
    aor->type = IPAddressOrRange_addressPrefix;
418
0
    if (aor->u.addressPrefix == NULL && (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
419
0
        goto err;
420
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
421
0
        goto err;
422
0
    if (bitlen > 0)
423
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
424
0
    ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen);
425
426
0
    *result = aor;
427
0
    return 1;
428
429
0
err:
430
0
    IPAddressOrRange_free(aor);
431
0
    return 0;
432
0
}
433
434
/*
435
 * Construct a range.  If it can be expressed as a prefix,
436
 * return a prefix instead.  Doing this here simplifies
437
 * the rest of the code considerably.
438
 */
439
static int make_addressRange(IPAddressOrRange **result,
440
    unsigned char *min,
441
    unsigned char *max, const int length)
442
0
{
443
0
    IPAddressOrRange *aor;
444
0
    int i, prefixlen;
445
446
0
    if (memcmp(min, max, length) > 0)
447
0
        return 0;
448
449
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
450
0
        return make_addressPrefix(result, min, prefixlen, length);
451
452
0
    if ((aor = IPAddressOrRange_new()) == NULL)
453
0
        return 0;
454
0
    aor->type = IPAddressOrRange_addressRange;
455
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
456
0
        goto err;
457
0
    if (aor->u.addressRange->min == NULL && (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
458
0
        goto err;
459
0
    if (aor->u.addressRange->max == NULL && (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
460
0
        goto err;
461
462
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i)
463
0
        ;
464
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
465
0
        goto err;
466
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0);
467
0
    if (i > 0) {
468
0
        unsigned char b = min[i - 1];
469
0
        int j = 1;
470
471
0
        while ((b & (0xFFU >> j)) != 0)
472
0
            ++j;
473
0
        aor->u.addressRange->min->flags |= 8 - j;
474
0
    }
475
476
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
477
0
        ;
478
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
479
0
        goto err;
480
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0);
481
0
    if (i > 0) {
482
0
        unsigned char b = max[i - 1];
483
0
        int j = 1;
484
485
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
486
0
            ++j;
487
0
        aor->u.addressRange->max->flags |= 8 - j;
488
0
    }
489
490
0
    *result = aor;
491
0
    return 1;
492
493
0
err:
494
0
    IPAddressOrRange_free(aor);
495
0
    return 0;
496
0
}
497
498
/*
499
 * Construct a new address family or find an existing one.
500
 */
501
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
502
    const unsigned afi,
503
    const unsigned *safi)
504
0
{
505
0
    IPAddressFamily *f;
506
0
    unsigned char key[3];
507
0
    int keylen;
508
0
    int i;
509
510
0
    key[0] = (afi >> 8) & 0xFF;
511
0
    key[1] = afi & 0xFF;
512
0
    if (safi != NULL) {
513
0
        key[2] = *safi & 0xFF;
514
0
        keylen = 3;
515
0
    } else {
516
0
        keylen = 2;
517
0
    }
518
519
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
520
0
        f = sk_IPAddressFamily_value(addr, i);
521
0
        if (f->addressFamily->length == keylen && !memcmp(f->addressFamily->data, key, keylen))
522
0
            return f;
523
0
    }
524
525
0
    if ((f = IPAddressFamily_new()) == NULL)
526
0
        goto err;
527
0
    if (f->ipAddressChoice == NULL && (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
528
0
        goto err;
529
0
    if (f->addressFamily == NULL && (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
530
0
        goto err;
531
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
532
0
        goto err;
533
0
    if (!sk_IPAddressFamily_push(addr, f))
534
0
        goto err;
535
536
0
    return f;
537
538
0
err:
539
0
    IPAddressFamily_free(f);
540
0
    return NULL;
541
0
}
542
543
/*
544
 * Add an inheritance element.
545
 */
546
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
547
    const unsigned afi, const unsigned *safi)
548
0
{
549
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
550
551
0
    if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && f->ipAddressChoice->u.addressesOrRanges != NULL))
552
0
        return 0;
553
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL)
554
0
        return 1;
555
0
    if (f->ipAddressChoice->u.inherit == NULL && (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
556
0
        return 0;
557
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
558
0
    return 1;
559
0
}
560
561
/*
562
 * Construct an IPAddressOrRange sequence, or return an existing one.
563
 */
564
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
565
    const unsigned afi,
566
    const unsigned *safi)
567
0
{
568
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
569
0
    IPAddressOrRanges *aors = NULL;
570
571
0
    if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL))
572
0
        return NULL;
573
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
574
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
575
0
    if (aors != NULL)
576
0
        return aors;
577
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
578
0
        return NULL;
579
0
    switch (afi) {
580
0
    case IANA_AFI_IPV4:
581
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
582
0
        break;
583
0
    case IANA_AFI_IPV6:
584
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
585
0
        break;
586
0
    }
587
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
588
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
589
0
    return aors;
590
0
}
591
592
/*
593
 * Add a prefix.
594
 */
595
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
596
    const unsigned afi,
597
    const unsigned *safi,
598
    unsigned char *a, const int prefixlen)
599
0
{
600
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
601
0
    IPAddressOrRange *aor;
602
603
0
    if (aors == NULL
604
0
        || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
605
0
        return 0;
606
0
    if (sk_IPAddressOrRange_push(aors, aor))
607
0
        return 1;
608
0
    IPAddressOrRange_free(aor);
609
0
    return 0;
610
0
}
611
612
/*
613
 * Add a range.
614
 */
615
int X509v3_addr_add_range(IPAddrBlocks *addr,
616
    const unsigned afi,
617
    const unsigned *safi,
618
    unsigned char *min, unsigned char *max)
619
0
{
620
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
621
0
    IPAddressOrRange *aor;
622
0
    int length = length_from_afi(afi);
623
624
0
    if (aors == NULL)
625
0
        return 0;
626
0
    if (!make_addressRange(&aor, min, max, length))
627
0
        return 0;
628
0
    if (sk_IPAddressOrRange_push(aors, aor))
629
0
        return 1;
630
0
    IPAddressOrRange_free(aor);
631
0
    return 0;
632
0
}
633
634
/*
635
 * Extract min and max values from an IPAddressOrRange.
636
 */
637
static int extract_min_max(IPAddressOrRange *aor,
638
    unsigned char *min, unsigned char *max, int length)
639
0
{
640
0
    if (aor == NULL || min == NULL || max == NULL)
641
0
        return 0;
642
0
    switch (aor->type) {
643
0
    case IPAddressOrRange_addressPrefix:
644
0
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && addr_expand(max, aor->u.addressPrefix, length, 0xFF));
645
0
    case IPAddressOrRange_addressRange:
646
0
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && addr_expand(max, aor->u.addressRange->max, length, 0xFF));
647
0
    }
648
0
    return 0;
649
0
}
650
651
/*
652
 * Public wrapper for extract_min_max().
653
 */
654
int X509v3_addr_get_range(IPAddressOrRange *aor,
655
    const unsigned afi,
656
    unsigned char *min,
657
    unsigned char *max, const int length)
658
0
{
659
0
    int afi_length = length_from_afi(afi);
660
661
0
    if (aor == NULL || min == NULL || max == NULL || afi_length == 0 || length < afi_length || (aor->type != IPAddressOrRange_addressPrefix && aor->type != IPAddressOrRange_addressRange) || !extract_min_max(aor, min, max, afi_length))
662
0
        return 0;
663
664
0
    return afi_length;
665
0
}
666
667
/*
668
 * Sort comparison function for a sequence of IPAddressFamily.
669
 *
670
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
671
 * the ordering: I can read it as meaning that IPv6 without a SAFI
672
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
673
 * examples in appendix B suggest that the author intended the
674
 * null-SAFI rule to apply only within a single AFI, which is what I
675
 * would have expected and is what the following code implements.
676
 */
677
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
678
    const IPAddressFamily *const *b_)
679
0
{
680
0
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
681
0
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
682
0
    int len = ((a->length <= b->length) ? a->length : b->length);
683
0
    int cmp = memcmp(a->data, b->data, len);
684
685
0
    return cmp ? cmp : a->length - b->length;
686
0
}
687
688
static int IPAddressFamily_check_len(const IPAddressFamily *f)
689
0
{
690
0
    if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
691
0
        return 0;
692
0
    else
693
0
        return 1;
694
0
}
695
696
/*
697
 * Check whether an IPAddrBLocks is in canonical form.
698
 */
699
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
700
0
{
701
0
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
702
0
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
703
0
    IPAddressOrRanges *aors;
704
0
    int i, j, k;
705
706
    /*
707
     * Empty extension is canonical.
708
     */
709
0
    if (addr == NULL)
710
0
        return 1;
711
712
    /*
713
     * Check whether the top-level list is in order.
714
     */
715
0
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
716
0
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
717
0
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
718
719
0
        if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
720
0
            return 0;
721
722
0
        if (IPAddressFamily_cmp(&a, &b) >= 0)
723
0
            return 0;
724
0
    }
725
726
    /*
727
     * Top level's ok, now check each address family.
728
     */
729
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
730
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
731
0
        int length = length_from_afi(X509v3_addr_get_afi(f));
732
733
        /*
734
         * Inheritance is canonical.  Anything other than inheritance or
735
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
736
         */
737
0
        if (f == NULL || f->ipAddressChoice == NULL)
738
0
            return 0;
739
0
        switch (f->ipAddressChoice->type) {
740
0
        case IPAddressChoice_inherit:
741
0
            continue;
742
0
        case IPAddressChoice_addressesOrRanges:
743
0
            break;
744
0
        default:
745
0
            return 0;
746
0
        }
747
748
0
        if (!IPAddressFamily_check_len(f))
749
0
            return 0;
750
751
        /*
752
         * It's an IPAddressOrRanges sequence, check it.
753
         */
754
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
755
0
        if (sk_IPAddressOrRange_num(aors) == 0)
756
0
            return 0;
757
0
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
758
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
759
0
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
760
761
0
            if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length))
762
0
                return 0;
763
764
            /*
765
             * Punt misordered list, overlapping start, or inverted range.
766
             */
767
0
            if (memcmp(a_min, b_min, length) >= 0 || memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0)
768
0
                return 0;
769
770
            /*
771
             * Punt if adjacent or overlapping.  Check for adjacency by
772
             * subtracting one from b_min first.
773
             */
774
0
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
775
0
                ;
776
0
            if (memcmp(a_max, b_min, length) >= 0)
777
0
                return 0;
778
779
            /*
780
             * Check for range that should be expressed as a prefix.
781
             */
782
0
            if (a->type == IPAddressOrRange_addressRange && range_should_be_prefix(a_min, a_max, length) >= 0)
783
0
                return 0;
784
0
        }
785
786
        /*
787
         * Check range to see if it's inverted or should be a
788
         * prefix.
789
         */
790
0
        j = sk_IPAddressOrRange_num(aors) - 1;
791
0
        {
792
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
793
794
0
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
795
0
                if (!extract_min_max(a, a_min, a_max, length))
796
0
                    return 0;
797
0
                if (memcmp(a_min, a_max, length) > 0 || range_should_be_prefix(a_min, a_max, length) >= 0)
798
0
                    return 0;
799
0
            }
800
0
        }
801
0
    }
802
803
    /*
804
     * If we made it through all that, we're happy.
805
     */
806
0
    return 1;
807
0
}
808
809
/*
810
 * Whack an IPAddressOrRanges into canonical form.
811
 */
812
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
813
    const unsigned afi)
814
0
{
815
0
    int i, j, length = length_from_afi(afi);
816
817
    /*
818
     * Sort the IPAddressOrRanges sequence.
819
     */
820
0
    sk_IPAddressOrRange_sort(aors);
821
822
    /*
823
     * Clean up representation issues, punt on duplicates or overlaps.
824
     */
825
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
826
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
827
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
828
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
829
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
830
831
0
        if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length))
832
0
            return 0;
833
834
        /*
835
         * Punt inverted ranges.
836
         */
837
0
        if (memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0)
838
0
            return 0;
839
840
        /*
841
         * Punt overlaps.
842
         */
843
0
        if (memcmp(a_max, b_min, length) >= 0)
844
0
            return 0;
845
846
        /*
847
         * Merge if a and b are adjacent.  We check for
848
         * adjacency by subtracting one from b_min first.
849
         */
850
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
851
0
            ;
852
0
        if (memcmp(a_max, b_min, length) == 0) {
853
0
            IPAddressOrRange *merged;
854
855
0
            if (!make_addressRange(&merged, a_min, b_max, length))
856
0
                return 0;
857
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
858
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
859
0
            IPAddressOrRange_free(a);
860
0
            IPAddressOrRange_free(b);
861
0
            --i;
862
0
            continue;
863
0
        }
864
0
    }
865
866
    /*
867
     * Check for inverted final range.
868
     */
869
0
    j = sk_IPAddressOrRange_num(aors) - 1;
870
0
    {
871
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
872
873
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
874
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
875
876
0
            if (!extract_min_max(a, a_min, a_max, length))
877
0
                return 0;
878
0
            if (memcmp(a_min, a_max, length) > 0)
879
0
                return 0;
880
0
        }
881
0
    }
882
883
0
    return 1;
884
0
}
885
886
/*
887
 * Whack an IPAddrBlocks extension into canonical form.
888
 */
889
int X509v3_addr_canonize(IPAddrBlocks *addr)
890
0
{
891
0
    int i;
892
893
0
    if (addr == NULL) {
894
0
        ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT);
895
0
        return 0;
896
0
    }
897
898
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
899
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
900
901
0
        if (!IPAddressFamily_check_len(f))
902
0
            return 0;
903
904
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, X509v3_addr_get_afi(f)))
905
0
            return 0;
906
0
    }
907
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
908
0
    sk_IPAddressFamily_sort(addr);
909
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
910
0
        return 0;
911
0
    return 1;
912
0
}
913
914
/*
915
 * v2i handler for the IPAddrBlocks extension.
916
 */
917
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
918
    struct v3_ext_ctx *ctx,
919
    STACK_OF(CONF_VALUE) *values)
920
0
{
921
0
    static const char v4addr_chars[] = "0123456789.";
922
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
923
0
    IPAddrBlocks *addr = NULL;
924
0
    char *s = NULL, *t;
925
0
    int i;
926
927
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
928
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
929
0
        return NULL;
930
0
    }
931
932
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
933
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
934
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
935
0
        unsigned afi, *safi = NULL, safi_;
936
0
        const char *addr_chars = NULL;
937
0
        int prefixlen, i1, i2, delim, length;
938
939
0
        if (!ossl_v3_name_cmp(val->name, "IPv4")) {
940
0
            afi = IANA_AFI_IPV4;
941
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
942
0
            afi = IANA_AFI_IPV6;
943
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
944
0
            afi = IANA_AFI_IPV4;
945
0
            safi = &safi_;
946
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
947
0
            afi = IANA_AFI_IPV6;
948
0
            safi = &safi_;
949
0
        } else {
950
0
            ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
951
0
                "%s", val->name);
952
0
            goto err;
953
0
        }
954
955
0
        switch (afi) {
956
0
        case IANA_AFI_IPV4:
957
0
            addr_chars = v4addr_chars;
958
0
            break;
959
0
        case IANA_AFI_IPV6:
960
0
            addr_chars = v6addr_chars;
961
0
            break;
962
0
        }
963
964
0
        length = length_from_afi(afi);
965
966
        /*
967
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
968
         * the other input values.
969
         */
970
0
        if (safi != NULL) {
971
0
            if (val->value == NULL) {
972
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);
973
0
                goto err;
974
0
            }
975
0
            *safi = strtoul(val->value, &t, 0);
976
0
            t += strspn(t, " \t");
977
0
            if (*safi > 0xFF || *t++ != ':') {
978
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
979
0
                X509V3_conf_add_error_name_value(val);
980
0
                goto err;
981
0
            }
982
0
            t += strspn(t, " \t");
983
0
            s = OPENSSL_strdup(t);
984
0
        } else {
985
0
            s = OPENSSL_strdup(val->value);
986
0
        }
987
0
        if (s == NULL)
988
0
            goto err;
989
990
        /*
991
         * Check for inheritance.  Not worth additional complexity to
992
         * optimize this (seldom-used) case.
993
         */
994
0
        if (strcmp(s, "inherit") == 0) {
995
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
996
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
997
0
                X509V3_conf_add_error_name_value(val);
998
0
                goto err;
999
0
            }
1000
0
            OPENSSL_free(s);
1001
0
            s = NULL;
1002
0
            continue;
1003
0
        }
1004
1005
0
        i1 = (int)strspn(s, addr_chars);
1006
0
        i2 = i1 + (int)strspn(s + i1, " \t");
1007
0
        delim = s[i2++];
1008
0
        s[i1] = '\0';
1009
1010
0
        if (ossl_a2i_ipadd(min, s) != length) {
1011
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1012
0
            X509V3_conf_add_error_name_value(val);
1013
0
            goto err;
1014
0
        }
1015
1016
0
        switch (delim) {
1017
0
        case '/':
1018
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1019
0
            if (t == s + i2
1020
0
                || *t != '\0'
1021
0
                || prefixlen > (length * 8)
1022
0
                || prefixlen < 0) {
1023
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1024
0
                X509V3_conf_add_error_name_value(val);
1025
0
                goto err;
1026
0
            }
1027
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1028
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1029
0
                goto err;
1030
0
            }
1031
0
            break;
1032
0
        case '-':
1033
0
            i1 = i2 + (int)strspn(s + i2, " \t");
1034
0
            i2 = i1 + (int)strspn(s + i1, addr_chars);
1035
0
            if (i1 == i2 || s[i2] != '\0') {
1036
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1037
0
                X509V3_conf_add_error_name_value(val);
1038
0
                goto err;
1039
0
            }
1040
0
            if (ossl_a2i_ipadd(max, s + i1) != length) {
1041
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1042
0
                X509V3_conf_add_error_name_value(val);
1043
0
                goto err;
1044
0
            }
1045
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1046
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1047
0
                X509V3_conf_add_error_name_value(val);
1048
0
                goto err;
1049
0
            }
1050
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1051
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1052
0
                goto err;
1053
0
            }
1054
0
            break;
1055
0
        case '\0':
1056
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1057
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1058
0
                goto err;
1059
0
            }
1060
0
            break;
1061
0
        default:
1062
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1063
0
            X509V3_conf_add_error_name_value(val);
1064
0
            goto err;
1065
0
        }
1066
1067
0
        OPENSSL_free(s);
1068
0
        s = NULL;
1069
0
    }
1070
1071
    /*
1072
     * Canonize the result, then we're done.
1073
     */
1074
0
    if (!X509v3_addr_canonize(addr))
1075
0
        goto err;
1076
0
    return addr;
1077
1078
0
err:
1079
0
    OPENSSL_free(s);
1080
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1081
0
    return NULL;
1082
0
}
1083
1084
/*
1085
 * OpenSSL dispatch
1086
 */
1087
const X509V3_EXT_METHOD ossl_v3_addr = {
1088
    NID_sbgp_ipAddrBlock, /* nid */
1089
    0, /* flags */
1090
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1091
    0, 0, 0, 0, /* old functions, ignored */
1092
    0, /* i2s */
1093
    0, /* s2i */
1094
    0, /* i2v */
1095
    v2i_IPAddrBlocks, /* v2i */
1096
    i2r_IPAddrBlocks, /* i2r */
1097
    0, /* r2i */
1098
    NULL /* extension-specific data */
1099
};
1100
1101
/*
1102
 * Figure out whether extension sues inheritance.
1103
 */
1104
int X509v3_addr_inherits(IPAddrBlocks *addr)
1105
0
{
1106
0
    int i;
1107
1108
0
    if (addr == NULL)
1109
0
        return 0;
1110
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1111
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1112
1113
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1114
0
            return 1;
1115
0
    }
1116
0
    return 0;
1117
0
}
1118
1119
/*
1120
 * Figure out whether parent contains child.
1121
 */
1122
static int addr_contains(IPAddressOrRanges *parent,
1123
    IPAddressOrRanges *child, int length)
1124
0
{
1125
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1126
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1127
0
    int p, c;
1128
1129
0
    if (child == NULL || parent == child)
1130
0
        return 1;
1131
0
    if (parent == NULL)
1132
0
        return 0;
1133
1134
0
    p = 0;
1135
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1136
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1137
0
                c_min, c_max, length))
1138
0
            return 0;
1139
0
        for (;; p++) {
1140
0
            if (p >= sk_IPAddressOrRange_num(parent))
1141
0
                return 0;
1142
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1143
0
                    p_min, p_max, length))
1144
0
                return 0;
1145
0
            if (memcmp(p_max, c_max, length) < 0)
1146
0
                continue;
1147
0
            if (memcmp(p_min, c_min, length) > 0)
1148
0
                return 0;
1149
0
            break;
1150
0
        }
1151
0
    }
1152
1153
0
    return 1;
1154
0
}
1155
1156
/*
1157
 * Test whether a is a subset of b.
1158
 */
1159
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1160
0
{
1161
0
    int i;
1162
1163
0
    if (a == NULL || a == b)
1164
0
        return 1;
1165
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1166
0
        return 0;
1167
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1168
0
    sk_IPAddressFamily_sort(b);
1169
    /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */
1170
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1171
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1172
0
        int j = sk_IPAddressFamily_find(b, fa);
1173
0
        IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1174
1175
0
        if (fb == NULL)
1176
0
            return 0;
1177
0
        if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1178
0
            return 0;
1179
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1180
0
                fa->ipAddressChoice->u.addressesOrRanges,
1181
0
                length_from_afi(X509v3_addr_get_afi(fb))))
1182
0
            return 0;
1183
0
    }
1184
0
    return 1;
1185
0
}
1186
1187
/*
1188
 * Validation error handling via callback.
1189
 */
1190
#define validation_err(_err_)            \
1191
0
    do {                                 \
1192
0
        if (ctx != NULL) {               \
1193
0
            ctx->error = _err_;          \
1194
0
            ctx->error_depth = i;        \
1195
0
            ctx->current_cert = x;       \
1196
0
            rv = ctx->verify_cb(0, ctx); \
1197
0
        } else {                         \
1198
0
            rv = 0;                      \
1199
0
        }                                \
1200
0
        if (rv == 0)                     \
1201
0
            goto done;                   \
1202
0
    } while (0)
1203
1204
/*
1205
 * Core code for RFC 3779 2.3 path validation.
1206
 *
1207
 * Returns 1 for success, 0 on error.
1208
 *
1209
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1210
 * X509_V_OK.
1211
 */
1212
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1213
    STACK_OF(X509) *chain,
1214
    IPAddrBlocks *ext)
1215
0
{
1216
0
    IPAddrBlocks *child = NULL;
1217
0
    int i, j, ret = 0, rv;
1218
0
    X509 *x;
1219
1220
0
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1221
0
        || !ossl_assert(ctx != NULL || ext != NULL)
1222
0
        || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1223
0
        if (ctx != NULL)
1224
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1225
0
        return 0;
1226
0
    }
1227
1228
    /*
1229
     * Figure out where to start.  If we don't have an extension to
1230
     * check, we're done.  Otherwise, check canonical form and
1231
     * set up for walking up the chain.
1232
     */
1233
0
    if (ext != NULL) {
1234
0
        i = -1;
1235
0
        x = NULL;
1236
0
    } else {
1237
0
        i = 0;
1238
0
        x = sk_X509_value(chain, i);
1239
0
        if ((ext = x->rfc3779_addr) == NULL)
1240
0
            return 1; /* Return success */
1241
0
    }
1242
0
    if (!X509v3_addr_is_canonical(ext))
1243
0
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1244
0
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1245
0
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1246
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
1247
0
        if (ctx != NULL)
1248
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1249
0
        goto done;
1250
0
    }
1251
0
    sk_IPAddressFamily_sort(child);
1252
1253
    /*
1254
     * Now walk up the chain.  No cert may list resources that its
1255
     * parent doesn't list.
1256
     */
1257
0
    for (i++; i < sk_X509_num(chain); i++) {
1258
0
        x = sk_X509_value(chain, i);
1259
0
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1260
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1261
0
        if (x->rfc3779_addr == NULL) {
1262
0
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1263
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1264
1265
0
                if (!IPAddressFamily_check_len(fc))
1266
0
                    goto done;
1267
1268
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1269
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1270
0
                    break;
1271
0
                }
1272
0
            }
1273
0
            continue;
1274
0
        }
1275
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1276
0
            IPAddressFamily_cmp);
1277
0
        sk_IPAddressFamily_sort(x->rfc3779_addr);
1278
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1279
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1280
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1281
0
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1282
1283
0
            if (fp == NULL) {
1284
0
                if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1285
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1286
0
                    break;
1287
0
                }
1288
0
                continue;
1289
0
            }
1290
1291
0
            if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1292
0
                goto done;
1293
1294
0
            if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1295
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1296
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1297
0
                        fc->ipAddressChoice->u.addressesOrRanges,
1298
0
                        length_from_afi(X509v3_addr_get_afi(fc))))
1299
0
                    (void)sk_IPAddressFamily_set(child, j, fp);
1300
0
                else
1301
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1302
0
            }
1303
0
        }
1304
0
    }
1305
1306
    /*
1307
     * Trust anchor can't inherit.
1308
     */
1309
0
    if (x->rfc3779_addr != NULL) {
1310
0
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1311
0
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1312
1313
0
            if (!IPAddressFamily_check_len(fp))
1314
0
                goto done;
1315
1316
0
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1317
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1318
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1319
0
        }
1320
0
    }
1321
0
    ret = 1;
1322
0
done:
1323
0
    sk_IPAddressFamily_free(child);
1324
0
    return ret;
1325
0
}
1326
1327
#undef validation_err
1328
1329
/*
1330
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1331
 */
1332
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1333
0
{
1334
0
    if (ctx->chain == NULL
1335
0
        || sk_X509_num(ctx->chain) == 0
1336
0
        || ctx->verify_cb == NULL) {
1337
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1338
0
        return 0;
1339
0
    }
1340
0
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1341
0
}
1342
1343
/*
1344
 * RFC 3779 2.3 path validation of an extension.
1345
 * Test whether chain covers extension.
1346
 */
1347
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1348
    IPAddrBlocks *ext, int allow_inheritance)
1349
0
{
1350
0
    if (ext == NULL)
1351
0
        return 1;
1352
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1353
0
        return 0;
1354
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1355
0
        return 0;
1356
0
    return addr_validate_path_internal(NULL, chain, ext);
1357
0
}
1358
1359
#endif /* OPENSSL_NO_RFC3779 */