/src/openssl/include/crypto/md32_common.h
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1999-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /*- |
11 | | * This is a generic 32 bit "collector" for message digest algorithms. |
12 | | * Whenever needed it collects input character stream into chunks of |
13 | | * 32 bit values and invokes a block function that performs actual hash |
14 | | * calculations. |
15 | | * |
16 | | * Porting guide. |
17 | | * |
18 | | * Obligatory macros: |
19 | | * |
20 | | * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN |
21 | | * this macro defines byte order of input stream. |
22 | | * HASH_CBLOCK |
23 | | * size of a unit chunk HASH_BLOCK operates on. |
24 | | * HASH_LONG |
25 | | * has to be at least 32 bit wide. |
26 | | * HASH_CTX |
27 | | * context structure that at least contains following |
28 | | * members: |
29 | | * typedef struct { |
30 | | * ... |
31 | | * HASH_LONG Nl,Nh; |
32 | | * either { |
33 | | * HASH_LONG data[HASH_LBLOCK]; |
34 | | * unsigned char data[HASH_CBLOCK]; |
35 | | * }; |
36 | | * unsigned int num; |
37 | | * ... |
38 | | * } HASH_CTX; |
39 | | * data[] vector is expected to be zeroed upon first call to |
40 | | * HASH_UPDATE. |
41 | | * HASH_UPDATE |
42 | | * name of "Update" function, implemented here. |
43 | | * HASH_TRANSFORM |
44 | | * name of "Transform" function, implemented here. |
45 | | * HASH_FINAL |
46 | | * name of "Final" function, implemented here. |
47 | | * HASH_BLOCK_DATA_ORDER |
48 | | * name of "block" function capable of treating *unaligned* input |
49 | | * message in original (data) byte order, implemented externally. |
50 | | * HASH_MAKE_STRING |
51 | | * macro converting context variables to an ASCII hash string. |
52 | | * |
53 | | * MD5 example: |
54 | | * |
55 | | * #define DATA_ORDER_IS_LITTLE_ENDIAN |
56 | | * |
57 | | * #define HASH_LONG MD5_LONG |
58 | | * #define HASH_CTX MD5_CTX |
59 | | * #define HASH_CBLOCK MD5_CBLOCK |
60 | | * #define HASH_UPDATE MD5_Update |
61 | | * #define HASH_TRANSFORM MD5_Transform |
62 | | * #define HASH_FINAL MD5_Final |
63 | | * #define HASH_BLOCK_DATA_ORDER md5_block_data_order |
64 | | */ |
65 | | |
66 | | #ifndef OSSL_CRYPTO_MD32_COMMON_H |
67 | | #define OSSL_CRYPTO_MD32_COMMON_H |
68 | | #pragma once |
69 | | |
70 | | #include <openssl/crypto.h> |
71 | | /* |
72 | | * For ossl_(un)likely |
73 | | */ |
74 | | #include <internal/common.h> |
75 | | |
76 | | #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
77 | | #error "DATA_ORDER must be defined!" |
78 | | #endif |
79 | | |
80 | | #ifndef HASH_CBLOCK |
81 | | #error "HASH_CBLOCK must be defined!" |
82 | | #endif |
83 | | #ifndef HASH_LONG |
84 | | #error "HASH_LONG must be defined!" |
85 | | #endif |
86 | | #ifndef HASH_CTX |
87 | | #error "HASH_CTX must be defined!" |
88 | | #endif |
89 | | |
90 | | #ifndef HASH_UPDATE |
91 | | #error "HASH_UPDATE must be defined!" |
92 | | #endif |
93 | | #ifndef HASH_TRANSFORM |
94 | | #error "HASH_TRANSFORM must be defined!" |
95 | | #endif |
96 | | #ifndef HASH_FINAL |
97 | | #error "HASH_FINAL must be defined!" |
98 | | #endif |
99 | | |
100 | | #ifndef HASH_BLOCK_DATA_ORDER |
101 | | #error "HASH_BLOCK_DATA_ORDER must be defined!" |
102 | | #endif |
103 | | |
104 | 9.69G | #define ROTATE(a, n) (((a) << (n)) | (((a) & 0xffffffff) >> (32 - (n)))) |
105 | | |
106 | | #ifndef PEDANTIC |
107 | | #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) |
108 | | #if defined(__riscv_zbb) || defined(__riscv_zbkb) |
109 | | #if __riscv_xlen == 64 |
110 | | #undef ROTATE |
111 | | #define ROTATE(x, n) ({ MD32_REG_T ret; \ |
112 | | asm ("roriw %0, %1, %2" \ |
113 | | : "=r"(ret) \ |
114 | | : "r"(x), "i"(32 - (n))); ret; }) |
115 | | #endif |
116 | | #if __riscv_xlen == 32 |
117 | | #undef ROTATE |
118 | | #define ROTATE(x, n) ({ MD32_REG_T ret; \ |
119 | | asm ("rori %0, %1, %2" \ |
120 | | : "=r"(ret) \ |
121 | | : "r"(x), "i"(32 - (n))); ret; }) |
122 | | #endif |
123 | | #endif |
124 | | #endif |
125 | | #endif |
126 | | |
127 | | #if defined(DATA_ORDER_IS_BIG_ENDIAN) |
128 | | |
129 | 272M | #define HOST_c2l(c, l) (l = (((unsigned long)(*((c)++))) << 24), \ |
130 | 272M | l |= (((unsigned long)(*((c)++))) << 16), \ |
131 | 272M | l |= (((unsigned long)(*((c)++))) << 8), \ |
132 | 272M | l |= (((unsigned long)(*((c)++))))) |
133 | 139k | #define HOST_l2c(l, c) (*((c)++) = (unsigned char)(((l) >> 24) & 0xff), \ |
134 | 139k | *((c)++) = (unsigned char)(((l) >> 16) & 0xff), \ |
135 | 139k | *((c)++) = (unsigned char)(((l) >> 8) & 0xff), \ |
136 | 139k | *((c)++) = (unsigned char)(((l)) & 0xff), \ |
137 | 139k | l) |
138 | | |
139 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
140 | | |
141 | 91.0M | #define HOST_c2l(c, l) (l = (((unsigned long)(*((c)++)))), \ |
142 | 91.0M | l |= (((unsigned long)(*((c)++))) << 8), \ |
143 | 91.0M | l |= (((unsigned long)(*((c)++))) << 16), \ |
144 | 91.0M | l |= (((unsigned long)(*((c)++))) << 24)) |
145 | 1.52k | #define HOST_l2c(l, c) (*((c)++) = (unsigned char)(((l)) & 0xff), \ |
146 | 1.52k | *((c)++) = (unsigned char)(((l) >> 8) & 0xff), \ |
147 | 1.52k | *((c)++) = (unsigned char)(((l) >> 16) & 0xff), \ |
148 | 1.52k | *((c)++) = (unsigned char)(((l) >> 24) & 0xff), \ |
149 | 1.52k | l) |
150 | | |
151 | | #endif |
152 | | |
153 | | /* |
154 | | * Time for some action :-) |
155 | | */ |
156 | | |
157 | | int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len) |
158 | 165M | { |
159 | 165M | const unsigned char *data = data_; |
160 | 165M | unsigned char *p; |
161 | 165M | HASH_LONG l; |
162 | 165M | size_t n; |
163 | | |
164 | 165M | if (ossl_unlikely(len == 0)) |
165 | 0 | return 1; |
166 | | |
167 | 165M | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; |
168 | 165M | if (ossl_unlikely(l < c->Nl)) /* overflow */ |
169 | 0 | c->Nh++; |
170 | 165M | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on |
171 | | * 16-bit */ |
172 | 165M | c->Nl = l; |
173 | | |
174 | 165M | n = c->num; |
175 | 165M | if (ossl_likely(n != 0)) { |
176 | 163M | p = (unsigned char *)c->data; |
177 | | |
178 | 163M | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { |
179 | 2.59M | memcpy(p + n, data, HASH_CBLOCK - n); |
180 | 2.59M | HASH_BLOCK_DATA_ORDER(c, p, 1); |
181 | 2.59M | n = HASH_CBLOCK - n; |
182 | 2.59M | data += n; |
183 | 2.59M | len -= n; |
184 | 2.59M | c->num = 0; |
185 | | /* |
186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. |
187 | | * Using OPENSSL_cleanse() here could be a performance issue. It |
188 | | * will get properly cleansed on finalisation so this isn't a |
189 | | * security problem. |
190 | | */ |
191 | 2.59M | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ |
192 | 160M | } else { |
193 | 160M | memcpy(p + n, data, len); |
194 | 160M | c->num += (unsigned int)len; |
195 | 160M | return 1; |
196 | 160M | } |
197 | 163M | } |
198 | | |
199 | 5.21M | n = len / HASH_CBLOCK; |
200 | 5.21M | if (n > 0) { |
201 | 25.6k | HASH_BLOCK_DATA_ORDER(c, data, n); |
202 | 25.6k | n *= HASH_CBLOCK; |
203 | 25.6k | data += n; |
204 | 25.6k | len -= n; |
205 | 25.6k | } |
206 | | |
207 | 5.21M | if (len != 0) { |
208 | 2.59M | p = (unsigned char *)c->data; |
209 | 2.59M | c->num = (unsigned int)len; |
210 | 2.59M | memcpy(p, data, len); |
211 | 2.59M | } |
212 | 5.21M | return 1; |
213 | 165M | } Line | Count | Source | 158 | 130 | { | 159 | 130 | const unsigned char *data = data_; | 160 | 130 | unsigned char *p; | 161 | 130 | HASH_LONG l; | 162 | 130 | size_t n; | 163 | | | 164 | 130 | if (ossl_unlikely(len == 0)) | 165 | 0 | return 1; | 166 | | | 167 | 130 | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; | 168 | 130 | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 169 | 0 | c->Nh++; | 170 | 130 | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on | 171 | | * 16-bit */ | 172 | 130 | c->Nl = l; | 173 | | | 174 | 130 | n = c->num; | 175 | 130 | if (ossl_likely(n != 0)) { | 176 | 0 | p = (unsigned char *)c->data; | 177 | |
| 178 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 179 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 180 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 181 | 0 | n = HASH_CBLOCK - n; | 182 | 0 | data += n; | 183 | 0 | len -= n; | 184 | 0 | c->num = 0; | 185 | | /* | 186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 187 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 188 | | * will get properly cleansed on finalisation so this isn't a | 189 | | * security problem. | 190 | | */ | 191 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 192 | 0 | } else { | 193 | 0 | memcpy(p + n, data, len); | 194 | 0 | c->num += (unsigned int)len; | 195 | 0 | return 1; | 196 | 0 | } | 197 | 0 | } | 198 | | | 199 | 130 | n = len / HASH_CBLOCK; | 200 | 130 | if (n > 0) { | 201 | 130 | HASH_BLOCK_DATA_ORDER(c, data, n); | 202 | 130 | n *= HASH_CBLOCK; | 203 | 130 | data += n; | 204 | 130 | len -= n; | 205 | 130 | } | 206 | | | 207 | 130 | if (len != 0) { | 208 | 56 | p = (unsigned char *)c->data; | 209 | 56 | c->num = (unsigned int)len; | 210 | 56 | memcpy(p, data, len); | 211 | 56 | } | 212 | 130 | return 1; | 213 | 130 | } |
Line | Count | Source | 158 | 238 | { | 159 | 238 | const unsigned char *data = data_; | 160 | 238 | unsigned char *p; | 161 | 238 | HASH_LONG l; | 162 | 238 | size_t n; | 163 | | | 164 | 238 | if (ossl_unlikely(len == 0)) | 165 | 0 | return 1; | 166 | | | 167 | 238 | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; | 168 | 238 | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 169 | 0 | c->Nh++; | 170 | 238 | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on | 171 | | * 16-bit */ | 172 | 238 | c->Nl = l; | 173 | | | 174 | 238 | n = c->num; | 175 | 238 | if (ossl_likely(n != 0)) { | 176 | 0 | p = (unsigned char *)c->data; | 177 | |
| 178 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 179 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 180 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 181 | 0 | n = HASH_CBLOCK - n; | 182 | 0 | data += n; | 183 | 0 | len -= n; | 184 | 0 | c->num = 0; | 185 | | /* | 186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 187 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 188 | | * will get properly cleansed on finalisation so this isn't a | 189 | | * security problem. | 190 | | */ | 191 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 192 | 0 | } else { | 193 | 0 | memcpy(p + n, data, len); | 194 | 0 | c->num += (unsigned int)len; | 195 | 0 | return 1; | 196 | 0 | } | 197 | 0 | } | 198 | | | 199 | 238 | n = len / HASH_CBLOCK; | 200 | 238 | if (n > 0) { | 201 | 238 | HASH_BLOCK_DATA_ORDER(c, data, n); | 202 | 238 | n *= HASH_CBLOCK; | 203 | 238 | data += n; | 204 | 238 | len -= n; | 205 | 238 | } | 206 | | | 207 | 238 | if (len != 0) { | 208 | 79 | p = (unsigned char *)c->data; | 209 | 79 | c->num = (unsigned int)len; | 210 | 79 | memcpy(p, data, len); | 211 | 79 | } | 212 | 238 | return 1; | 213 | 238 | } |
Line | Count | Source | 158 | 120 | { | 159 | 120 | const unsigned char *data = data_; | 160 | 120 | unsigned char *p; | 161 | 120 | HASH_LONG l; | 162 | 120 | size_t n; | 163 | | | 164 | 120 | if (ossl_unlikely(len == 0)) | 165 | 0 | return 1; | 166 | | | 167 | 120 | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; | 168 | 120 | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 169 | 0 | c->Nh++; | 170 | 120 | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on | 171 | | * 16-bit */ | 172 | 120 | c->Nl = l; | 173 | | | 174 | 120 | n = c->num; | 175 | 120 | if (ossl_likely(n != 0)) { | 176 | 0 | p = (unsigned char *)c->data; | 177 | |
| 178 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 179 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 180 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 181 | 0 | n = HASH_CBLOCK - n; | 182 | 0 | data += n; | 183 | 0 | len -= n; | 184 | 0 | c->num = 0; | 185 | | /* | 186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 187 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 188 | | * will get properly cleansed on finalisation so this isn't a | 189 | | * security problem. | 190 | | */ | 191 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 192 | 0 | } else { | 193 | 0 | memcpy(p + n, data, len); | 194 | 0 | c->num += (unsigned int)len; | 195 | 0 | return 1; | 196 | 0 | } | 197 | 0 | } | 198 | | | 199 | 120 | n = len / HASH_CBLOCK; | 200 | 120 | if (n > 0) { | 201 | 120 | HASH_BLOCK_DATA_ORDER(c, data, n); | 202 | 120 | n *= HASH_CBLOCK; | 203 | 120 | data += n; | 204 | 120 | len -= n; | 205 | 120 | } | 206 | | | 207 | 120 | if (len != 0) { | 208 | 50 | p = (unsigned char *)c->data; | 209 | 50 | c->num = (unsigned int)len; | 210 | 50 | memcpy(p, data, len); | 211 | 50 | } | 212 | 120 | return 1; | 213 | 120 | } |
Line | Count | Source | 158 | 182 | { | 159 | 182 | const unsigned char *data = data_; | 160 | 182 | unsigned char *p; | 161 | 182 | HASH_LONG l; | 162 | 182 | size_t n; | 163 | | | 164 | 182 | if (ossl_unlikely(len == 0)) | 165 | 0 | return 1; | 166 | | | 167 | 182 | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; | 168 | 182 | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 169 | 0 | c->Nh++; | 170 | 182 | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on | 171 | | * 16-bit */ | 172 | 182 | c->Nl = l; | 173 | | | 174 | 182 | n = c->num; | 175 | 182 | if (ossl_likely(n != 0)) { | 176 | 0 | p = (unsigned char *)c->data; | 177 | |
| 178 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 179 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 180 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 181 | 0 | n = HASH_CBLOCK - n; | 182 | 0 | data += n; | 183 | 0 | len -= n; | 184 | 0 | c->num = 0; | 185 | | /* | 186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 187 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 188 | | * will get properly cleansed on finalisation so this isn't a | 189 | | * security problem. | 190 | | */ | 191 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 192 | 0 | } else { | 193 | 0 | memcpy(p + n, data, len); | 194 | 0 | c->num += (unsigned int)len; | 195 | 0 | return 1; | 196 | 0 | } | 197 | 0 | } | 198 | | | 199 | 182 | n = len / HASH_CBLOCK; | 200 | 182 | if (n > 0) { | 201 | 182 | HASH_BLOCK_DATA_ORDER(c, data, n); | 202 | 182 | n *= HASH_CBLOCK; | 203 | 182 | data += n; | 204 | 182 | len -= n; | 205 | 182 | } | 206 | | | 207 | 182 | if (len != 0) { | 208 | 54 | p = (unsigned char *)c->data; | 209 | 54 | c->num = (unsigned int)len; | 210 | 54 | memcpy(p, data, len); | 211 | 54 | } | 212 | 182 | return 1; | 213 | 182 | } |
Line | Count | Source | 158 | 165M | { | 159 | 165M | const unsigned char *data = data_; | 160 | 165M | unsigned char *p; | 161 | 165M | HASH_LONG l; | 162 | 165M | size_t n; | 163 | | | 164 | 165M | if (ossl_unlikely(len == 0)) | 165 | 0 | return 1; | 166 | | | 167 | 165M | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; | 168 | 165M | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 169 | 0 | c->Nh++; | 170 | 165M | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on | 171 | | * 16-bit */ | 172 | 165M | c->Nl = l; | 173 | | | 174 | 165M | n = c->num; | 175 | 165M | if (ossl_likely(n != 0)) { | 176 | 163M | p = (unsigned char *)c->data; | 177 | | | 178 | 163M | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 179 | 2.59M | memcpy(p + n, data, HASH_CBLOCK - n); | 180 | 2.59M | HASH_BLOCK_DATA_ORDER(c, p, 1); | 181 | 2.59M | n = HASH_CBLOCK - n; | 182 | 2.59M | data += n; | 183 | 2.59M | len -= n; | 184 | 2.59M | c->num = 0; | 185 | | /* | 186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 187 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 188 | | * will get properly cleansed on finalisation so this isn't a | 189 | | * security problem. | 190 | | */ | 191 | 2.59M | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 192 | 160M | } else { | 193 | 160M | memcpy(p + n, data, len); | 194 | 160M | c->num += (unsigned int)len; | 195 | 160M | return 1; | 196 | 160M | } | 197 | 163M | } | 198 | | | 199 | 5.21M | n = len / HASH_CBLOCK; | 200 | 5.21M | if (n > 0) { | 201 | 24.8k | HASH_BLOCK_DATA_ORDER(c, data, n); | 202 | 24.8k | n *= HASH_CBLOCK; | 203 | 24.8k | data += n; | 204 | 24.8k | len -= n; | 205 | 24.8k | } | 206 | | | 207 | 5.21M | if (len != 0) { | 208 | 2.59M | p = (unsigned char *)c->data; | 209 | 2.59M | c->num = (unsigned int)len; | 210 | 2.59M | memcpy(p, data, len); | 211 | 2.59M | } | 212 | 5.21M | return 1; | 213 | 165M | } |
Line | Count | Source | 158 | 160 | { | 159 | 160 | const unsigned char *data = data_; | 160 | 160 | unsigned char *p; | 161 | 160 | HASH_LONG l; | 162 | 160 | size_t n; | 163 | | | 164 | 160 | if (ossl_unlikely(len == 0)) | 165 | 0 | return 1; | 166 | | | 167 | 160 | l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL; | 168 | 160 | if (ossl_unlikely(l < c->Nl)) /* overflow */ | 169 | 0 | c->Nh++; | 170 | 160 | c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on | 171 | | * 16-bit */ | 172 | 160 | c->Nl = l; | 173 | | | 174 | 160 | n = c->num; | 175 | 160 | if (ossl_likely(n != 0)) { | 176 | 0 | p = (unsigned char *)c->data; | 177 | |
| 178 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 179 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 180 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 181 | 0 | n = HASH_CBLOCK - n; | 182 | 0 | data += n; | 183 | 0 | len -= n; | 184 | 0 | c->num = 0; | 185 | | /* | 186 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 187 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 188 | | * will get properly cleansed on finalisation so this isn't a | 189 | | * security problem. | 190 | | */ | 191 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 192 | 0 | } else { | 193 | 0 | memcpy(p + n, data, len); | 194 | 0 | c->num += (unsigned int)len; | 195 | 0 | return 1; | 196 | 0 | } | 197 | 0 | } | 198 | | | 199 | 160 | n = len / HASH_CBLOCK; | 200 | 160 | if (n > 0) { | 201 | 160 | HASH_BLOCK_DATA_ORDER(c, data, n); | 202 | 160 | n *= HASH_CBLOCK; | 203 | 160 | data += n; | 204 | 160 | len -= n; | 205 | 160 | } | 206 | | | 207 | 160 | if (len != 0) { | 208 | 66 | p = (unsigned char *)c->data; | 209 | 66 | c->num = (unsigned int)len; | 210 | 66 | memcpy(p, data, len); | 211 | 66 | } | 212 | 160 | return 1; | 213 | 160 | } |
|
214 | | |
215 | | void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data) |
216 | 0 | { |
217 | 0 | HASH_BLOCK_DATA_ORDER(c, data, 1); |
218 | 0 | } Unexecuted instantiation: MD4_Transform Unexecuted instantiation: MD5_Transform Unexecuted instantiation: RIPEMD160_Transform Unexecuted instantiation: SHA1_Transform Unexecuted instantiation: SHA256_Transform Unexecuted instantiation: ossl_sm3_transform |
219 | | |
220 | | int HASH_FINAL(unsigned char *md, HASH_CTX *c) |
221 | 14.2k | { |
222 | 14.2k | unsigned char *p = (unsigned char *)c->data; |
223 | 14.2k | size_t n = c->num; |
224 | | |
225 | 14.2k | p[n] = 0x80; /* there is always room for one */ |
226 | 14.2k | n++; |
227 | | |
228 | 14.2k | if (n > (HASH_CBLOCK - 8)) { |
229 | 202 | memset(p + n, 0, HASH_CBLOCK - n); |
230 | 202 | n = 0; |
231 | 202 | HASH_BLOCK_DATA_ORDER(c, p, 1); |
232 | 202 | } |
233 | 14.2k | memset(p + n, 0, HASH_CBLOCK - 8 - n); |
234 | | |
235 | 14.2k | p += HASH_CBLOCK - 8; |
236 | | #if defined(DATA_ORDER_IS_BIG_ENDIAN) |
237 | 13.9k | (void)HOST_l2c(c->Nh, p); |
238 | 13.9k | (void)HOST_l2c(c->Nl, p); |
239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
240 | 244 | (void)HOST_l2c(c->Nl, p); |
241 | 244 | (void)HOST_l2c(c->Nh, p); |
242 | | #endif |
243 | 14.2k | p -= HASH_CBLOCK; |
244 | 14.2k | HASH_BLOCK_DATA_ORDER(c, p, 1); |
245 | 14.2k | c->num = 0; |
246 | 14.2k | OPENSSL_cleanse(p, HASH_CBLOCK); |
247 | | |
248 | | #ifndef HASH_MAKE_STRING |
249 | | #error "HASH_MAKE_STRING must be defined!" |
250 | | #else |
251 | 14.2k | HASH_MAKE_STRING(c, md); |
252 | 13.8k | #endif |
253 | | |
254 | 13.8k | return 1; |
255 | 14.2k | } Line | Count | Source | 221 | 65 | { | 222 | 65 | unsigned char *p = (unsigned char *)c->data; | 223 | 65 | size_t n = c->num; | 224 | | | 225 | 65 | p[n] = 0x80; /* there is always room for one */ | 226 | 65 | n++; | 227 | | | 228 | 65 | if (n > (HASH_CBLOCK - 8)) { | 229 | 19 | memset(p + n, 0, HASH_CBLOCK - n); | 230 | 19 | n = 0; | 231 | 19 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 232 | 19 | } | 233 | 65 | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 234 | | | 235 | 65 | p += HASH_CBLOCK - 8; | 236 | | #if defined(DATA_ORDER_IS_BIG_ENDIAN) | 237 | | (void)HOST_l2c(c->Nh, p); | 238 | | (void)HOST_l2c(c->Nl, p); | 239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 240 | 65 | (void)HOST_l2c(c->Nl, p); | 241 | 65 | (void)HOST_l2c(c->Nh, p); | 242 | 65 | #endif | 243 | 65 | p -= HASH_CBLOCK; | 244 | 65 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 245 | 65 | c->num = 0; | 246 | 65 | OPENSSL_cleanse(p, HASH_CBLOCK); | 247 | | | 248 | | #ifndef HASH_MAKE_STRING | 249 | | #error "HASH_MAKE_STRING must be defined!" | 250 | | #else | 251 | 65 | HASH_MAKE_STRING(c, md); | 252 | 65 | #endif | 253 | | | 254 | 65 | return 1; | 255 | 65 | } |
Line | Count | Source | 221 | 119 | { | 222 | 119 | unsigned char *p = (unsigned char *)c->data; | 223 | 119 | size_t n = c->num; | 224 | | | 225 | 119 | p[n] = 0x80; /* there is always room for one */ | 226 | 119 | n++; | 227 | | | 228 | 119 | if (n > (HASH_CBLOCK - 8)) { | 229 | 55 | memset(p + n, 0, HASH_CBLOCK - n); | 230 | 55 | n = 0; | 231 | 55 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 232 | 55 | } | 233 | 119 | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 234 | | | 235 | 119 | p += HASH_CBLOCK - 8; | 236 | | #if defined(DATA_ORDER_IS_BIG_ENDIAN) | 237 | | (void)HOST_l2c(c->Nh, p); | 238 | | (void)HOST_l2c(c->Nl, p); | 239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 240 | 119 | (void)HOST_l2c(c->Nl, p); | 241 | 119 | (void)HOST_l2c(c->Nh, p); | 242 | 119 | #endif | 243 | 119 | p -= HASH_CBLOCK; | 244 | 119 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 245 | 119 | c->num = 0; | 246 | 119 | OPENSSL_cleanse(p, HASH_CBLOCK); | 247 | | | 248 | | #ifndef HASH_MAKE_STRING | 249 | | #error "HASH_MAKE_STRING must be defined!" | 250 | | #else | 251 | 119 | HASH_MAKE_STRING(c, md); | 252 | 119 | #endif | 253 | | | 254 | 119 | return 1; | 255 | 119 | } |
Line | Count | Source | 221 | 60 | { | 222 | 60 | unsigned char *p = (unsigned char *)c->data; | 223 | 60 | size_t n = c->num; | 224 | | | 225 | 60 | p[n] = 0x80; /* there is always room for one */ | 226 | 60 | n++; | 227 | | | 228 | 60 | if (n > (HASH_CBLOCK - 8)) { | 229 | 24 | memset(p + n, 0, HASH_CBLOCK - n); | 230 | 24 | n = 0; | 231 | 24 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 232 | 24 | } | 233 | 60 | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 234 | | | 235 | 60 | p += HASH_CBLOCK - 8; | 236 | | #if defined(DATA_ORDER_IS_BIG_ENDIAN) | 237 | | (void)HOST_l2c(c->Nh, p); | 238 | | (void)HOST_l2c(c->Nl, p); | 239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 240 | 60 | (void)HOST_l2c(c->Nl, p); | 241 | 60 | (void)HOST_l2c(c->Nh, p); | 242 | 60 | #endif | 243 | 60 | p -= HASH_CBLOCK; | 244 | 60 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 245 | 60 | c->num = 0; | 246 | 60 | OPENSSL_cleanse(p, HASH_CBLOCK); | 247 | | | 248 | | #ifndef HASH_MAKE_STRING | 249 | | #error "HASH_MAKE_STRING must be defined!" | 250 | | #else | 251 | 60 | HASH_MAKE_STRING(c, md); | 252 | 60 | #endif | 253 | | | 254 | 60 | return 1; | 255 | 60 | } |
Line | Count | Source | 221 | 91 | { | 222 | 91 | unsigned char *p = (unsigned char *)c->data; | 223 | 91 | size_t n = c->num; | 224 | | | 225 | 91 | p[n] = 0x80; /* there is always room for one */ | 226 | 91 | n++; | 227 | | | 228 | 91 | if (n > (HASH_CBLOCK - 8)) { | 229 | 26 | memset(p + n, 0, HASH_CBLOCK - n); | 230 | 26 | n = 0; | 231 | 26 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 232 | 26 | } | 233 | 91 | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 234 | | | 235 | 91 | p += HASH_CBLOCK - 8; | 236 | 91 | #if defined(DATA_ORDER_IS_BIG_ENDIAN) | 237 | 91 | (void)HOST_l2c(c->Nh, p); | 238 | 91 | (void)HOST_l2c(c->Nl, p); | 239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 240 | | (void)HOST_l2c(c->Nl, p); | 241 | | (void)HOST_l2c(c->Nh, p); | 242 | | #endif | 243 | 91 | p -= HASH_CBLOCK; | 244 | 91 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 245 | 91 | c->num = 0; | 246 | 91 | OPENSSL_cleanse(p, HASH_CBLOCK); | 247 | | | 248 | | #ifndef HASH_MAKE_STRING | 249 | | #error "HASH_MAKE_STRING must be defined!" | 250 | | #else | 251 | 91 | HASH_MAKE_STRING(c, md); | 252 | 91 | #endif | 253 | | | 254 | 91 | return 1; | 255 | 91 | } |
Line | Count | Source | 221 | 13.8k | { | 222 | 13.8k | unsigned char *p = (unsigned char *)c->data; | 223 | 13.8k | size_t n = c->num; | 224 | | | 225 | 13.8k | p[n] = 0x80; /* there is always room for one */ | 226 | 13.8k | n++; | 227 | | | 228 | 13.8k | if (n > (HASH_CBLOCK - 8)) { | 229 | 42 | memset(p + n, 0, HASH_CBLOCK - n); | 230 | 42 | n = 0; | 231 | 42 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 232 | 42 | } | 233 | 13.8k | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 234 | | | 235 | 13.8k | p += HASH_CBLOCK - 8; | 236 | 13.8k | #if defined(DATA_ORDER_IS_BIG_ENDIAN) | 237 | 13.8k | (void)HOST_l2c(c->Nh, p); | 238 | 13.8k | (void)HOST_l2c(c->Nl, p); | 239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 240 | | (void)HOST_l2c(c->Nl, p); | 241 | | (void)HOST_l2c(c->Nh, p); | 242 | | #endif | 243 | 13.8k | p -= HASH_CBLOCK; | 244 | 13.8k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 245 | 13.8k | c->num = 0; | 246 | 13.8k | OPENSSL_cleanse(p, HASH_CBLOCK); | 247 | | | 248 | | #ifndef HASH_MAKE_STRING | 249 | | #error "HASH_MAKE_STRING must be defined!" | 250 | | #else | 251 | 13.8k | HASH_MAKE_STRING(c, md); | 252 | 13.8k | #endif | 253 | | | 254 | 13.8k | return 1; | 255 | 13.8k | } |
Line | Count | Source | 221 | 80 | { | 222 | 80 | unsigned char *p = (unsigned char *)c->data; | 223 | 80 | size_t n = c->num; | 224 | | | 225 | 80 | p[n] = 0x80; /* there is always room for one */ | 226 | 80 | n++; | 227 | | | 228 | 80 | if (n > (HASH_CBLOCK - 8)) { | 229 | 36 | memset(p + n, 0, HASH_CBLOCK - n); | 230 | 36 | n = 0; | 231 | 36 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 232 | 36 | } | 233 | 80 | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 234 | | | 235 | 80 | p += HASH_CBLOCK - 8; | 236 | 80 | #if defined(DATA_ORDER_IS_BIG_ENDIAN) | 237 | 80 | (void)HOST_l2c(c->Nh, p); | 238 | 80 | (void)HOST_l2c(c->Nl, p); | 239 | | #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 240 | | (void)HOST_l2c(c->Nl, p); | 241 | | (void)HOST_l2c(c->Nh, p); | 242 | | #endif | 243 | 80 | p -= HASH_CBLOCK; | 244 | 80 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 245 | 80 | c->num = 0; | 246 | 80 | OPENSSL_cleanse(p, HASH_CBLOCK); | 247 | | | 248 | | #ifndef HASH_MAKE_STRING | 249 | | #error "HASH_MAKE_STRING must be defined!" | 250 | | #else | 251 | 80 | HASH_MAKE_STRING(c, md); | 252 | 80 | #endif | 253 | | | 254 | 80 | return 1; | 255 | 80 | } |
|
256 | | |
257 | | #ifndef MD32_REG_T |
258 | | #if defined(__alpha) || defined(__sparcv9) || defined(__mips) |
259 | | #define MD32_REG_T long |
260 | | /* |
261 | | * This comment was originally written for MD5, which is why it |
262 | | * discusses A-D. But it basically applies to all 32-bit digests, |
263 | | * which is why it was moved to common header file. |
264 | | * |
265 | | * In case you wonder why A-D are declared as long and not |
266 | | * as MD5_LONG. Doing so results in slight performance |
267 | | * boost on LP64 architectures. The catch is we don't |
268 | | * really care if 32 MSBs of a 64-bit register get polluted |
269 | | * with eventual overflows as we *save* only 32 LSBs in |
270 | | * *either* case. Now declaring 'em long excuses the compiler |
271 | | * from keeping 32 MSBs zeroed resulting in 13% performance |
272 | | * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. |
273 | | * Well, to be honest it should say that this *prevents* |
274 | | * performance degradation. |
275 | | */ |
276 | | #else |
277 | | /* |
278 | | * Above is not absolute and there are LP64 compilers that |
279 | | * generate better code if MD32_REG_T is defined int. The above |
280 | | * pre-processor condition reflects the circumstances under which |
281 | | * the conclusion was made and is subject to further extension. |
282 | | */ |
283 | | #define MD32_REG_T int |
284 | | #endif |
285 | | #endif |
286 | | |
287 | | #endif |