/src/openssl/providers/implementations/rands/seeding/rand_unix.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #ifndef _GNU_SOURCE |
11 | | #define _GNU_SOURCE |
12 | | #endif |
13 | | #include "internal/e_os.h" |
14 | | #include <stdio.h> |
15 | | #include "internal/cryptlib.h" |
16 | | #include <openssl/rand.h> |
17 | | #include <openssl/crypto.h> |
18 | | #include "crypto/rand_pool.h" |
19 | | #include "crypto/rand.h" |
20 | | #include "internal/dso.h" |
21 | | #include "internal/nelem.h" |
22 | | #include "prov/seeding.h" |
23 | | |
24 | | #ifndef OPENSSL_SYS_UEFI |
25 | | #ifdef __linux |
26 | | #include <sys/syscall.h> |
27 | | #ifdef DEVRANDOM_WAIT |
28 | | #include <sys/shm.h> |
29 | | #include <sys/utsname.h> |
30 | | #endif |
31 | | #endif |
32 | | #if defined(__FreeBSD__) || defined(__NetBSD__) |
33 | | #include <sys/types.h> |
34 | | #include <sys/sysctl.h> |
35 | | #include <sys/param.h> |
36 | | #endif |
37 | | #if defined(__FreeBSD__) && __FreeBSD_version >= 1200061 |
38 | | #include <sys/random.h> |
39 | | #endif |
40 | | #if defined(__OpenBSD__) |
41 | | #include <sys/param.h> |
42 | | #endif |
43 | | #if defined(__DragonFly__) |
44 | | #include <sys/param.h> |
45 | | #include <sys/random.h> |
46 | | #endif |
47 | | #endif |
48 | | |
49 | | #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \ |
50 | | || defined(__DJGPP__) |
51 | | #include <sys/types.h> |
52 | | #include <sys/stat.h> |
53 | | #include <fcntl.h> |
54 | | #include <unistd.h> |
55 | | #include <sys/time.h> |
56 | | |
57 | | static uint64_t get_time_stamp(void); |
58 | | |
59 | | /* Macro to convert two thirty two bit values into a sixty four bit one */ |
60 | 0 | #define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b)) |
61 | | |
62 | | /* |
63 | | * Check for the existence and support of POSIX timers. The standard |
64 | | * says that the _POSIX_TIMERS macro will have a positive value if they |
65 | | * are available. |
66 | | * |
67 | | * However, we want an additional constraint: that the timer support does |
68 | | * not require an extra library dependency. Early versions of glibc |
69 | | * require -lrt to be specified on the link line to access the timers, |
70 | | * so this needs to be checked for. |
71 | | * |
72 | | * It is worse because some libraries define __GLIBC__ but don't |
73 | | * support the version testing macro (e.g. uClibc). This means |
74 | | * an extra check is needed. |
75 | | * |
76 | | * The final condition is: |
77 | | * "have posix timers and either not glibc or glibc without -lrt" |
78 | | * |
79 | | * The nested #if sequences are required to avoid using a parameterised |
80 | | * macro that might be undefined. |
81 | | */ |
82 | | #undef OSSL_POSIX_TIMER_OKAY |
83 | | /* On some systems, _POSIX_TIMERS is defined but empty. |
84 | | * Subtracting by 0 when comparing avoids an error in this case. */ |
85 | | #if defined(_POSIX_TIMERS) && _POSIX_TIMERS - 0 > 0 |
86 | | #if defined(__GLIBC__) |
87 | | #if defined(__GLIBC_PREREQ) |
88 | | #if __GLIBC_PREREQ(2, 17) |
89 | | #define OSSL_POSIX_TIMER_OKAY |
90 | | #endif |
91 | | #endif |
92 | | #else |
93 | | #define OSSL_POSIX_TIMER_OKAY |
94 | | #endif |
95 | | #endif |
96 | | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \ |
97 | | || defined(__DJGPP__) */ |
98 | | |
99 | | #if defined(OPENSSL_RAND_SEED_NONE) |
100 | | /* none means none. this simplifies the following logic */ |
101 | | #undef OPENSSL_RAND_SEED_OS |
102 | | #undef OPENSSL_RAND_SEED_GETRANDOM |
103 | | #undef OPENSSL_RAND_SEED_DEVRANDOM |
104 | | #undef OPENSSL_RAND_SEED_RDTSC |
105 | | #undef OPENSSL_RAND_SEED_RDCPU |
106 | | #undef OPENSSL_RAND_SEED_EGD |
107 | | #endif |
108 | | |
109 | | #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE) |
110 | | #error "UEFI only supports seeding NONE" |
111 | | #endif |
112 | | |
113 | | #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \ |
114 | | || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \ |
115 | | || defined(OPENSSL_SYS_UEFI)) |
116 | | |
117 | | #if defined(OPENSSL_SYS_VOS) |
118 | | |
119 | | #ifndef OPENSSL_RAND_SEED_OS |
120 | | #error "Unsupported seeding method configured; must be os" |
121 | | #endif |
122 | | |
123 | | #if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32) |
124 | | #error "Unsupported HP-PA and IA32 at the same time." |
125 | | #endif |
126 | | #if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32) |
127 | | #error "Must have one of HP-PA or IA32" |
128 | | #endif |
129 | | |
130 | | /* |
131 | | * The following algorithm repeatedly samples the real-time clock (RTC) to |
132 | | * generate a sequence of unpredictable data. The algorithm relies upon the |
133 | | * uneven execution speed of the code (due to factors such as cache misses, |
134 | | * interrupts, bus activity, and scheduling) and upon the rather large |
135 | | * relative difference between the speed of the clock and the rate at which |
136 | | * it can be read. If it is ported to an environment where execution speed |
137 | | * is more constant or where the RTC ticks at a much slower rate, or the |
138 | | * clock can be read with fewer instructions, it is likely that the results |
139 | | * would be far more predictable. This should only be used for legacy |
140 | | * platforms. |
141 | | * |
142 | | * As a precaution, we assume only 2 bits of entropy per byte. |
143 | | */ |
144 | | size_t ossl_pool_acquire_entropy(RAND_POOL *pool) |
145 | | { |
146 | | short int code; |
147 | | int i, k; |
148 | | size_t bytes_needed; |
149 | | struct timespec ts; |
150 | | unsigned char v; |
151 | | #ifdef OPENSSL_SYS_VOS_HPPA |
152 | | long duration; |
153 | | extern void s$sleep(long *_duration, short int *_code); |
154 | | #else |
155 | | long long duration; |
156 | | extern void s$sleep2(long long *_duration, short int *_code); |
157 | | #endif |
158 | | |
159 | | bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/); |
160 | | |
161 | | for (i = 0; i < bytes_needed; i++) { |
162 | | /* |
163 | | * burn some cpu; hope for interrupts, cache collisions, bus |
164 | | * interference, etc. |
165 | | */ |
166 | | for (k = 0; k < 99; k++) |
167 | | ts.tv_nsec = random(); |
168 | | |
169 | | #ifdef OPENSSL_SYS_VOS_HPPA |
170 | | /* sleep for 1/1024 of a second (976 us). */ |
171 | | duration = 1; |
172 | | s$sleep(&duration, &code); |
173 | | #else |
174 | | /* sleep for 1/65536 of a second (15 us). */ |
175 | | duration = 1; |
176 | | s$sleep2(&duration, &code); |
177 | | #endif |
178 | | |
179 | | /* Get wall clock time, take 8 bits. */ |
180 | | clock_gettime(CLOCK_REALTIME, &ts); |
181 | | v = (unsigned char)(ts.tv_nsec & 0xFF); |
182 | | ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2); |
183 | | } |
184 | | return ossl_rand_pool_entropy_available(pool); |
185 | | } |
186 | | |
187 | | void ossl_rand_pool_cleanup(void) |
188 | | { |
189 | | } |
190 | | |
191 | | void ossl_rand_pool_keep_random_devices_open(int keep) |
192 | | { |
193 | | } |
194 | | |
195 | | #else |
196 | | |
197 | | #if defined(OPENSSL_RAND_SEED_EGD) && (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD)) |
198 | | #error "Seeding uses EGD but EGD is turned off or no device given" |
199 | | #endif |
200 | | |
201 | | #if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM) |
202 | | #error "Seeding uses urandom but DEVRANDOM is not configured" |
203 | | #endif |
204 | | |
205 | | #if defined(OPENSSL_RAND_SEED_OS) |
206 | | #if !defined(DEVRANDOM) |
207 | | #error "OS seeding requires DEVRANDOM to be configured" |
208 | | #endif |
209 | | #define OPENSSL_RAND_SEED_GETRANDOM |
210 | | #define OPENSSL_RAND_SEED_DEVRANDOM |
211 | | #endif |
212 | | |
213 | | #if ((defined(__FreeBSD__) && __FreeBSD_version < 1200061) \ |
214 | | || (defined(__NetBSD__) && __NetBSD_Version < 1000000000)) \ |
215 | | && defined(KERN_ARND) |
216 | | /* |
217 | | * sysctl_random(): Use sysctl() to read a random number from the kernel |
218 | | * Returns the number of bytes returned in buf on success, -1 on failure. |
219 | | */ |
220 | | static ssize_t sysctl_random(char *buf, size_t buflen) |
221 | | { |
222 | | int mib[2]; |
223 | | size_t done = 0; |
224 | | size_t len; |
225 | | |
226 | | /* |
227 | | * Note: sign conversion between size_t and ssize_t is safe even |
228 | | * without a range check, see comment in syscall_random() |
229 | | */ |
230 | | |
231 | | /* |
232 | | * On FreeBSD old implementations returned longs, newer versions support |
233 | | * variable sizes up to 256 byte. The code below would not work properly |
234 | | * when the sysctl returns long and we want to request something not a |
235 | | * multiple of longs, which should never be the case. |
236 | | */ |
237 | | #if defined(__FreeBSD__) |
238 | | if (!ossl_assert(buflen % sizeof(long) == 0)) { |
239 | | errno = EINVAL; |
240 | | return -1; |
241 | | } |
242 | | #endif |
243 | | |
244 | | /* |
245 | | * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only |
246 | | * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0 |
247 | | * it returns a variable number of bytes with the current version supporting |
248 | | * up to 256 bytes. |
249 | | * Just return an error on older NetBSD versions. |
250 | | */ |
251 | | #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000 |
252 | | errno = ENOSYS; |
253 | | return -1; |
254 | | #endif |
255 | | |
256 | | mib[0] = CTL_KERN; |
257 | | mib[1] = KERN_ARND; |
258 | | |
259 | | do { |
260 | | len = buflen > 256 ? 256 : buflen; |
261 | | if (sysctl(mib, 2, buf, &len, NULL, 0) == -1) |
262 | | return done > 0 ? done : -1; |
263 | | done += len; |
264 | | buf += len; |
265 | | buflen -= len; |
266 | | } while (buflen > 0); |
267 | | |
268 | | return done; |
269 | | } |
270 | | #endif |
271 | | |
272 | | #if defined(OPENSSL_RAND_SEED_GETRANDOM) |
273 | | |
274 | | #if defined(__linux) && !defined(__NR_getrandom) |
275 | | #if defined(__arm__) |
276 | | #define __NR_getrandom (__NR_SYSCALL_BASE + 384) |
277 | | #elif defined(__i386__) |
278 | | #define __NR_getrandom 355 |
279 | | #elif defined(__x86_64__) |
280 | | #if defined(__ILP32__) |
281 | | #define __NR_getrandom (__X32_SYSCALL_BIT + 318) |
282 | | #else |
283 | | #define __NR_getrandom 318 |
284 | | #endif |
285 | | #elif defined(__xtensa__) |
286 | | #define __NR_getrandom 338 |
287 | | #elif defined(__s390__) || defined(__s390x__) |
288 | | #define __NR_getrandom 349 |
289 | | #elif defined(__bfin__) |
290 | | #define __NR_getrandom 389 |
291 | | #elif defined(__powerpc__) |
292 | | #define __NR_getrandom 359 |
293 | | #elif defined(__mips__) || defined(__mips64) |
294 | | #if _MIPS_SIM == _MIPS_SIM_ABI32 |
295 | | #define __NR_getrandom (__NR_Linux + 353) |
296 | | #elif _MIPS_SIM == _MIPS_SIM_ABI64 |
297 | | #define __NR_getrandom (__NR_Linux + 313) |
298 | | #elif _MIPS_SIM == _MIPS_SIM_NABI32 |
299 | | #define __NR_getrandom (__NR_Linux + 317) |
300 | | #endif |
301 | | #elif defined(__hppa__) |
302 | | #define __NR_getrandom (__NR_Linux + 339) |
303 | | #elif defined(__sparc__) |
304 | | #define __NR_getrandom 347 |
305 | | #elif defined(__ia64__) |
306 | | #define __NR_getrandom 1339 |
307 | | #elif defined(__alpha__) |
308 | | #define __NR_getrandom 511 |
309 | | #elif defined(__sh__) |
310 | | #if defined(__SH5__) |
311 | | #define __NR_getrandom 373 |
312 | | #else |
313 | | #define __NR_getrandom 384 |
314 | | #endif |
315 | | #elif defined(__avr32__) |
316 | | #define __NR_getrandom 317 |
317 | | #elif defined(__microblaze__) |
318 | | #define __NR_getrandom 385 |
319 | | #elif defined(__m68k__) |
320 | | #define __NR_getrandom 352 |
321 | | #elif defined(__cris__) |
322 | | #define __NR_getrandom 356 |
323 | | #else /* generic (f.e. aarch64, loongarch, loongarch64) */ |
324 | | #define __NR_getrandom 278 |
325 | | #endif |
326 | | #endif |
327 | | |
328 | | /* |
329 | | * syscall_random(): Try to get random data using a system call |
330 | | * returns the number of bytes returned in buf, or < 0 on error. |
331 | | */ |
332 | | static ssize_t syscall_random(void *buf, size_t buflen) |
333 | 0 | { |
334 | | /* |
335 | | * Note: 'buflen' equals the size of the buffer which is used by the |
336 | | * get_entropy() callback of the RAND_DRBG. It is roughly bounded by |
337 | | * |
338 | | * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14 |
339 | | * |
340 | | * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion |
341 | | * between size_t and ssize_t is safe even without a range check. |
342 | | */ |
343 | | |
344 | | /* |
345 | | * Do runtime detection to find getentropy(). |
346 | | * |
347 | | * Known OSs that should support this: |
348 | | * - Darwin since 16 (OSX 10.12, IOS 10.0). |
349 | | * - Solaris since 11.3 |
350 | | * - OpenBSD since 5.6 |
351 | | * - Linux since 3.17 with glibc 2.25 |
352 | | * |
353 | | * Note: Sometimes getentropy() can be provided but not implemented |
354 | | * internally. So we need to check errno for ENOSYS |
355 | | */ |
356 | 0 | #if !defined(__DragonFly__) && !defined(__NetBSD__) && !defined(__FreeBSD__) |
357 | 0 | #if defined(__GNUC__) && __GNUC__ >= 2 && defined(__ELF__) && !defined(__hpux) |
358 | 0 | extern int getentropy(void *buffer, size_t length) __attribute__((weak)); |
359 | |
|
360 | 0 | if (getentropy != NULL) { |
361 | 0 | if (getentropy(buf, buflen) == 0) |
362 | 0 | return (ssize_t)buflen; |
363 | 0 | if (errno != ENOSYS) |
364 | 0 | return -1; |
365 | 0 | } |
366 | | #elif defined(OPENSSL_APPLE_CRYPTO_RANDOM) |
367 | | |
368 | | if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess) |
369 | | return (ssize_t)buflen; |
370 | | |
371 | | return -1; |
372 | | #else |
373 | | union { |
374 | | void *p; |
375 | | int (*f)(void *buffer, size_t length); |
376 | | } p_getentropy; |
377 | | |
378 | | /* |
379 | | * We could cache the result of the lookup, but we normally don't |
380 | | * call this function often. |
381 | | */ |
382 | | ERR_set_mark(); |
383 | | p_getentropy.p = DSO_global_lookup("getentropy"); |
384 | | ERR_pop_to_mark(); |
385 | | if (p_getentropy.p != NULL) |
386 | | return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1; |
387 | | #endif |
388 | 0 | #endif /* !__DragonFly__ && !__NetBSD__ && !__FreeBSD__ */ |
389 | | |
390 | | /* Linux supports this since version 3.17 */ |
391 | 0 | #if defined(__linux) && defined(__NR_getrandom) |
392 | 0 | return syscall(__NR_getrandom, buf, buflen, 0); |
393 | | #elif (defined(__DragonFly__) && __DragonFly_version >= 500700) \ |
394 | | || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000) \ |
395 | | || (defined(__FreeBSD__) && __FreeBSD_version >= 1200061) |
396 | | return getrandom(buf, buflen, 0); |
397 | | #elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) |
398 | | return sysctl_random(buf, buflen); |
399 | | #elif defined(__wasi__) |
400 | | if (getentropy(buf, buflen) == 0) |
401 | | return (ssize_t)buflen; |
402 | | return -1; |
403 | | #else |
404 | | errno = ENOSYS; |
405 | | return -1; |
406 | | #endif |
407 | 0 | } |
408 | | #endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */ |
409 | | |
410 | | #if defined(OPENSSL_RAND_SEED_DEVRANDOM) |
411 | | static const char *random_device_paths[] = { DEVRANDOM }; |
412 | | static struct random_device { |
413 | | int fd; |
414 | | dev_t dev; |
415 | | ino_t ino; |
416 | | mode_t mode; |
417 | | dev_t rdev; |
418 | | } random_devices[OSSL_NELEM(random_device_paths)]; |
419 | | static int keep_random_devices_open = 1; |
420 | | |
421 | | #if defined(__linux) && defined(DEVRANDOM_WAIT) \ |
422 | | && defined(OPENSSL_RAND_SEED_GETRANDOM) |
423 | | static void *shm_addr; |
424 | | |
425 | | static void cleanup_shm(void) |
426 | 0 | { |
427 | 0 | shmdt(shm_addr); |
428 | 0 | } |
429 | | |
430 | | /* |
431 | | * Ensure that the system randomness source has been adequately seeded. |
432 | | * This is done by having the first start of libcrypto, wait until the device |
433 | | * /dev/random becomes able to supply a byte of entropy. Subsequent starts |
434 | | * of the library and later reseedings do not need to do this. |
435 | | */ |
436 | | static int wait_random_seeded(void) |
437 | 0 | { |
438 | 0 | static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0; |
439 | 0 | static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL }; |
440 | 0 | int kernel[2]; |
441 | 0 | int shm_id, fd, r; |
442 | 0 | char c, *p; |
443 | 0 | struct utsname un; |
444 | 0 | fd_set fds; |
445 | |
|
446 | 0 | if (!seeded) { |
447 | | /* See if anything has created the global seeded indication */ |
448 | 0 | if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) { |
449 | | /* |
450 | | * Check the kernel's version and fail if it is too recent. |
451 | | * |
452 | | * Linux kernels from 4.8 onwards do not guarantee that |
453 | | * /dev/urandom is properly seeded when /dev/random becomes |
454 | | * readable. However, such kernels support the getentropy(2) |
455 | | * system call and this should always succeed which renders |
456 | | * this alternative but essentially identical source moot. |
457 | | */ |
458 | 0 | if (uname(&un) == 0) { |
459 | 0 | kernel[0] = atoi(un.release); |
460 | 0 | p = strchr(un.release, '.'); |
461 | 0 | kernel[1] = p == NULL ? 0 : atoi(p + 1); |
462 | 0 | if (kernel[0] > kernel_version[0] |
463 | 0 | || (kernel[0] == kernel_version[0] |
464 | 0 | && kernel[1] >= kernel_version[1])) { |
465 | 0 | return 0; |
466 | 0 | } |
467 | 0 | } |
468 | | /* Open /dev/random and wait for it to be readable */ |
469 | 0 | if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) { |
470 | 0 | if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) { |
471 | 0 | FD_ZERO(&fds); |
472 | 0 | FD_SET(fd, &fds); |
473 | 0 | while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0 |
474 | 0 | && errno == EINTR) |
475 | 0 | ; |
476 | 0 | } else { |
477 | 0 | while ((r = read(fd, &c, 1)) < 0 && errno == EINTR) |
478 | 0 | ; |
479 | 0 | } |
480 | 0 | close(fd); |
481 | 0 | if (r == 1) { |
482 | 0 | seeded = 1; |
483 | | /* Create the shared memory indicator */ |
484 | 0 | shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, |
485 | 0 | IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH); |
486 | 0 | } |
487 | 0 | } |
488 | 0 | } |
489 | 0 | if (shm_id != -1) { |
490 | 0 | seeded = 1; |
491 | | /* |
492 | | * Map the shared memory to prevent its premature destruction. |
493 | | * If this call fails, it isn't a big problem. |
494 | | */ |
495 | 0 | shm_addr = shmat(shm_id, NULL, SHM_RDONLY); |
496 | 0 | if (shm_addr != (void *)-1) |
497 | 0 | OPENSSL_atexit(&cleanup_shm); |
498 | 0 | } |
499 | 0 | } |
500 | 0 | return seeded; |
501 | 0 | } |
502 | | #else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */ |
503 | | static int wait_random_seeded(void) |
504 | | { |
505 | | return 1; |
506 | | } |
507 | | #endif |
508 | | |
509 | | /* |
510 | | * Verify that the file descriptor associated with the random source is |
511 | | * still valid. The rationale for doing this is the fact that it is not |
512 | | * uncommon for daemons to close all open file handles when daemonizing. |
513 | | * So the handle might have been closed or even reused for opening |
514 | | * another file. |
515 | | */ |
516 | | static int check_random_device(struct random_device *rd) |
517 | 0 | { |
518 | 0 | struct stat st; |
519 | |
|
520 | 0 | return rd->fd != -1 |
521 | 0 | && fstat(rd->fd, &st) != -1 |
522 | 0 | && rd->dev == st.st_dev |
523 | 0 | && rd->ino == st.st_ino |
524 | 0 | && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0 |
525 | 0 | && rd->rdev == st.st_rdev; |
526 | 0 | } |
527 | | |
528 | | /* |
529 | | * Open a random device if required and return its file descriptor or -1 on error |
530 | | */ |
531 | | static int get_random_device(size_t n) |
532 | 0 | { |
533 | 0 | struct stat st; |
534 | 0 | struct random_device *rd = &random_devices[n]; |
535 | | |
536 | | /* reuse existing file descriptor if it is (still) valid */ |
537 | 0 | if (check_random_device(rd)) |
538 | 0 | return rd->fd; |
539 | | |
540 | | /* open the random device ... */ |
541 | 0 | if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1) |
542 | 0 | return rd->fd; |
543 | | |
544 | | /* ... and cache its relevant stat(2) data */ |
545 | 0 | if (fstat(rd->fd, &st) != -1) { |
546 | 0 | rd->dev = st.st_dev; |
547 | 0 | rd->ino = st.st_ino; |
548 | 0 | rd->mode = st.st_mode; |
549 | 0 | rd->rdev = st.st_rdev; |
550 | 0 | } else { |
551 | 0 | close(rd->fd); |
552 | 0 | rd->fd = -1; |
553 | 0 | } |
554 | |
|
555 | 0 | return rd->fd; |
556 | 0 | } |
557 | | |
558 | | /* |
559 | | * Close a random device making sure it is a random device |
560 | | */ |
561 | | static void close_random_device(size_t n) |
562 | 0 | { |
563 | 0 | struct random_device *rd = &random_devices[n]; |
564 | |
|
565 | 0 | if (check_random_device(rd)) |
566 | 0 | close(rd->fd); |
567 | 0 | rd->fd = -1; |
568 | 0 | } |
569 | | |
570 | | int ossl_rand_pool_init(void) |
571 | 0 | { |
572 | 0 | size_t i; |
573 | |
|
574 | 0 | for (i = 0; i < OSSL_NELEM(random_devices); i++) |
575 | 0 | random_devices[i].fd = -1; |
576 | |
|
577 | 0 | return 1; |
578 | 0 | } |
579 | | |
580 | | void ossl_rand_pool_cleanup(void) |
581 | 0 | { |
582 | 0 | size_t i; |
583 | |
|
584 | 0 | for (i = 0; i < OSSL_NELEM(random_devices); i++) |
585 | 0 | close_random_device(i); |
586 | 0 | } |
587 | | |
588 | | void ossl_rand_pool_keep_random_devices_open(int keep) |
589 | 0 | { |
590 | 0 | if (!keep) |
591 | 0 | ossl_rand_pool_cleanup(); |
592 | |
|
593 | 0 | keep_random_devices_open = keep; |
594 | 0 | } |
595 | | |
596 | | #else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */ |
597 | | |
598 | | int ossl_rand_pool_init(void) |
599 | | { |
600 | | return 1; |
601 | | } |
602 | | |
603 | | void ossl_rand_pool_cleanup(void) |
604 | | { |
605 | | } |
606 | | |
607 | | void ossl_rand_pool_keep_random_devices_open(int keep) |
608 | | { |
609 | | } |
610 | | |
611 | | #endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */ |
612 | | |
613 | | /* |
614 | | * Try the various seeding methods in turn, exit when successful. |
615 | | * |
616 | | * If more than one entropy source is available, is it |
617 | | * preferable to stop as soon as enough entropy has been collected |
618 | | * (as favored by @rsalz) or should one rather be defensive and add |
619 | | * more entropy than requested and/or from different sources? |
620 | | * |
621 | | * Currently, the user can select multiple entropy sources in the |
622 | | * configure step, yet in practice only the first available source |
623 | | * will be used. A more flexible solution has been requested, but |
624 | | * currently it is not clear how this can be achieved without |
625 | | * overengineering the problem. There are many parameters which |
626 | | * could be taken into account when selecting the order and amount |
627 | | * of input from the different entropy sources (trust, quality, |
628 | | * possibility of blocking). |
629 | | */ |
630 | | size_t ossl_pool_acquire_entropy(RAND_POOL *pool) |
631 | 0 | { |
632 | | #if defined(OPENSSL_RAND_SEED_NONE) |
633 | | return ossl_rand_pool_entropy_available(pool); |
634 | | #else |
635 | 0 | size_t entropy_available = 0; |
636 | |
|
637 | 0 | (void)entropy_available; /* avoid compiler warning */ |
638 | |
|
639 | 0 | #if defined(OPENSSL_RAND_SEED_GETRANDOM) |
640 | 0 | { |
641 | 0 | size_t bytes_needed; |
642 | 0 | unsigned char *buffer; |
643 | 0 | ssize_t bytes; |
644 | | /* Maximum allowed number of consecutive unsuccessful attempts */ |
645 | 0 | int attempts = 3; |
646 | |
|
647 | 0 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
648 | 0 | while (bytes_needed != 0 && attempts-- > 0) { |
649 | 0 | buffer = ossl_rand_pool_add_begin(pool, bytes_needed); |
650 | 0 | bytes = syscall_random(buffer, bytes_needed); |
651 | 0 | if (bytes > 0) { |
652 | 0 | ossl_rand_pool_add_end(pool, bytes, 8 * bytes); |
653 | 0 | bytes_needed -= bytes; |
654 | 0 | attempts = 3; /* reset counter after successful attempt */ |
655 | 0 | } else if (bytes < 0 && errno != EINTR) { |
656 | 0 | break; |
657 | 0 | } |
658 | 0 | } |
659 | 0 | } |
660 | 0 | entropy_available = ossl_rand_pool_entropy_available(pool); |
661 | 0 | if (entropy_available > 0) |
662 | 0 | return entropy_available; |
663 | 0 | #endif |
664 | | |
665 | 0 | #if defined(OPENSSL_RAND_SEED_DEVRANDOM) |
666 | 0 | if (wait_random_seeded()) { |
667 | 0 | size_t bytes_needed; |
668 | 0 | unsigned char *buffer; |
669 | 0 | size_t i; |
670 | |
|
671 | 0 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
672 | 0 | for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); |
673 | 0 | i++) { |
674 | 0 | ssize_t bytes = 0; |
675 | | /* Maximum number of consecutive unsuccessful attempts */ |
676 | 0 | int attempts = 3; |
677 | 0 | const int fd = get_random_device(i); |
678 | |
|
679 | 0 | if (fd == -1) |
680 | 0 | continue; |
681 | | |
682 | 0 | while (bytes_needed != 0 && attempts-- > 0) { |
683 | 0 | buffer = ossl_rand_pool_add_begin(pool, bytes_needed); |
684 | 0 | bytes = read(fd, buffer, bytes_needed); |
685 | |
|
686 | 0 | if (bytes > 0) { |
687 | 0 | ossl_rand_pool_add_end(pool, bytes, 8 * bytes); |
688 | 0 | bytes_needed -= bytes; |
689 | 0 | attempts = 3; /* reset counter on successful attempt */ |
690 | 0 | } else if (bytes < 0 && errno != EINTR) { |
691 | 0 | break; |
692 | 0 | } |
693 | 0 | } |
694 | 0 | if (bytes < 0 || !keep_random_devices_open) |
695 | 0 | close_random_device(i); |
696 | |
|
697 | 0 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1); |
698 | 0 | } |
699 | 0 | entropy_available = ossl_rand_pool_entropy_available(pool); |
700 | 0 | if (entropy_available > 0) |
701 | 0 | return entropy_available; |
702 | 0 | } |
703 | 0 | #endif |
704 | | |
705 | | #if defined(OPENSSL_RAND_SEED_RDTSC) |
706 | | entropy_available = ossl_prov_acquire_entropy_from_tsc(pool); |
707 | | if (entropy_available > 0) |
708 | | return entropy_available; |
709 | | #endif |
710 | | |
711 | | #if defined(OPENSSL_RAND_SEED_RDCPU) |
712 | | entropy_available = ossl_prov_acquire_entropy_from_cpu(pool); |
713 | | if (entropy_available > 0) |
714 | | return entropy_available; |
715 | | #endif |
716 | | |
717 | | #if defined(OPENSSL_RAND_SEED_EGD) |
718 | | { |
719 | | static const char *paths[] = { DEVRANDOM_EGD, NULL }; |
720 | | size_t bytes_needed; |
721 | | unsigned char *buffer; |
722 | | int i; |
723 | | |
724 | | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
725 | | for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) { |
726 | | size_t bytes = 0; |
727 | | int num; |
728 | | |
729 | | buffer = ossl_rand_pool_add_begin(pool, bytes_needed); |
730 | | num = RAND_query_egd_bytes(paths[i], |
731 | | buffer, (int)bytes_needed); |
732 | | if (num == (int)bytes_needed) |
733 | | bytes = bytes_needed; |
734 | | |
735 | | ossl_rand_pool_add_end(pool, bytes, 8 * bytes); |
736 | | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1); |
737 | | } |
738 | | entropy_available = ossl_rand_pool_entropy_available(pool); |
739 | | if (entropy_available > 0) |
740 | | return entropy_available; |
741 | | } |
742 | | #endif |
743 | | |
744 | 0 | return ossl_rand_pool_entropy_available(pool); |
745 | 0 | #endif |
746 | 0 | } |
747 | | #endif |
748 | | #endif |
749 | | |
750 | | #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \ |
751 | | || defined(__DJGPP__) |
752 | | int ossl_pool_add_nonce_data(RAND_POOL *pool) |
753 | 0 | { |
754 | 0 | struct { |
755 | 0 | pid_t pid; |
756 | 0 | CRYPTO_THREAD_ID tid; |
757 | 0 | uint64_t time; |
758 | 0 | } data; |
759 | | |
760 | | /* Erase the entire structure including any padding */ |
761 | 0 | memset(&data, 0, sizeof(data)); |
762 | | |
763 | | /* |
764 | | * Add process id, thread id, and a high resolution timestamp to |
765 | | * ensure that the nonce is unique with high probability for |
766 | | * different process instances. |
767 | | */ |
768 | 0 | data.pid = getpid(); |
769 | 0 | data.tid = CRYPTO_THREAD_get_current_id(); |
770 | 0 | data.time = get_time_stamp(); |
771 | |
|
772 | 0 | return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); |
773 | 0 | } |
774 | | |
775 | | /* |
776 | | * Get the current time with the highest possible resolution |
777 | | * |
778 | | * The time stamp is added to the nonce, so it is optimized for not repeating. |
779 | | * The current time is ideal for this purpose, provided the computer's clock |
780 | | * is synchronized. |
781 | | */ |
782 | | static uint64_t get_time_stamp(void) |
783 | 0 | { |
784 | 0 | #if defined(OSSL_POSIX_TIMER_OKAY) |
785 | 0 | { |
786 | 0 | struct timespec ts; |
787 | |
|
788 | 0 | if (clock_gettime(CLOCK_REALTIME, &ts) == 0) |
789 | 0 | return TWO32TO64(ts.tv_sec, ts.tv_nsec); |
790 | 0 | } |
791 | 0 | #endif |
792 | 0 | #if defined(__unix__) \ |
793 | 0 | || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) |
794 | 0 | { |
795 | 0 | struct timeval tv; |
796 | |
|
797 | 0 | if (gettimeofday(&tv, NULL) == 0) |
798 | 0 | return TWO32TO64(tv.tv_sec, tv.tv_usec); |
799 | 0 | } |
800 | 0 | #endif |
801 | 0 | return time(NULL); |
802 | 0 | } |
803 | | |
804 | | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \ |
805 | | || defined(__DJGPP__) */ |